
Electronic Preprint for Journal of Information Processing Vol.23 No.6

Regular Paper

Refinement Type Checking
via Assertion Checking

Ryosuke Sato1,a) Kazuyuki Asada1,b) Naoki Kobayashi1,c)

Received: February 9, 2015, Accepted: June 9, 2015

Abstract: A refinement type can be used to express a detailed specification of a higher-order functional program.
Given a refinement type as a specification of a program, we can verify that the program satisfies the specification by
checking that the program has the refinement type. Refinement type checking/inference has been extensively studied
and a number of refinement type checkers have been implemented. Most of the existing refinement type checkers,
however, need type annotations, which is a heavy burden on users. To overcome this problem, we reduce a refinement
type checking problem to an assertion checking problem, which asks whether the assertions in a program never fail;
and then we use an existing assertion checker to solve it. This reduction enables us to construct a fully automated
refinement type checker by using a state-of-the-art fully automated assertion checker. We also prove the soundness and
the completeness of the reduction, and report on implementation and preliminary experiments.

Keywords: refinement types, assertion checking, automated verification

1. Introduction

A refinement type [3], [11] can be used to express a detailed
specification of a higher-order functional program. Given a
refinement type as a specification of a program, we can ver-
ify that the program satisfies the specification by checking that
the program has the refinement type. Refinement type check-
ing/inference has been extensively studied [2], [6], [8], [9], [11],
[12] and a number of refinement type checkers have been imple-
mented. Most of the existing refinement type checkers [2], [6],
[11], [12], however, force users to provide invariant annotations,
which is a heavy burden. For example, consider the following
program:
let rec fsum f n =

if n <= 0 then 0

else f n + fsum f (n-1)

let double n = n + n

let main n = fsum double n

Using a refinement type checker, one can verify that the function
main has type (x : int)→ {r : int | r ≥ x},

|= main : (x : int)→ {r : int | r ≥ x},

i.e., that for any integer x, if main x evaluates to r, then r ≥ x

holds. (Note that refinement types in the current paper specify
partial correctness, not total correctness.) To verify the program
above, one has to provide the following type annotations.

fsum : ((x : int)→ {r : int | r ≥ x})→
1 Graduate School of Information Science and Technology, The University

of Tokyo, Bunkyo, Tokyo 113–8654, Japan
a) ryosuke@kb.is.s.u-tokyo.ac.jp
b) asada@kb.is.s.u-tokyo.ac.jp
c) koba@is.s.u-tokyo.ac.jp

(y : int)→ {s : int | s ≥ y}
double : (x : int)→ {r : int | r ≥ x}

The meaning of the second annotation is the same as that for main
above, and the first annotation means that, for any value f that has
type (x : int)→ {r : int | r ≥ x}, if fsum f evaluates to g, then g
is a value of type (y : int)→{s : int | s ≥ y}. Providing such type
annotations is a heavy burden on users.

To overcome this problem, we reduce a refinement type check-
ing problem to an assertion checking problem, which asks
whether the assertions in a program never fail; then we can use
an existing automated assertion checker to solve it. For example,
the refinement type checking problem

?|= main : (x : int)→ {r : int | r ≥ x}

can be reduced to the assertion checking problem that the asser-
tion in the following program never fails.
let rec fsum f n = ... in

...

let n = rand int in
let r = main n in assert(r ≥ n)

Here, rand int generates a random integer. While the original
problem asks whether main n returns a value no less than n for
any integer n, the reduced problem asks it by using a random in-
teger and an assertion expression.

Although the reduction for the above program is straightfor-
ward, it is not obvious for the case of higher-order functions. For
example, consider the following problem:

?|= fsum : ({x : int | x > 0} → {r : int | r ≥ x})→
(y : int)→ {s : int | s ≥ y}.

(1)

c© 2015 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.23 No.6

Following the random number generator approach above,
one may be tempted to prepare a term gen() that
non-deterministically generates every function of type
{x : int | x > 0} → {r : int | r ≥ x}. Unfortunately, how-
ever, there is no such term gen(), because the set of values
of type {x : int | x > 0} → {r : int | r ≥ x} is not recursively
enumerable.

Instead of defining such a generator, we prepare a
“universal” term t′ that simulates all the terms of type
{x : int | x > 0} → {r : int | r ≥ x}, in the sense that for
any t′′ of type {x : int | x > 0} → {s : int | s ≥ x} and any
n > 0, t′′ n −→∗ m implies t′ n −→∗ m, and t′′ n −→∗ fail implies
t′ n −→∗ fail. Using t′, we can reduce the problem (1) to the
following problem:

?|= fsum t′ : (y : int)→ {s : int | s ≥ y}. (2)

The term t′ above can be expressed as follows, by using non-
determinism.

λx. if x > 0 then

let r = rand int in assume (r ≥ x); r

else if ∗ then rand int else fail

Here, ∗ is a non-deterministic Boolean, and assume (b) returns
the unit value if b = true and diverges otherwise. Given an inte-
ger x, the term first checks whether x > 0. If x > 0 holds, then
it is expected to return a value no less than x; thus, it generates a
random integer r, and returns it only if r ≥ x. If x > 0 does not
hold, then nothing is specified by the type; thus, it returns an arbi-
trary integer or fails. In general, a term α(τ) that simulates all the
values of type τ can be constructed by induction on the structure
of τ.

