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Abstract: A multi-sensor-based ambient sensing system is proposed for estimating the user’s comfort/discomfort in
response to the lighting condition during desk work. The user’s comfort/discomfort is estimated according to facial
expression, body sway, writing motion and frequency of drinking measured by sensors embedded in the environment.
The recognition rate of the user’s comfort/discomfort under the lighting condition that induces different feelings of
comfort depending on the user’s state of the day is evaluated in an experimental environment. As a result, the recogni-
tion rate of the user’s comfort/discomfort on a two-point scale is 91% when selecting a suitable combination of ambient
sensors. Furthermore, it is suggested that not only information of facial expression but also the information of body
sway, writing motion and frequency of drinking is useful for the estimation of comfort/discomfort.
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1. Introduction

Ambient sensing is an emerging field of research that aims to
measure human behaviors or monitor the human state without the
need for the subject to wear sensors. Various types of sensors are
used in ambient sensing; e.g., cameras and depth sensors mounted
on a wall or ceiling and sensors embedded in personal items such
as in the case of a chair equipped with a pressure sensor or a cup
having an embedded accelerometer. In contrast to body-mounted
sensors such as an electroencephalograph or heart-rate monitor,
an ambient sensor can measure transparently without constrain-
ing the user’s natural movements. Therefore, ambient sensors are
suitable for use in a practical system. Recently, a system that pro-
vides a service meeting individual needs by automatically recog-
nizing the user’s psychological state from ambient sensing data
has attracted attention. The most important problem relating to
the system is how to estimate the user’s psychological state and
user’s situation. In particular, the user’s comfort/discomfort is im-
portant information in providing a service yet is one of the most
difficult indexes to estimate.

Comfort/discomfort estimation has been intensively researched
in recent years. Most of the research has focused on physiolog-
ical sensor information [1], [2], [3], [4]. Using a physiological
sensor, a change in the user’s state can be recognized without the
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subject acting out a behavior. However, the user’s natural move-
ment is constrained because almost all physiological sensors are
attached to the human body. An estimation method based on
ambient sensor information has also been proposed [5], [6], [7].
Studies have investigated the estimation of discomfort felt un-
der different lighting conditions according to information of the
facial expression recognized in frontal facial images [8] and the
relationship between writing speed measured using a vibration
sensor attached to the back of a desk and the discomfort felt by a
subject when blowing up a balloon [9].

In conventional research, only a single sensor is used to es-
timate comfort/discomfort. It thus seems that the comfort level
can be estimated accurately only in the case that a strong stress
stimulus is provided. In considering the application to practical
systems in the future, it is important to estimate comfort not only
in response to a strong stimulus that would make anyone uncom-
fortable but also in response to a weak stimulus that would in-
voke different feelings depending on the person. We are aiming
to build a multi-sensor-based ambient sensing system that can es-
timate the user’s comfort/discomfort even in a situation where the
feeling of comfort will differ among individuals.

The proposed system is developed assuming a task of estimat-
ing comfort/discomfort of a user performing tasks while sitting
at a desk in an indoor environment. The configuration space of
the sensor is thus relatively small and it is unnecessary to con-
sider movement or large postural change of the user. Addition-
ally, as tasks performed in desk work are limited, useful data can
be obtained from a small number of work-relevant sensors, such
as chair and pen sensors. Furthermore, the effects of properties
of the indoor environment such as illuminance or temperature on
work efficiency are evaluated [10], [11], and it is expected that
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Fig. 1 System configuration: The chair is equipped with four load cells on the back. The pen is equipped
with a retroreflection marker. The cup is equipped with an accelerometer on the back.

Table 1 Sensor details.

Sensor Product name Sampling rate Data

Camera HD Pro Webcam C910 1 Hz RGB image (640 × 480 pixels)
(Facial Expression) /Logicool

Chair sensor Ambient Chair [12] 10 Hz The center of seating pressure

Pen sensor OptiTrack Flex 3 100 Hz The three-dimensional position
/SPICE

Cup sensor WAA-001 5 Hz Vertically upward acceleration of the cup
/ATR-Promotions

Electroencephalograph Emotive EPOC 128 Hz EEG signal of 14 electrodes (AF3, F7, F3, FC5, T7, P7, O1, O2, P8,
/Emotive Systems T8, FC6, F4, F8, AF14) based on the International 10–20 locations

Heart-rate monitor myBeat 1,000 Hz R–R interval (RRI)
/Union tool

estimations of the comfort/discomfort made by the proposed sys-
tem can be used to improve the user’s work efficiency through
automatic control of the indoor environment.

