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Abstract: It is necessary to confirm that a new drug can be appropriately cleared from the human body. However,
checking the clearance pathway of a drug in the human body requires clinical trials, and therefore requires large
cost. Thus, computational methods for drug clearance pathway prediction have been studied. The proposed prediction
methods developed previously were based on a supervised learning algorithm, which requires clearance pathway infor-
mation for all drugs in a training set as input labels. However, these data are often insufficient in its numbers because
of the high cost of their acquisition. In this paper, we propose a new drug clearance pathway prediction method based
on semi-supervised learning, which can use not only labeled data but also unlabeled data. We evaluated the effective-
ness of our method, focusing on the cytochrome P450 2C19 enzyme, which is involved in one of the major clearance
pathways.
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1. Introduction

Drug development is a time-consuming and expensive process.
More than 10 years and tens of billion dollars are required for ap-
proval of a new drug [1]. One of the reasons for this time lag and
large cost is that many candidate drug compounds are retracted in
the later stage of development because of safety issues, including
side effects, insufficient clearance, and so on. Thus, to reduce the
cost of drug development, appropriate selection of compounds
based on the safety of a drug in the early stage of development
is a very effective strategy, especially if determined before the
compound synthesis stage.

Drug clearance pathway prediction is one of the main compu-
tational methods used to determine a drug’s safety. In general,
the method predicts whether a chemical compound is cleared
from the human body by a target clearance pathway. Com-
mon clearance pathways include metabolism and excretion path-
ways such as those involving cytochrome P450 (CYP), organic
anion transporting polypeptide (OATP), and others. Several drug
clearance pathway prediction methods have been established to
date. For example, Sorich et al. proposed a prediction method
for UDP-glucuronosyl transferase (UGT) excretion pathway [2],
and Hammann et al. proposed a prediction method for 3 types
of CYP metabolism pathways [3]. Furthermore, Hotta et al. pro-
posed a prediction method for multiple pathway categories, in-
cluding the CYP, OATP, and renal excretion (Renal) pathways,
simultaneously [4].

These drug clearance pathway prediction methods are based
on supervised learning techniques, which are currently the most
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popular method for drug clearance pathway prediction. In su-
pervised machine learning, the algorithm constructs a prediction
model using labeled data, for which correct values are already
known, and then predicts labels of unknown data using the predic-
tion model. Various algorithms have been applied for clearance
pathway prediction, such as the rectangular boundary method [5],
support vector machine (SVM) [6], [7], and Boosting [8] algo-
rithms. According to previous studies, the SVM appears to be
the best algorithm for this prediction problem [6]. However, the
prediction accuracies are still insufficient for several pathways.
One of the clear reasons for this insufficient prediction accuracy
is insufficiency in the training data. It is difficult to increase the
amount of labeled data because expensive wet experiments and
clinical trials are required for determining the clearance pathways
of a drug.

The semi-supervised learning method can be used for both la-
beled, and unlabeled data for which correct values are unknown
in the training process. The effectiveness of the semi-supervised
learning method has been confirmed in several fields, such as net-
work traffic classification [9] and video annotation [10]. How-
ever, the semi-supervised learning method has not been applied
for drug clearance pathway prediction though many prediction
methods based on supervised learning method have been pro-
posed. In clearance pathway prediction, unlabeled data are easily
obtained because information for a vast amount of compounds
can be gathered from public databases such as ZINC [11], Pub-
Chem [12], and DrugBank [13]. Therefore, the semi-supervised
learning method would be suitable for drug clearance pathway
prediction.

Here, we propose a novel drug clearance pathway prediction
method based on the semi-supervised learning algorithm. We
focus on CYP2C19, one of the major clearance pathways, as a
prediction target. Prediction of CYP2C19 clearance pathway is
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technically difficult because of insufficient number of compounds
that are known to be metabolized by CYP2C19 or not. In fact,
the number of known compounds metabolized by CYP2C19 is
currently only 10. Thus the supervised learning is not suitable
for this prediction. Additionally, CYP2C19 has genotypes of
two mutations, and approximately 25% of the Japanese popula-
tion are genotypically identified as poor metabolizers [14]. This
means that if these individuals take a drug that is metabolized by
CYP2C19, the drug will not be appropriately cleared. Therefore,
prediction of this clearance pathway is important.