Using the term t′ above, we can reduce the problem (2) to the
assertion checking problem for the following program.
let rec fsum f n = ...

let g x =

if x > 0 then

let r = rand int in assume(r ≥ x); r
else if * then rand int else fail

let n = rand int in assert(fsum g n ≥ n)
The reduction sketched above enables us to construct a fully

automated refinement type checker by using a state-of-the-art
fully automated assertion checker. In fact, the above assertion
checking problems can be solved by MoCHi, a software model
checker for higher-order functional programs [5], [7], [10] with-
out any annotations.

We formalize the idea sketched above and prove the correct-
ness (i.e., the soundness and the completeness) of the reduction
for call-by-value PCF extended with a random number generator.
We also report on an implementation of our approach as an ex-
tension of MoCHi. Note that the availability of non-determinism
(provided by the random number generator) is a crucial assump-
tion for our method. Although our method is applicable to a
deterministic source language as long as the target language ad-
mits non-determinism, the completeness of the reduction would

be lost. For example, in a deterministic language, the type judg-
ment:

|= λ f .(f 0 = f 0) : (int→ int)→ {r : bool | r = true}

should be semantically valid. Our method reduces it to the asser-
tion checking problem for:

assert((λ f .(f 0 = f 0)) α(int→ int)),

where α(int → int) is a non-deterministic function λx.rand int.
The program may fail, since λx.rand int may return an arbitrary
number upon each call; thus we fail to show that the type judg-
ment above holds.

A possible remedy to the problem above for dealing with de-
terminism would be to embed the assumption on determinism
explicitly in the refinement type specification. For the example
above, the resulting type would be:

{ f : int→ int | ∀x. f (x) = f (x)} → {r : bool | r = true} .

It now contains dependency on functions, but this dependency
can sometimes be removed by using the technique of our previ-
ous work [1]. Please note that existing first-order refinement type
checkers [6], [8], [9], [11] do not take into account the determin-
ism either, so that they fail to prove the type judgment above.

The rest of the article is organized as follows. Section 2 intro-
duces the source language and the verification problem. Section 3
presents the reduction from refinement type checking problems
to assertion checking problems, and Section 4 proves the correct-
ness of the reduction. Section 5 reports on experiments and Sec-
tion 6 discusses related work. We conclude the paper in Section 7.

2. Language

This section formalizes the source language and the verifi-
cation problem. This language is the target of our verification
method and is the source and target language of the transforma-
tion for the reduction explained in the introduction.

The language is a simply-typed, call-by-value, higher-order
functional language with recursion. The syntax of terms is given
by:

t (terms) ::= x | n | op(t1, . . . , tn) | rand int

| fix(f , λx. t) | t1 t2 | fail

| if t then t1 else t2

We use meta-variables x, y, z, r, s, f , g, h, . . . for variables. We
have only integers as base values, which are denoted by the meta-
variable n. The meta-variable op ranges over primitive operations
on integers and a term op(t1, . . . , tn) is the application of op to
t1, . . . , tn. We express Booleans by integers, and write true for 1,
and false for 0. The term rand int is a non-deterministic integer.
We write ∗ for a non-deterministic Boolean, which can be ex-
pressed by rand int = 0, and t1� t2 for if ∗ then t1 else t2. A term
fix(f , λx. t) denotes the recursive function defined by f = λx. t.
When f does not occur in t, we write λx. t for fix(f , λx. t). A term
t1 t2 is the application of t1 to t2. We write let x = t in t′ for
(λx. t′) t, and write also t; t′ for it when x does not occur in t′.

c© 2015 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.23 No.6

Fig. 1 Operational semantics of the source language.

The special term fail aborts the execution. It is typically used to
express assertions; assert(t)—which asserts that t should evaluate
to true—is expressed by if t then true else fail.

Bound and free variables are defined in a standard manner, and
we identify α-equivalent terms. We call a closed term a program.

A small-step semantics is given in Fig. 1. In the figure, [[op]]
is a given integer function for each op. We write −→∗ for the re-
flexive and transitive closure of −→; and write t � t′ if t −→∗ a

implies t′ −→∗ a for any a.
We express a specification of a program by using a refinement

type. The syntax of refinement types is given by the following
rules.

τ (types) ::= {x : int | P} | (x : τ1)→ τ2

P (predicates) ::= n | x | op(P1, . . . , Pn)

A type (x : τ1)→ τ2 is a dependent product type, where x may
occur in τ2. Intuitively, a refinement type {x : int | P} represents
the set of integers x that satisfy the refinement predicate P. For
example, {x : int | x > 0} describes positive integers. The type
(x : int)→ {r : int | r > x} describes functions that take an inte-
ger x and return an integer r greater than x. The syntax of types
is subject to the usual scope rule; in (x : τ1)→ τ2, the scope of
x is τ2. Furthermore, we require that every refinement predicate
is well-typed and has type int (recall that Booelans are expressed
by integers), and that all the variables occurring in a predicate are
integer variables. We often write just int for {x : int | true}, and
τ1→ τ2 for (x : τ1)→ τ2 if x does not occur in τ2.