The user’s behavior during desk work, such as facial expres-
sions, body sway, writing speed and frequency of drinking, ap-
pear to depend on the user’s comfort/discomfort. The proposed
system thus measures the user’s behavior during desk work using
a camera (for facial expression), chair sensor, pen sensor and cup
sensor. In addition, an electroencephalograph and heart-rate mon-
itor are used to allow comparison of the estimation result when
only using ambient sensors with that when also using physiolog-
ical sensors. Factors that affect discomfort in an indoor environ-
ment include illuminance and temperature. We estimate comfort
in response to the lighting environment with high repeatability
and reproducibility in an experiment.

2. System

This section describes the multi-sensor-based ambient sensing
system used to estimate comfort/discomfort. The method of mea-
suring the user’s state is described firstly in Section 2.1, and the
method of estimating the user’s comfort/discomfort from the ob-
tained sensor data is then described in Section 2.2.

2.1 Measurement of the User’s State
The user’s facial image is recorded with a camera, the center of

seating pressure is recorded by pressure sensors of the chair, the
three-dimensional position of the top of a pen is recorded using
a marker on the pen, and the acceleration of a cup is recorded by
an accelerometer in the cup; these sensors are considered ambi-
ent sensors. In addition, electroencephalography (EEG) signals
and the R–R interval (RRI) are measured by an electroencephalo-
graph and heart-rate monitor as a reference for comparing with
the case of using only ambient sensors. The system configuration
is shown in Fig. 1 and details of the sensors are given in Table 1.

2.2 Estimation of the User’s Comfort/Discomfort
Figure 2 is a flowchart of the estimation of comfort. Each pro-

cess is detailed as follows.
2.2.1 Extraction of Feature Values
• Camera (Facial Expression): Facial feature points are

extracted from the user’s facial image using Face Tracker
API for real-time non-rigid face tracking [13]. The fa-
cial position, size and orientation are then normalized by
homography transformation employing a facial recognition
method [8]. Let P = {p1, · · · , p12} be a set of normalized fa-
cial feature points (see Fig. 3). Let d(pa, pb) (pa, pb ∈ P)
be the Euclidean distance between two normalized facial
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points. The following values are extracted.
– The distance between eyebrows:

D1 = d(p1, p2)

– The distance between eye and eyebrow:

D2 =
1
2
{d(p1, p3) + d(p2, p4)}

– The distance of eye-opening:

D3 =
1
4
{d(p5, p6) + d(p7, p8) + d(p9, p10) + d(p11, p12)}

• Chair Sensor: The amount of movement of the center po-
sition of the seating pressure is extracted from time-series
data of the center positions measured by the chair sensor.
The value is treated as the feature value of the chair sensor.

• Pen Sensor: The amount of movement of the top of the pen
is extracted from time-series data of the three-dimensional
position of the pen measured by the pen sensor. The value is
treated as the feature value of the pen sensor.

• Cup Sensor: The angle of inclination of the cup is calcu-
lated from the vertical upward acceleration measured by the
cup sensor. According to the angle, the user’s state is classi-
fied as a state of handling the cup or a state of not handling
the cup by threshold processing. The state of handling the
cup relates to the action of drinking and the number of ac-
tions of drinking water is treated as the feature value of the
cup.

• Electroencephalograph: The effects of artifacts in the ob-
served EEG signal are eliminated by independent compo-
nent analysis for each electrode. The denoised EEG signals

Fig. 2 Flowchart of the estimation of comfort.

Fig. 3 Facial feature points around the eyes used to extract the feature value.

are filtered by band-pass filters of the delta wave (0.5–4 Hz),
theta wave (4–8 Hz), alpha wave (8–14 Hz) and beta wave
(14–38 Hz). The average power of each frequency band-
width is treated as the feature value of the electroencephalo-
graph; there are 56 (= 14 (electrodes) × 4 (waves)) feature
values.

• Heart-rate monitor: The power spectrum density is esti-
mated from RRI data. Let HF be the integral value of the
power spectrum at high frequency (0.15–0.40 Hz). HF is
treated as the feature value of the heart-rate monitor.