2. Drug Clearance Pathway Prediction Based
on Semi-supervised Learning

2.1 Semi-supervised Learning
Semi-supervised learning is a machine learning method origi-

nated from the self-training algorithm proposed by Scudder [15].
The supervised learning method uses only labeled data for the
training stage, and cannot use unlabeled data. By contrast,
the unsupervised learning method uses only unlabeled data for
the training stage. Some semi-supervised learning algorithms
make clusters based on the unlabeled data and simultaneously
make predictions based on the labeled data. Thus, better pre-
diction can be obtained by using both labeled and unlabeled
data. There are various semi-supervised learning algorithms,
such as co-training [16], transductive framework [17], and Uni-
versum SVM [18].

In this study, we used a transductive SVM (TSVM) algo-
rithm, which is an extension of the SVM algorithm based on
a transductive framework. The TSVM algorithm was proposed
by Joachims [19], and this algorithm has been already applied in
some fields. For instance, the effectiveness of TSVM was con-
firmed in text-classification problem by Joachims [19]. In addi-
tion, Röttig et al. showed the algorithm was also useful for sub-
strate specificity prediction, which is one of the bioinformatics
problems [20]. Therefore, we considered that TSVM would also
be effective in clearance pathway prediction. Details of the train-
ing algorithm are described below:
( 1 ) The support vectors are constructed from only labeled data,

as in the conventional SVM model.
( 2 ) Based on the constracted SVM model, unlabeled data are

classified into positive or negative. The number of positively
classified unlabeled data is given as a parameter num+.

( 3 ) The labeled and unlabeled data are given a penalty parame-
ter, which is a weight for misclassification. The penalty for
unlabeled data is smaller than that for labeled data.

( 4 ) The support vectors are constructed again from both the la-
beled and unlabeled data.

( 5 ) The unlabeled data are re-classified based on the new sup-
port vectors in the same manner as step ( 2 ).

( 6 ) Step ( 4 ) and ( 5 ) are repeated until there is no change in any
of the classified results.

( 7 ) The penalty for unlabeled data is strengthened.
( 8 ) Step ( 4 ) to step ( 7 ) are repeated.
( 9 ) When the penalty for unlabeled data is equal to the penalty

for labeled data, the training process is ended and the last
support vectors are outputted.

As this algorithm suggests, if the number of unlabeled data en-
tries is equal to 0, the TSVM algorithm works in the same way as
the conventional SVM algorithm. Therefore, the comparison be-
tween the SVM and TSVM algorithms is easier than among other
semi-supervised learning algorithms.

In this experiment, we used SVMlight v6.02 for implementation
of both the SVM and TSVM algorithms [21].

2.2 Dataset
We adopted the dataset used in Toshimoto et al. [7] as the la-

beled data of this work. This dataset contains 240 compounds,
which have the information whether the main clearance pathway
is CYP2C19 or not. Notice that the label of each compound is
decided by the main clearance pathway and is not decided by the
metabolization by CYP2C19. This is because the main clearance
pathway of a compound can be the other clearance pathway even
if the compound is metabolized by CYP2C19. For instance, if
a compound is metabolized by CYP2C19 but also metabolized
by CYP3A4 and the CYP3A4 metabolization is dominant, then
the main clearance pathway of the compound becomes CYP3A4.
Thus, the dataset was labeled based on all possible clearance
pathway information by investigation of published data. There-
fore, the prediction based on this dataset is more worth than that
based on raw metabolism information. In this dataset, 10 of the
compounds are positively labeled and 230 of the compounds are
negatively labeled.

In the TSVM algorithm, both unlabeled and labeled data are
used in the training process. Ideally, both the labeled and unla-
beled data should be sampled from the same population. How-
ever, the labeled data are often biased because the clearance path-
ways are generally determined only for drug candidates, and the
distribution of labeled compounds might be different from that
of whole chemical compounds. Thus, to reduce the influence
of sampling from different populations, all of the unlabeled data
were selected only from already approved drug compounds. We
constructed an unlabeled dataset using the ZINC database, which
is a popular public compounds database, and includes data for
more than 35 million compounds. There are also data subsets in
the ZINC database, and we used the ZINC drug database (zdd)
subset, which consists of 2,924 FDA-approved drug compounds,
including chiral compounds and duplicated compounds to the la-
beled data. We omitted these compounds because the chiral com-
pounds cannot be distinguished using our method, and finally ob-
tained 1,390 compounds as the unlabeled dataset.