A type τ is simple if all the predicates in τ are true. For a type
τ, we define the simple type ST(τ) of τ as follows:

ST({x : int | P}) = int

ST((x : τ1)→ τ2) = ST(τ1)→ ST(τ2).

We use a meta-variable σ for simple types. For a simple type σ,
we define the size of σ as follows:

size(int) = 1

size(τ1→ τ2) = 1 + size(τ1) + size(τ2)

The semantics of types is defined in Fig. 2 using logical rela-
tions. Here, note that the evaluation is nondeterministic, and that
the statement |=v a : τ implies that a is a value (i.e., a must not be
fail). Since |= v : τ if and only if |=v v : τ, we often write |= v : τ

Fig. 2 Semantics of types.

for |=v v : τ.

For a program t and a type τ, the type checking problem
?|= t : τ

asks whether |= t : τ holds. An assertion checking problem is a
special case, where τ = int; note that |= t : int holds if and only
if t does not fail.

Our goal is to develop an automated verification method for
type checking problems. As explained in Section 1, our approach

is to reduce the (semantic) type checking problem
?|= t : τ to the

assertion checking problem
?|= t′ : int by synthesizing t′ from t

and τ. Then, we can solve the reduced problem by using an ex-
isting automated assertion checker such as MoCHi [5], [7], [10].

3. Reduction from Refinement Type Checking
to Assertion Checking

Given a program t and a refinement type τ, our goal is to check
whether t has type τ by reducing it to an assertion checking prob-
lem. If τ is an integer type of the form {x : int | P}, then we
can easily reduce the problem to the assertion checking problem
of the program let r = t in assert(P[r/x]). If τ is a function
type (x : τ1) → τ2, we, roughly speaking, reduce the problem
?|= t : (x : τ1)→ τ2 to the problem

?|= t t′ : τ2[t′/x] for a “uni-
versal” term t′ = α(τ1) that simulates all the terms of type τ1.
By using the synthesizer α(−) of universal terms, we reduce the
refinement type checking problem

?|= t : (x1 : τ1)→ · · · → (xn : τn)→ {r : int | P}

to the assertion checking problem

?|= let x1 = α(τ1) in . . . let xn = α(τn) in

let r = t x1 . . . xn in assert(P) : int.

We now define the synthesizer α(−) : Types → Terms
in Fig. 3, where Types and Terms are the sets of types and
terms respectively. Here, assume (t) is syntactic sugar for
if t then true else fix(f , λx. f x) (), and t ∨ t′ is that for
if t then true else t′. In Fig. 3, two auxiliary functions β(− :
−) : Values×Types→ Terms and αS(−) : SimpleTypes→ Terms
are defined, where Values and SimpleTypes are the sets of values
and simple types respectively. Roughly speaking, α(τ) simulates
all the values of type τ, and αS(σ) simulates all the answers of
simple type σ. An integer term β(v : τ) is a Boolean expression
that represents “v has type τ”; precisely, |= v : τ holds if and only
if |=p β(v : τ) holds, i.e., a = true for all a s.t. β(v : τ) −→∗ a

(which follows from Lemmas 9 and 10 in Section 4).

c© 2015 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.23 No.6

Fig. 3 Synthesis of universal terms.

We now explain α(−) in more detail. For type τ =
{x : int | P}, α(τ) first generates a random integer value x, and
checks whether x satisfies P or not. If x satisfies P, then α(τ)
returns x, and if not, α(τ) diverges. Next, consider the case
for τ = (x : τ1) → τ2. If the argument x of α(τ) has type τ1,
then β(x : τ1) always either diverges or evaluates to true; thus
the body of α(τ) non-deterministically diverges or is reduced to
α(τ2). If |= x : τ1 does not hold, then β(x : τ1) −→∗ false or
β(x : τ1) −→∗ fail. Thus, the body of α(τ) can be reduced to
fail or αS(ST(τ2)), depending on the actual value of the argument
x. (It can also be reduced to α(τ2) non-deterministically, but that
does not matter.) In either case, fail or αS(ST(τ2)) serves as a uni-
versal term that simulates all the terms of the simple type ST(τ2),
with respect to the simulation relation defined in Section 4.

For example, consider the type

τ = ((x : int)→ {r : int | r ≥ x})→ {s : int | s ≥ 0} .
Let τ1 = (x : int)→ {r : int | r ≥ x} and τ2 = {s : int | s ≥ 0},
then

α(τ) = α(τ1→ τ2)

= λx. if ∗ ∨ β(x : τ1) then α(τ2) else αS(int)

= λx. if ∗ ∨ β(x : τ1) then

let s = rand int in assume (s ≥ 0); s

else fail � rand int

where

β(x : τ1) = let x′ = α(int) in

let r = x x′ in β(r : {r : int | r ≥ x})
= let x′ = rand int in let r = x x′ in r ≥ x.