2.2.2 Normalization
Assuming a normal distribution, the extracted feature values

are normalized with zero mean and a variance of 1 for each user’s
feature values by considering individual differences.
2.2.3 Learning and Recognition

Feature vectors are constructed from the normalized feature
values, and the user’s comfort/discomfort is learned and recog-
nized from the feature vectors employing a support vector ma-
chine (SVM). SVM parameters include the penalty parameter C

and kernel function parameter γ. In the learning process of the
SVM, the optimal parameter C and γ are sought in a grid search.

3. Data Acquisition

In data acquisition, each subject was asked to perform an easy
task under several lighting conditions, and the subject’s state
while performing the task was recorded by the sensors listed in
Section 2. Figure 4 shows the timetable. We conducted this ex-
periment three times for each subject on different days. Details
of data acquisition are described as follows.
• Subjects: Six Japanese subjects (four male and two female)

who are right-handed and in their 20 s.
• Lighting Conditions:

Tasks were performed under four lighting conditions (25,
750, 2,000, 5,000 lx on a desk surface) provided by four
light-emitting-diode desk lights (MOS-L28/Matsuki Giken).
During each task, the lighting condition was kept constant.

Fig. 4 Timetable: each subject was asked to perform the task under four
different lighting conditions.
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(a) 25 lx (b) 750 lx

(c) 2,000 lx (d) 5,000 lx

Fig. 7 Degree of comfort: (a)–(d) show the degree of comfort given in the questionnaire for each lighting
condition. Three experiments are conducted for each subject. The figure shows the subjective
evaluation of the comfort level in order of experiment.

Fig. 5 Transcribing task.

Fig. 6 Questionnaire about the subjective comfort level of the lighting
condition.

The order of the lighting conditions was randomly changed
for each subject. The illuminance during the break time be-
tween tasks was 750 lx to match a standard office lighting
condition (Fig. 4: Standard lighting condition).

• Task: The task performed in data acquisition was transcrib-
ing Japanese kanji while looking at a sample. The scene of
the task is shown in Fig. 5. Subjects performed each task for
10 minutes and then answered a brief questionnaire. Sub-
jects were given a 10-minute break between tasks to mitigate
the effects of the previous lighting condition.

• Questionnaire: After the end of each task, the comfort level
was evaluated subjectively by the subject completing the
questionnaire. Figure 6 shows the questionnaire item for
the lighting condition at that time. The subjects selected a
number along a seven-point scale from “−3” for very un-

Table 2 The number of feature vectors for each lighting condition.

25 lx 750 lx 2,000 lx 5,000 lx total

942 837 1,020 948 3,747

comfortable to “3” for very comfortable.

3.1 Subjective Evaluation of the Comfort Level
Figure 7 shows the questionnaire result of the subjective eval-

uation of the comfort level. Each graph in Fig. 7 shows that
the lighting condition induces different feelings depending on the
subject. It was also confirmed that the comfort level is different
even in the same person and the same lighting condition. As the
comparison result of each subject, the ranges of subjective com-
fort level seem to differ widely in individuals.

3.2 Generation of Feature Vectors for Evaluation
Obtained sensor data are divided every 10 seconds into 4,320

data (= 6 (subjects) × 4 (conditions) × 10 (min) × 6 (data/min)
× 3 (trials)). Using 3,747 data except those with missing values,
feature vectors for the estimation of comfort/discomfort are gen-
erated employing the method described in Section 2. The number
of feature vectors for each lighting condition is shown in Table 2.

4. Estimation of Comfort/Discomfort

Using the feature vectors generated in section 3, subjects’ com-
fort level was recognized employing the SVM-based method.

4.1 Comparison of Ambient Sensors with Physiological
Sensors

The sensor selected from the following three sensor groups
were used for comparison.

AMB: Ambient sensors (Camera (Facial expression), Chair
sensor, Pen sensor and Cup sensor)

PHY: Physiological sensors (Electroencephalograph and
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Fig. 8 The recognition rate of user’s comfort/discomfort on a seven-point
scale for each lighting condition.

Fig. 9 The recognition rate in the case of selecting the suitable combination
of sensors for each sensor group.