2.3 Features
Kusama et al. used four features for the prediction: molecular

weight (MW), octanol-water distribution coefficient (logD), pro-
tein unbound fraction in plasma (fup), and category of charge at
neutral pH [5]. In this study, we essentially used the same fea-
tures as those used in Kusama et al.: MW, logD, fup and charge.
About charge, we used the difference between the number of pos-
itively charged atoms at neutral pH and the number of negatively
charged atoms at neutral pH (charge) instead of the category of
charge at neutral pH. These features were calculated by using
PreADMET v2.0 software (Bioinformatics & Molecular Design
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Research Center, South Korea).

3. Results

We constructed a prediction model using the SVM and TSVM
algorithms, and performed evaluation experiments to check the
performance of our proposed method.

3.1 Evaluation Measure
In this study, the number of positive and negative labels were

imbalanced, and therefore accuracy, which is the ratio of cor-
rectly classified data, is an inappropriate measure for this eval-
uation. Thus, we employed the f-measure as the evaluation mea-
sure. The f-measure is the harmonic mean of precision and recall,
and is useful for evaluating the performance of prediction based
on an imbalanced dataset. Previous related studies also used the
f-measure [4], [7], therefore making it suitable for comparison to
previous work.

To calculate the f-measure, precision and recall values are re-
quired:

Precision =
#TP

#TP + #FP
(1)

Recall =
#TP

#TP + #FN
(2)

TP, FN, and FP represent the number of true positives, false nega-
tives, and false positives, respectively. Thus, precision is the ratio
of the number of positives that correctly predict to the number of
predicted positives, and recall is the ratio of the number of pos-
itives that correctly predict to the number of all positives, which
are predicted as both positives and negatives.

F = 2 · recall · precision
recall + precision

=
2 · #TP

#FN + #FP + 2 · #TP
(3)

Because it is based on the harmonic mean, a better f-measure
is obtained when both the recall and precision are relatively high.

To calculate the evaluation measure, we used leave-one-out
cross validation. If the number of labeled data entries is N, N − 1
data entries are used as a training data and the remaining data en-
try is predicted. This training and prediction are repeated N times,
and the results of each prediction are cumulated. The cumulated
result is then used to calculate the evaluation measure.

3.2 Kernel Selection and Hyper-parameter Optimization
The selection of a kernel function and hyper-parameter opti-

mization highly influence the performance of prediction in an
SVM-based algorithm. In this study, we employed the Gaussian
kernel shown below.

K(x, z) = exp
(
−γ‖ x − z ‖2

)
(4)

x and z indicate the vectors of features. If these features are simi-
lar, the output of K(x, z) is higher; therefore, K(x, z) indicates the
similarity of the two vectors.

When employing the Gaussian kernel, there are two hyper-
parameters that need to be optimized: cost of the soft-margin
parameter C, and the width parameter of the Gaussian kernel γ.
The larger the cost parameter C and the width parameter γ, there
is an increased likelihood of obtaining a more complicated hy-
perplane. For hyper-parameter optimization, we employed the

following two steps.
global optimization First, we trained the TSVM and SVM for

each combination of 20 patterns of parameter C and 20 pat-
terns of parameter γ as follows:

γ = {2−15, 2−14, · · · , 23, 24} (5)

C = {2−15, 2−14, · · · , 23, 24} (6)

The best global parameters C0 and γ0 were obtained on the
basis of the evaluation measure.

local optimization Second, we determined the best parameter
using the results of global optimization. As for global opti-
mization, we trained the TSVM and SVM for each combi-
nation of 24 patterns of parameters C and γ as follows:

γ = {γ0 · 2−3, γ0 · 2−2.75, · · · , γ0 · 22.5, γ0 · 22.75} (7)

C = {C0 · 2−3,C0 · 2−2.75, · · · ,C0 · 22.5,C0 · 22.75} (8)

We obtained the best parameters Cbest and γbest from these
combinations.