The following theorem describes the correctness of the reduc-
tion.
Theorem 1. Let t be a closed term of type ST(τ1)→· · ·→ST(τn)→
int. Then the following holds:

|= t : (x1 : τ1)→ · · · → (xn : τn)→ {r : int | P}
⇐⇒
|= let x1 = α(τ1) in . . . let xn = α(τn) in

let r = t x1 . . . xn in assert(P) : int

The theorem states that the reduction is sound and complete in

the sense that the given program has the given refinement type if
and only if the transformed program does not fail. We prove the
theorem in the next section.

4. Proof of the Correctness of the Reduction

In this section, we prove the correctness of the reduction (The-
orem 1). We first briefly sketch the proof of the following main
lemma.
Lemma 2. |= v1 : (x : τ1)→ τ2 if and only if |= v1 v2 : τ2[v2/x]
for any v2 such that α(τ1) −→∗ v2.

The lemma intuitively states that, to check that v has function type
τ1 → τ2, it is sufficient (and necessary) to check that v (α(τ1))
has type τ2. The “only-if” direction is trivial from the definition
of (|=) and (1) of Lemma 9 below. To show the “if” direction,
we first show that α(τ) simulates all the terms of type τ, i.e., for
any term t of type τ and any context C, if C[t] −→∗ fail, then
C[α(τ)] −→∗ fail. We also show that the simulation relation pre-
serves typability, i.e., if t simulates t′, then |= t : τ implies |= t′ : τ.
By the two properties above, we can show that v (α(τ1)) simulates
v v′ for any v′ of type τ1, and hence we have that |= v (α(τ1)) : τ2

implies |= v v′ : τ2.
In the above sketch, we used the observational (contextual) pre-

order to explain the notion of simulation simply, but in the proof
below, we use the following definition of simulation.
Definition 3 (Simulation). A simulation is a family of relations
{Rσ}σ such that Rσ is a relation between terms of simple type σ,
and if t1 Rσ t2, then either t2 −→∗ fail or the following hold:
• If t1 −→∗ n, then t2 −→∗ n.
• If σ is of the form σ1 → σ2 and t1 −→∗ fix(f , λx. t′1),

then there exists t′2 such that t2 −→∗ fix(f , λx. t′2) and
t′1[fix(f , λx. t′1)/ f][v1/x] Rσ2 t′2[fix(f , λx. t′2)/ f][v2/x] for
any values v1 and v2 such that v1 Rσ1 v2.

• If t1 −→∗ fail, then t2 −→∗ fail.
We define {�σ}σ as the greatest simulation. For open terms t1 and
t2, we also write t1 �σ t2 if, for some simple type environment
Γ = x1 : σ1, . . . , xn : σn,
• t1 and t2 have simple type σ under Γ, and
• t1[v1/x1, . . . , vn/xn] �σ t2[v1/x1, . . . , vn/xn] for any v1, . . . , vn

such that vi has type σi for each i.
To prove the main lemma (Lemma 2), we first show some basic

properties of the simulation relation (Lemmas 4–6).
Lemma 4. Suppose t1 �σ t2. If |= t2 : τ, then |= t1 : τ.

Proof. By induction on σ. Suppose t1 �σ t2 and |= t2 : τ. If
t1 −→∗ fail, by the assumption t1 �σ t2, we have t2 −→∗ fail,
which contradicts |= t2 : τ. We show |= v : τ for any v such that
t1 −→∗ v.

Case v = n: By the assumption t1 �σ t2, we have t2 −→∗ n and
|= n : τ, as required.

Case v = fix(f , λx. t′1): We have σ = σ1 → σ2 for some
σ1 and σ2. By the assumption t1 �σ t2, there exists t′2
such that t2 −→∗ fix(f , λx. t′2) and t′1[fix(f , λx. t′1)/ f][v1/x] �σ2

t′2[fix(f , λx. t′2)/ f][v2/x] for any values v1 and v2 such that
v1 �σ1 v2. By the assumption |= t2 : τ, we have |=
t′2[fix(f , λx. t′2)/ f][v2/x] : τ2[v2/x] for any v2 such that |= v2 : τ1.
Let τ = (x : τ1)→ τ2, and v′ be a value such that |= v′ : τ1. Since

c© 2015 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.23 No.6

v′ �σ1 v′, we get

|= t′2[fix(f , λx. t′2)/ f][v′/x] : τ2[v′/x]

⇒ |= t′1[fix(f , λx. t′1)/ f][v′/x] : τ2[v′/x]

(by I.H.)

⇒ |= v v′ : τ2[v′/x]

(since v v′ � t′1[fix(f , λx. t′1)/ f][v′/x]).

Thus, we obtain |= v : τ. �

Lemma 5. If v1 �σ v2, then τ[v2/x] = τ[v1/x].

Proof. If σ = int, then we have v1 = v2. Therefore, we get
τ[v2/x] = τ[v1/x]. If σ is a function type, since a variable
of a function type cannot occur in τ, we have τ[v2/x] = τ =
τ[v1/x]. �

Lemma 6. If t1 �σ1→σ2 t2 and t′1 �
σ1 t′2, then t1 t′1 �

σ2 t2 t′2.