Heart-rate monitor) (as reference)
CMB: All sensors belonging to AMB and PHY (as reference)

Details of the evaluation method is described as follows.
4.1.1 Evaluation Method

The subjects’ comfort/discomfort was estimated employing the
SVM-based method, using the feature vectors of 18 trials (= 6
(subjects) × 3 (trials)) for each lighting condition. Cross vali-
dation was conducted for each lighting condition, using feature
vectors of one trial as testing data and those of fifteen trials from
the other subjects was performed (5 (rest subjects) × 3 (trials)) as
training data. The example of assignment is shown in Fig. 10 (a).
In the case that there is not the same label (subjective comfort
level) as testing data in training data, the result was excluded from
evaluation.
4.1.2 Experimental Result and Discussion

Figure 8 shows the recognition rate for each lighting condi-
tion in the case of selecting all sensors in each sensor group. The
recognition rate defined as the percentage of subjective comfort
level on a seven-point scale recognized correctly. As a result of
the comparison, it was confirmed that the recognition rate of PHY

and CMB are lower than AMB. Generally, it is said that bioelectric
signals fluctuate depending on user’s life rhythm or physical con-
dition and include large individual differences. From this result,
it was also confirmed that it is difficult to generate an accurate
classifier from others’ data in the case of physiological sensor.

It seems that effective sensor is different depending on the sit-
uation, such as lighting conditions or characteristics of user. Im-
provement recognition rate was attempted by adaptively selecting
sensors depending on the situation. In this experiment, the com-
bination of the sensors with the highest recognition rate of all
combinations was selected experimentally for each lighting con-
dition. Figure 9 shows the average recognition rate of four light-
ing conditions in the case of selecting the suitable combination
of sensors in each lighting condition. As a result of Fig. 9, it was

(a) Others

(b) Incl. user

(c) Incl. pre

Fig. 10 The example of assignment in cross validation.

confirmed that improvement of recognition rate may be possible
to selecting the sensor adaptively depending on the situation.

4.2 Comparison about Learning Conditions and Scale of
Comfort/Discomfort

Available learning data or a scale of comfort/discomfort is dif-
ferent depending on where and how to use. Therefore, the recog-
nition rate was evaluated in a variety of learning condition and
scale of comfort/discomfort.
4.2.1 Evaluation Method

With respect to learning condition, the recognition rate was
compared in the following three conditions.

Others: Only others’ data are used as training data (the same
as Section 4.1) (see Fig. 10 (a)).

Incl. user: User’s data obtained the other day are used as train-
ing data in addition to Others (see Fig. 10 (b)).

Incl. pre: Pre-training data obtained on the day are used as
training data in addition to Incl. user. The first half of a trial
is used as training data and the second half of the trial is used
as testing data (see Fig. 10 (c)).

With respect to a scale of comfort/discomfort, the recognition
rate was evaluated in the following three scales that changed the
scale on the basis of the seven-point questionnaire results of the
subjects’ comfort.

7-scale: Comfort level is estimated on a seven-point scale
([−3 ] [−2 ] [−1 ] [ 0 ] [ 1 ] [ 2 ] [ 3 ]).

3-scale: Comfort level is estimated on a three-point scale
([−3 , −2 ] [−1 ] [ 0 , 1 , 2 , 3 ]).

2-scale: Comfort level is estimated on a two-point scale
([−3 , −2 , −1 ] [ 0 , 1 , 2 , 3 ]).

Generally, the concept of comfort is classified into “comfort” and
“pleasantness” [14]. In regard to the comfort of indoor lighting
condition, however, “comfort” which is defined as “not discom-
fort” is used in many cases [8]. Therefore, the estimation of com-
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fort on a multi-point scale sometimes is not needed in indoor en-
vironment. Additionally, a central tendency to avoid an extreme
answer like “very uncomfortable” can be seen in the question-
naire result (see Fig. 7). Therefore, it is difficult to divide “very
uncomfortable (−3)” and “uncomfortable (−2)” clearly. Consid-
ering the above, the comparative experiment was conducted in the
above three scale.
4.2.2 Experimental Result and Discussion

Figure 11 shows the average recognition rate of four lighting
conditions for each learning condition and for each scale. The
suitable combination of sensors was selected experimentally for
each learning condition for evaluating the recognition rate.