The number of positively classified unlabeled data num+ was
decided by default manner. The default value of num+ is the
number of unlabeled data multiplied by the ratio of positive ex-
amples in the labeled data.

3.3 Unlabeled Dataset
In the evaluation, we generated subsets of sizes 100, 200, 400,

and 800 by randomly selecting from the unlabeled dataset includ-
ing 1,390 compounds, and used these subsets in the training to
confirm the influence of the number of unlabeled data entries and
how many unlabeled data entries are needed for this prediction
problem. In addition, we performed the random sampling ten
times and checked the performance for each sample.

3.4 Results of the Evaluation Test
Table 1 and Fig. 1 show the results of the evaluation test. Num-

bers in parentheses represent the numbers of unlabeled data en-
tries. For the results of the TSVM, the averages and standard er-
rors (S.E.) are shown for checking the influence of sampling bias
of the unlabeled data. The best parameters of SVM and TSVM
are also shown in Table 1. Because of the random sampling of
unlabeled data, there are ten best parameters for each TSVM re-
sult. Therefore, the parameter when f-measure is the best in ten
trials is shown as the best parameter of each TSVM. The results
showed that the TSVM always performed much better than the
SVM. The average f-measure was improved until reaching a size
of 200 unlabeled data entries, and then appeared to be saturated.
On the other hand, as the number of unlabeled data entries was
increased, the S.E. of the f-measure was likely to decrease.

Table 1 Prediction result of pathway CYP2C19.

CYP2C19
f-measure best parameter

average S.E. gamma γ cost C

SVM 0.2941 — 21.25 2−0.25

TSVM (100) 0.3506 0.0118 23.75 2−4.5

TSVM (200) 0.3742 0.0140 24 2−2

TSVM (400) 0.3586 0.0109 22.5 2−0.5

TSVM (800) 0.3668 0.0072 22 2−0.75
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Fig. 1 Average and standard error of f-measure: CYP2C19.

Table 2 The result of the Student’s t-test.

p-value SVM TSVM (100) TSVM (200) TSVM (400)
TSVM (100) 0.0010
TSVM (200) 2.9e-4 0.2430
TSVM (400) 2.2e-4 0.5003 0.3934
TSVM (800) 3.5e-6 0.2281 0.6916 0.5456

To assess the statistical significance of the improvement in pre-
diction given by the TSVM and the effectiveness of the increase
of the unlabeled dataset, we analyzed the f-measures using the
Welch’s t-test and calculated p-values for all combinations. Ta-
ble 2 shows the results, and the values indicated in bold represent
the values that are statistically significant (p < 0.05). The re-
sults showed that all p-values for differences between the SVM
and TSVM were less than 0.05. This indicates that the improve-
ment conferred by the TSVM was statistically significant regard-
less of the number of unlabeled data entries. In contrast, the p-
values for differences among TSVMs with different sizes of the
unlabeled dataset were not less than 0.05. These results indicate
100 is sufficient for the number of unlabeled data. According to
Joachims [19], there is a limitation of improvement in prediction
even when using a vast amount of unlabeled data, which suggests
that this small unlabeled dataset is sufficient for the improvement
of the prediction, and increasing the number of unlabeled data
entries is not effective for this prediction problem.

4. Discussion

4.1 The Importance of Each Feature
Although 100 unlabeled data was sufficient for CYP2C19

clearance prediction as shown in the result section, the number
of required unlabeled data would be different for other analyses
and the number of unlabeled data should be optimized for each
analysis. However, the optimization of the number of the unla-
beled data for each case needs too heavy computation. There-
fore, we fixed the number of unlabeled data to 800 in this section.
As shown in the result section, the smallest p-value was obtained
when 800 unlabeled data was used, and thus we considered that
800 unlabeled data might not be excess for all following analyses.

As previously described, we employed 4 features used in
Kusama et al. [5]: MW, logD, fup and charge. However, it is not
obvious which feature is important. To check it, we tried to pre-
dict CYP2C19 clearance based on 3 features (without 1 feature)
and only 1 feature of the 4 features.

Table 3 shows the results. “N/A” means that we could not

Table 3 Importance of each feature: f-measure.