Proof. Suppose t1 t′1 −→∗ v. We have t1 −→∗ fix(f , λx. t3),
t′1 −→∗ v1, t3[fix(f , λx. t3)/ f][v1/x] −→∗ v for some t3 and v1. By
the assumption that t′1 �

σ1 t′2, we have v1 �σ1 v2 for some v2 such
that t′2 −→∗ v2. Therefore, by the assumption that t1 �σ1→σ2 t2,
we get t3[fix(f , λx. t3)/ f][v1/x] �σ2 t4[fix(f , λx. t4)/ f][v2/x] for
some t4 such that t2 −→∗ fix(f , λx. t4). �

Next, we show some properties of α(−) (Lemmas 7–11).
Lemma 7. If v �σ α(τ), then there exists v′ such that α(τ) −→∗ v′
and v �σ v′.

Proof. By case analysis on τ. �

Lemma 8. Suppose FV(τ) = {x} and τ[v/x] is valid type, i.e.,

predicates in τ[v/x] are well-typed and have type int. Then,

α(τ)[v/x] = α(τ[v/x]), and β(v′ : τ)[v/x] = β(v′ : τ[v/x]).

Proof. By induction on the size of ST(τ). �

Lemma 9. For anyh type τ, the following hold.

(1) |= α(τ) : τ.
(2) If |= v : τ, then β(v : τ) � true.

Proof. By induction on the size of ST(τ).
Case τ = {x : int | P}: By the definition of α(−), we have

α(τ) = let x = rand int in assume (P) ; x.

We show that |= assume (P[n/x]) ; n : τ for any integer n. Since
P does not include applications and rand int, there exist a unique
v such that P[n/x] � v. If v = true, since |= P[n/x] holds, we ob-
tain |= n : τ. If v � true, since assume (P[n/x]) ⇑, we have
|= assume (P[n/x]) ; n : τ. Suppose |= n′ : τ for some integer n′.
β(n′ : τ) = P[n′/x] � true follows from the definition of |= n′ : τ.

Case τ = (x : τ1)→ τ2: By the definition of α(−), we have

α(τ) = λx. if ∗ ∨ β(x : τ1) then α(τ2)

else αS(ST(τ2)).

We show that |= α(τ) v : τ2[v/x] for any v such that |= v : τ1.
We get β(v : τ1) � true by I.H. Therefore, we have α(τ) v �
α(τ2[v/x]) by Lemma 8. Since |= α(τ2[v/x]) : τ2[v/x] by I.H., we
get |= α(τ) v : τ2[v/x]. We next show that β(v : τ) � true for any

v such that |= v : τ. By the definition of β(−), we have

β(v : τ) = let x = α(τ1) in let r = v x in β(r : τ2).

Suppose α(τ1) −→∗ v′, v v′ −→∗ v′′, and

β(v : τ) −→∗ let r = v v′ in β(r : τ2)[v′/x]

−→∗ β(v′′ : τ2)[v′/x].

Since |= α(τ1) : τ1 by I.H., we have |= v′ : τ1 and |= v′′ :
τ2[v′/x]. By I.H., we get β(v′′ : τ2[v′/x]) � true, and hence,
β(v′′ : τ2)[v′/x] � true by Lemma 8. �

Lemma 10. Let i be an integer and v be a value of simple type

ST(τ). Suppose t �ST(τ
′) α(τ′) for any t and τ′ such that |= t : τ′

and size(ST(τ′)) < i. If
|= v : τ and size(ST(τ)) = i, one of the

following holds:

• β(v : τ) −→∗ false, or

• β(v : τ) −→∗ fail.

Proof. By induction on the simple type of τ.
Case τ = {x : int | P}: We have v = n for some n. By the

assumption that
|= v : τ, P[v/x] −→∗ false.
Case τ = (x : τ1) → τ2: We have v = fix(f , λx. t) for some

t. Since
|= v : (x : τ1)→ τ2, there exists v′ such that |= v′ : τ1

and
|= v v′ : τ2[v′/x]. By the assumption and size(ST(τ1)) <
size(ST(τ)) = i, we have v′ �ST(τ1) α(τ1). Hence, we get
v v′ �ST(τ2) v α(τ1) by Lemma 6. Therefore, by Lemma 4, we
get
|= v α(τ1) : τ2[v′/x], i.e., there exists v1 and a such that
α(τ1) −→∗ v1, v v1 −→∗ a, and
|= a : τ2[v′/x]. If a = fail,
then we obtain β(v : τ) −→∗ fail. If a = v2 for some v2, since

β(v : τ) −→∗ let r = v v1 in β(r : τ2[v′/x])

−→∗ β(v2 : τ2[v′/x]),

we get β(v : τ) −→∗ false or β(v : τ) −→∗ fail by I.H. �

Lemma 11. The followings hold:

• If |= t : τ, then t �ST(τ) α(τ).
• If t has simple type ST(τ), then t �ST(τ) αS(ST(τ)).

Proof. By induction on the size of ST(τ).
Case ST(τ) = int and t −→∗ fail: If |= t : τ, then it con-

tradicts to the assumption. If t has simple type int, we have
αS(int) = fail � rand int −→ fail.