Focusing on PHY in Fig. 11, the recognition rate of Incl. user

is higher than that of Others, and the recognition rate of Incl. pre

is higher than that of Incl. user significantly. From this result,
it seems that the value of the physiological sensor includes large
individual differences and fluctuates greatly from day to day even
if the same person. Though physiological sensors are effective
in the case of Incl. pre, it is difficult to use in a practical system
because of giving the physical load to mount sensors.

The fluctuation of the recognition rate of AMB is small com-
pared with PHY . Even in the case of not conducting pre-training
(Incl. user), the recognition rate of AMB are 52% when 7-scale,
72% when 3-scale and 79% when 2-scale. It is expected that
the recognition rate is improved by increasing the number of

(a) 7-scale

(b) 3-scale

(c) 2-scale

Fig. 11 The recognition rate for each learning condition and for each scale
of comfort/discomfort.

training data in the future. If it is possible to use pre-training
data (Incl. pre), the recognition rates are 76% when 7-scale, 89%
when 3-scale and 91% when 2-scale. Since ambient sensors do
not need to be mounted in contrast to physiological sensors, it is
possible to conduct pre-training transparently by realizing a real
time learning mechanism such as online learning.

4.3 Comparison of Multi-Sensor with Single Sensor
In the experiment, the recognition performance in the case of

using multiple ambient sensors and a single ambient sensor was
evaluated.
4.3.1 Evaluation Method

The recognition rate of Incl. pre was compared in the case of
using the following sensors.
• The suitable combination in AMB selected experimentally
• All sensors in AMB

• Camera (Facial Expression)

• Chair Sensor

• Pen Sensor

• Cup Sensor

4.3.2 Experimental Result and Discussion
Figure 12 shows the average recognition rate of four lighting

(a) 7-scale

(b) 3-scale

(c) 2-scale

Fig. 12 The recognition rate in the case of multi-sensors and that of single
sensors (when Incl. pre).
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Fig. 13 Sensor selecting rate in the case of the suitable combination of
sensors.

conditions in the case of using multi-sensors and single sensors.
As a result of Fig. 12, it was confirmed that the recognition rate
is improved in the case of using multi sensors compared with the
case of using a single ambient sensor. In addition, the recogni-
tion rate of The suitable combination is significantly better than
that of All sensors. Figure 13 shows the sensor selecting rate.
The sensor selecting rate was defined as the rate of the number of
times of selecting each sensor in the case of The suitable combi-

nation. If there are some candidates of the combination of sensors
in the same recognition rate, the combination of small number of
sensors was selected. According to Fig. 13, there are no sensors
with extremely low selecting rate. Therefore, it is assumed that
all ambient sensors contribute in the case of The suitable combi-

nation. It was suggested that the information of facial expression,
body sway, writing motion and frequency of drinking is useful for
estimating comfort/discomfort.

5. Conclusions and Future Works

In this paper, we built a multi-sensor-based ambient sens-
ing system for the estimation of comfort/discomfort during desk
work. The recognition rate of the user’s comfort/discomfort un-
der the lighting condition that induces different feelings of com-
fort depending on the user’s state of the day is evaluated in an
experimental environment. As a result, it was confirmed that
the highest recognition rate of the user’s comfort/discomfort on
a two-point scale is 91% by selecting the suitable combination
of ambient sensors in the case of using pre-training data. Pre-
training without user awareness seemed to be possible by realiz-
ing a real time learning mechanism such as online learning. In
addition, compared with the experimental results of single sen-
sors, it was suggested that the information of facial expression,
body sway, writing motion and frequency of drinking is useful
for estimating comfort/discomfort. The proposed system is suit-
able for using in an office environment. If it is possible to achieve
a comfortable lighting environment by controlling lighting con-
dition based on estimated comfort level, it would lead to enhance
user’s work efficiency by increase of concentration.

From the experiment, it was confirmed that the performance
of comfort/discomfort estimation is improved significantly by se-
lecting the suitable combination depending on the situation. The
future issue is how to select the optimal sensor adaptively on
the situation. We consider that it is possible to select effective
sensors by employing the algorithm of machine learning such as
sparse learning or boosting learning. Furthermore, we will verify

whether our findings can be applied to the estimation of comfort
felt in response to the thermal environment and acoustic environ-
ment by conducting additional experiments. Although this pro-
posed system was only applied to a task of writing on paper, we
will expand the system so that it can be applied to both paper and
computer work in practical environments of desk work.
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