# features SVM TSVM (800)
4 all features 0.2941 0.3668

3

w/o MW 0.2667 0.3263
w/o logD 0.2941 0.3430
w/o fup 0.2941 0.3304

w/o charge 0.2857 0.3331

1

MW 0.1714 0.1691
logD 0.1455 N/A
fup 0.1707 N/A

charge 0.1404 0.1404

Table 4 Precision & recall: CYP2C19.

precision recall f-measure
average S.E. average S.E. average S.E.

SVM 0.2083 — 0.5000 — 0.2941 —
SVM

0.1500 — 0.3000 — 0.2000 —
(th = 0.13)

TSVM (800) 0.4088 0.0217 0.3500 0.0224 0.3668 0.0072

obtain the f-measure because software could not work correctly.
According to these results, MW is the most important to predict
CYP2C19 clearance, and logD and fup are less important. Addi-
tionally, the f-measure was not improved as the number of feature
decreased. Thus all features are necessary, especially for semi-
supervised learning.

4.2 Balance of Precision and Recall
If f-measure values are equivalent in two prediction methods,

the precision and recall may nonetheless be different. Even if the
performance is improved according to the f-measure, a large de-
crease of recall or precision can cause problems in some applica-
tions. Thus, we checked the precision and recall of the prediction
results.

Table 4 shows the precision and recall values for the TSVM
(800). The precision of the TSVM was higher than that of the
SVM, whereas the recall of the TSVM became lower than that of
the SVM. Therefore, the TSVM can be suitable for predicting a
few compounds that are more likely to metabolize. Because there
are millions of candidate compounds, whereas only hundreds or
thousands of compounds can reasonably be tested in wet exper-
iments, the ability to obtain a relatively small amount of com-
pounds that are predicted to be most likely to metabolize is a very
important feature of this model. Thus, we think that this charac-
teristic of the TSVM makes it more desirable than the SVM.

4.3 ROC Analysis
As previously discussed, positive compounds should be ranked

among the top hundreds or thousands. This means that it is more
important to determine the true positive rate in a couple of percent
of data that are top-ranked by prediction. This determination is
called early enrichment. Unfortunately, since there are only a few
labeled data entries, especially for the positive data, we could not
stably obtain the positive rate in the top few percent of the data.
Due to this limitation, we drew a receiver operating characteristic
(ROC) curve based on the positiveness of the data (in this case,
the decision values of the SVM and TSVM), and calculated the
area under the curve (AUC) for the overall data and the top 10%.
For distinction, the overall AUC is referred to as AUC (100%)
and the top 10% AUC is referred to as AUC (10%) hereafter. To
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Fig. 2 ROC curve: CYP2C19.

Table 5 AUC value: CYP2C19.

AUC (100%) AUC (10%)
SVM 0.6665 0.0265
TSVM (800) (average) 0.6635 0.0393
(random) (0.5000) (0.0050)

draw the ROC curve, the FP-rate and TP-rate are required:

FP-rate =
#FP

#FP + #TN
(9)

TP-rate =
#TP

#TP + #FN
(10)

The ROC curve can be drawn once the positiveness of each tested
data entry is obtained. To draw the curve, we added the data in
order of their positiveness. If positive data are added, the TP-
rate increases, whereas if negative data are added, the FP-rate
increases. The ROC curve shows these changes as a line, and
the curve describes the tradeoff between the TP-rate and FP-rate.
Higher AUCs are obtained when the TP-rate is higher, even if the
FP-rate is still low.

The ROC curves for the TSVM with 800 unlabeled data en-
tries (TSVM (800)) and the SVM are shown in Fig. 2. There are
10 plots for the TSVM and one plot for the SVM. The diagonal
dotted line shows the performance of random prediction, and the
vertical dotted line shows the threshold for the top-ranked 10%.
The results of the ROC analysis showed that the performance of
the TSVM was comparable to that of the SVM in AUC 100%
but was superior to the SVM in AUC (10%) (Table 5). This re-
sult suggests that the prediction improvement by the TSVM is
more obvious in earlier enrichment, indicating it is effective for
this type of prediction because of the importance of earlier en-
richment described above.