Case ST(τ) = int and t −→∗ n: Suppose |= t : {x : int | P}.
Since |=p P[n/x] and

α(τ) = let x = rand int in assume (P); x,

we get α(τ) −→∗ n. Therefore, we obtain t �int α(τ). If t has
simple type int, we have αS(int) = fail � rand int −→∗ n.

Case ST(τ) = σ1→σ2 and t −→∗ fail: Similar to the first case.
Case ST(τ) = σ1 → σ2 and t −→∗ fix(f , λx. t′): Suppose

|= t : (x : τ1) → τ2. We show that, there exists t1 such
that α(τ) −→∗ fix(f , λx. t1) and t′[fix(f , λx. t′)/ f][v1/x] �σ2

t1[fix(f , λx. t1)/ f][v2/x] for any values v1 and v2 such that
v1 �σ1 v2. Let t1 be if ∗ ∨ β(x : τ1) then α(τ2) else α(ST(τ2)),
then α(τ) = fix(f , λx. t1). If |= v1 : τ1, then
we have |= t′[fix(f , λx. t′)/ f][v1/x] : τ2[v1/x].

c© 2015 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.23 No.6

Since t1[fix(f , λx. t1)/ f][v2/x] −→∗ α(τ2)[v2/x] =

α(τ2[v2/x]) = α(τ2[v1/x]) by Lemmas 8 and 5, we get
t′[fix(f , λx. t′)/ f][v1/x] �ST(τ2) t1[fix(f , λx. t1)/ f][v2/x] by
I.H. If
|= v1 : τ1, then we have
|= v2 : τ1 by Lemma 4,
and hence, β(v2 : τ1) −→∗ false or β(v2 : τ1) −→∗ fail
by Lemma 10. Since t1[fix(f , λx. t1)/ f][v2/x] −→∗ fail, we
obtain t′[fix(f , λx. t′)/ f][v1/x] �σ2 t1[fix(f , λx. t1)/ f][v2/x].
Suppose t has simple type ST(τ). Let t1 be αS(σ2) and v1 and
v2 be values such that v1 �σ1 v2, then αS(ST(τ)) = λx. t1 and
t1[v2/x] = αS(σ2)[v2/x] = αS(σ2). Hence, by I.H., we get
t′[fix(f , λx. t′)/ f][v1/x] �σ2 αS(σ2)[v2/x]. �

We now show the main lemma and Theorem 1.

Proof of Lemma 2. “Only-if” direction: Obvious from (1) of
Lemma 9.

“If” direction: Suppose |= v1 v2 : τ2[v2/x] for any v2 such that
α(τ1) −→∗ v2. We show that |= v1 v′2 : τ2[v′2/x] for any v′2 such that
|= v′2 : τ1. We have v′2 �

ST(τ1) α(τ1) by Lemma 11, and hence, by
Lemma 7, there exists v′′2 such that α(τ1) −→∗ v′′2 and v′2 � v

′′
2 . By

the assumption, we get |= v1 v′′2 : τ2[v′′2 /x]. Therefore, we obtain
|= v1 v′2 : τ2[v′2/x] by Lemmas 4 and 5. �

Proof of Theorem 1.

|= t : (x1 : τ1)→ · · · → (xn : τn)→ {r : int | P}
⇐⇒ ∀a.t −→∗ a⇒

|= a : (x1 : τ1)→ · · · → (xn : τn)→ {r : int | P}
(by the definition of (|=))

⇐⇒ ∀a.t −→∗ a⇒ ∀v1, . . . , vn.∧

i∈{1,...,n}
α(τi[v j/x j] j∈{1,...,i−1}) −→∗ vi ⇒

|= a v1 . . . vn :
{
r : int | P[v j/x j] j∈{1,...,n}

}

(by Lemma 2)

⇐⇒ ∀a.t −→∗ a⇒ ∀v1, . . . , vn.∧

i∈{1,...,n}
α(τi[v j/x j] j∈{1,...,i−1}) −→∗ vi ⇒

∀a′.a v1 . . . vn −→∗ a′ ⇒
|= a′ :

{
r : int | P[v j/x j] j∈{1,...,n}

}

(by the definition of (|=))

⇐⇒ ∀a.t −→∗ a⇒ ∀v1, . . . , vn.∧

i∈{1,...,n}
α(τi[v j/x j] j∈{1,...,i−1}) −→∗ vi ⇒

∀a′.a v1 . . . vn −→∗ a′ ⇒ (a′ � fail ∧
|= assert(P[v j/x j] j∈{1,...,n}[a′/r]) : int)

(by the definition of the semantics)

⇐⇒ ∀a.t −→∗ a⇒ ∀v1, . . . , vn.∧

i∈{1,...,n}
α(τi[v j/x j] j∈{1,...,i−1}) −→∗ vi ⇒

|= let r = a v1 . . . vn in

assert(P[v j/x j] j∈{1,...,n})
: int

(by the definition of the semantics)

⇐⇒ ∀v1, . . . , vn.∧

i∈{1,...,n}
α(τi[v j/x j] j∈{1,...,i−1}) −→∗ vi ⇒

|= let r = t v1 . . . vn in

assert(P[v j/x j] j∈{1,...,n})
: int

(by the definition of the semantics)

⇐⇒ |= let x1 = α(τ1) in . . . let xn = α(τn) in

let r = t x1 . . . xn in assert(P) : int

(by the definition of the semantics)

�

5. Preliminary Experiments

To evaluate our method, we have implemented a refinement
type checker. Our type checker uses MoCHi [5], [7], [10] as
the underlying assertion checker. Most of the benchmark pro-
grams are taken from the benchmark of MoCHi [7]. The spec-
ification of each program is given by hand. To test the imple-
mentation for various programs, we have extended our method to
deal with Booleans, pairs, and lists. We did not use some pro-
grams in the benchmark of MoCHi since the extended method
cannot deal with algebraic data types, exceptions, and predicates
about lengths of lists, which is just a limitation on the current im-
plementation. We can naturally extend our method to deal with
these features.

Table 1 shows the experimental results. The column “size”
shows the word counts of the program and the refinement type as
the specification. The experiment was conducted on Intel Core
i7-3930K CPU with 12 MB cache and 16 GB memory. The im-
plementation can be tested and all the programs are available at
http://www-kb.is.s.u-tokyo.ac.jp/˜ryosuke/mochi ref assert/.

All the programs have been verified correctly and fully auto-

Table 1 Results of preliminary experiments.

problem size time [sec]
fsum intro1 45 0.227
fsum intro2 43 0.266
sum 28 0.096
mult 38 0.271
max 52 0.185
mc91 35 0.232
ack 41 0.131
a-cppr 155 1.481
a-dotprod 74 0.742
l-zipunzip 86 0.304
l-zipmap 80 0.168
sum intro 36 0.108
copy intro 26 0.113
sum-e 28 0.099
mult-e 38 0.179
mc91-e 35 0.112
harmonic-e 75 2.872
fold right 55 0.950
forall eq pair 51 0.322
forall leq 47 0.283
iter 43 0.224
harmonic 81 0.501
fold left 55 0.941
fold fun list 81 0.269

c© 2015 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.23 No.6

matically. Most of the program are verified within less than a sec-
ond. Most of the time for verification has been spent by MoCHi,
not the transformation given in the current paper. The problems
“fsum intro1” and “fsum intro2” are the examples in Section 1.
The other programs are taken from the benchmark of MoCHi.
The problems below “fold right” are about list manipulating pro-
grams. For example, “forall eq pair” is the problem to check that
the forall function for lists have type

({(x, y) : int × int | x = y} → {r : bool | r})→
{(x, y) : int × int | x = y} list→ {r : bool | r}.

If a programmer checks it by MoCHi alone instead of
using our method, he/she needs to write the genera-
tors for {(x, y) : int × int | x = y} → {r : bool | r} and
{(x, y) : int × int | x = y} list, which is harder than provid-
ing the refinement type of the specification above. The problems
“xxx-e” are about wrong specifications. Since our reduction is
complete and MoCHi can also check that the given program
is actually unsafe, our verifier can also report that the given
program actually does not have the given type.

6. Related Work

There are several pieces of work on automatic or semi-
automatic inference on refinement types [4], [6], [8], [9], [12].
Unno and Kobayashi [9] and Jhala et al. [4] proposed automated
refinement type inference methods based on constraints. Their
methods first prepare templates of refinement types, generate con-
straints, and then solve them. Unno and Kobayashi [9] solve the
constraints by using an interpolating theorem prover, and Jhala et
al. [4] reduce the constraints to a verification problem for a first-
order imperative program, and then verify it by using an existing
model checker. Terauchi [8] proposed an automated refinement
type inference method based on counterexample-guided refine-
ment of refinement types. All the methods above are based on
refinement type systems that are incomplete with respect to the
semantics of refinement types; thus their overall methods are in-
complete for the semantic refinement type checking problem. In
contrast, our method reduces refinement type checking to asser-
tion checking in a sound and complete manner; thus, our method
is relatively complete with respect to the (hypothetical) complete-
ness of an assertion checker. Even though there is actually no
complete assertion checker, a stronger assertion checker enables
stronger refinement type checking. For example, when using
MoCHi as an underlying assertion checker, our method can verify
that the following judgment is semantically valid [5].

|=

let f x y =

if (x() > 0)&(y() ≤ 0) then fail else 0 in
let h x y = x in
let main x = f (h x) (h x) in
main

: int→ int

None of the three methods above [4], [8], [9] can verify this ex-
ample, due to the limitation of the underlying refinement type
systems. Another advantage of our approach is that, when a given

program does not satisfy a refinement type specification, we can
generate a concrete execution sequence in which the specification
is violated. Terauchi’s method [8] also generates a counterexam-
ple, but it is a fragment of the program that cannot be typed in the
underlying type system, which is not necessarily a counterexam-
ple against the semantic refinement type checking problem.