4.4 Application of the Proposed Method to Other Clearance
Pathways

Our results demonstrated that the TSVM is effective to pre-
dict the CYP2C19 clearance pathway. Thus, we also applied the
method to other clearance pathways. We focused on five path-
ways: CYP2C9, CYP2D6, CYP3A4, Renal and OATP. These
pathways were used by Kusama et al. [5]. The compounds used in

Table 6 The numbers of positives and negatives.

clearance pathway positively labeled negatively labeled
CYP2C9 17 223
CYP2D6 25 215
CYP3A4 79 161

Renal 69 171
OATP 18 222

Table 7 Prediction result of other pathways.

f-measure SVM
TSVM (800)

Kusama et al., 2010
average S.E.

CYP2C9 0.4151 0.4537 0.0110 0.1905
CYP2D6 0.6667 0.6940 0.0059 0.0606
CYP3A4 0.7630 0.7417 0.0018 0.5730

Renal 0.7361 0.7262 0.0021 0.7015
OATP 0.6667 0.6319 0.0110 0.6250

Average 0.6495 0.6495 — 0.4301

Fig. 3 Average and standard error of f-measure: other pathways.

this experiment were same as these used in our CYP2C19 exper-
iment. Table 6 shows the number of positively labeled data and
negatively labeled data for five pathways. Just like Section 2.2,
these labels of each compound were also decided by the main
clearance pathway and were not decided by the metabolization or
excretion by each pathway.

The results with 800 unlabeled data entries are shown in Ta-
ble 7 and Fig. 3. The prediction results using Kusama et al.’s
method are also shown in Table 7. The TSVM succeeded in im-
proving the predictions for some pathways (CYP2C9, CYP2D6)
compared with those of the SVM. However, the accuracy of
prediction for the other pathways (CYP3A4, Renal, OATP) was
equal to or worse than that of the SVM. The TSVM particularly
improved the accuracy of the CYP2C9 pathway, which showed
the worst f-measure among all of the tested pathways when the
SVM was used. Although we cannot say for sure because of in-
sufficient number of cases, this result indicates that the TSVM
may improve the accuracy of prediction when that of the SVM is
considerably insufficient.

To investigate the effect of the TSVM more deeply, we also
drew an ROC curve for CYP3A4 prediction, which was worse
when the TSVM was used compared to the SVM. ROC curves
of CYP3A4 are shown in Fig. 4 and the AUC values are shown
in Table 8. According to the ROC curves and AUC values, the
TSVM was worse than the SVM in terms of f-measure, whereas
the TSVM was better than the SVM in terms of AUC (10%).
The f-measure is calculated with respect to the points of the ROC
curve lines, whereas the AUC is calculated using all or a par-
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Fig. 4 ROC curve: CYP3A4.

Table 8 AUC value: CYP3A4.

AUC (100%) AUC (10%)
SVM 0.8499 0.0187
TSVM (800) (average) 0.8479 0.0215
(random) (0.5000) (0.0050)

ticular (for example 10%) area of the ROC curve. Therefore,
if one method is much better on one point of the ROC curve,
the f-measure would be drastically improved, while the AUC
would be only slightly improved. In this case, the calculation
point of the f-measure for SVM prediction of CYP3A4 is the
point (FP-rate,TP-rate) = (0.2547, 0.8987). This point is slightly
above the other TSVM ROC curves, which explains why the
CYP3A4 f-measure based on the SVM was better than that of
the TSVM. On the other hand, because the distance of the ROC
curves between the SVM and TSVM is very small, their AUC
(100%) values were approximately equivalent.

5. Conclusion

In this study, we proposed a new drug clearance pathway pre-
diction based on the TSVM. The TSVM improved the clearance
pathway prediction for CYP2C19 compared with the SVM, and
the improvement was statistically significant. By contrast, there
was no significant improvement observed by increasing the num-
ber of unlabeled data entries in the TSVM. These results suggest
that a dataset with only 100 unlabeled data entries is sufficient for
this clearance pathway prediction problem with a dataset contain-
ing 240 labeled data entries.

The investigation of the cases that we should use semi-
supervised learning methods is one of the important future works.
As previously discussed, we insisted semi-supervised learning
may improve the accuracy of prediction when that of supervised
learning is considerably insufficient. However, this condition was
ambiguous and not clearly confirmed. Thus, we have to con-
crete conditions, such as the number of labeled data, the ratio
of positively labeled data and so on, for judging whether semi-
supervised learning should be used or not.
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