Rondon et al. [6], and Zhu and Jagannathan [12] also proposed
refinement type inference methods. Their methods are semi-
automated, in the sense that these verifiers require users to give
hints on predicates. In contrast, our verification method is fully
automated; users need not supply any hints nor type annotations.

Dependent ML [11] is a functional language equipped with a
restricted form of dependent types. Users must provide type an-
notations for all the functions.

Dependent types have been used in the context of interactive
theorem provers. While more expressive types are allowed in
such a context (e.g., function variables may be used in refinement
predicates), users have to provide not just type annotations but
also “proofs” that a given term has a given type.

7. Conclusion and Future Work

We have proposed a reduction from a refinement type checking
problem for functional programs to an assertion checking prob-
lem, and proved its correctness. We have implemented a proto-
type verifier based on the reduction and confirmed that it works
well for several programs.

There are several limitations in our method, as described be-
low. Relaxing them is left for future work. First, the refinement
types in this paper are restricted to first-order ones, where refine-
ment predicates may contain only base-type variables. Second,
we have not considered polymorphic types. It is an interesting
issue whether and how we can define α(τ) for a polymorphic type
τ. Thirdly, as mentioned in Section 1, our method relies on the
existence of non-determinism.

Acknowledgments We would like to thank anonymous ref-
erees for useful comments. This work was supported by Kakenhi
23220001 and 15H05706.

References

[1] Asada, K., Sato, R. and Kobayashi, N.: Verifying Relational Proper-
ties of Functional Programs by First-Order Refinement, Proc. ACM
SIGPLAN 2015 Workshop on Partial Evaluation and Program Manip-
ulation (PEPM 2015), pp.61–72 (2015).

[2] Bengtson, J., Bhargavan, K., Fournet, C., Gordon, A.D. and Maffeis,
S.: Refinement types for secure implementations, ACM Trans. Pro-
gramming Languages and Systems, Vol.33, No.2, pp.1–45 (2011).

[3] Freeman, T. and Pfenning, F.: Refinement types for ML, Proc. ACM
SIGPLAN 1991 Conference on Programming Language Design and
Implementation (PLDI 1991), pp.268–277 (1991).

[4] Jhala, R., Majumdar, R. and Rybalchenko, A.: HMC: Verifying func-
tional programs using abstract interpreters, Proc. 23rd International
Conference on Computer Aided Verification (CAV 2011), pp.470–485
(2011).

[5] Kobayashi, N., Sato, R. and Unno, H.: Predicate abstraction and
CEGAR for higher-order model checking, Proc. 2011 ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI 2011), pp.222–233 (2011).

[6] Rondon, P.M., Kawaguchi, M. and Jhala, R.: Liquid types, Proc. 2008
ACM SIGPLAN conference on Programming language design and im-
plementation (PLDI 2008), pp.159–169 (2008).

[7] Sato, R., Unno, H. and Kobayashi, N.: Towards a scalable software
model checker for higher-order programs, Proc. ACM SIGPLAN 2013
Workshop on Partial Evaluation and Program Manipulation (PEPM

c© 2015 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.23 No.6

2013), pp.53–62 (2013).
[8] Terauchi, T.: Dependent Types from Counterexamples, Proc. 37th An-

nual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages (POPL 2010), pp.119–130 (2010).

[9] Unno, H. and Kobayashi, N.: Dependent type inference with inter-
polants, Proc. 11th ACM SIGPLAN Conference on Principles and
Practice of Declarative Programming (PPDP 2009), pp.277–288
(2009).

[10] Unno, H., Terauchi, T. and Kobayashi, N.: Automating relatively com-
plete verification of higher-order functional programs, Proc. 40th An-
nual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages (POPL 2013), pp.75–86 (2013).

[11] Xi, H. and Pfenning, F.: Dependent types in practical programming,
Proc. 26th ACM SIGPLAN-SIGACT symposium on Principles of pro-
gramming languages (POPL 1999), pp.214–227 (1999).

[12] Zhu, H. and Jagannathan, S.: Compositional and Lightweight Depen-
dent Type Inference for ML, Proc. 14th Conference on Verification,
Model Checking and Abstract Interpretation (VMCAI 2013), pp.295–
314 (2013).

Ryosuke Sato was born in 1985, and re-
ceived his B.S. (in 2008), M.S. (in 2010),
and D.S. degrees (in 2013) from Tohoku
University. He is a post-doctoral re-
searcher in the University of Tokyo. He
is interested in program verification based
on formal methods. He is a member of
ACM.

Kazuyuki Asada was born in 1981, and
received his B.S. (in 2004), M.S. (in
2006), and D.S. degrees (in 2009) from
Kyoto University. He is a post-doctoral
researcher in the University of Tokyo. He
is interested in semantics of programming
languages and logic.

Naoki Kobayashi was born in 1968. He
received his B.S., M.S., and D.S. degrees
from the University of Tokyo in 1991,
1993 and 1996, respectively. He is a pro-
fessor in Department of Computer Sci-
ence, Graduate School of Information Sci-
ence and Technology, the University of
Tokyo. His current major research inter-

ests are in principles of programming languages. In particular, he
is interested in type systems and program verification.

c© 2015 Information Processing Society of Japan

