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Software Reliability Measurement with Prior-Information

on Initial Fault Content

MiITSUHIRO KIMURA,' SHIGERU YAMADA,'
HiroAKI TANAKA ' and SHUNJI OSAKI '

Most existing software reliability growth models, have been restricted in use with respect to the
software reliability assessments during the later stages of integration or system testing. By introduc-
ing the prior probability distribution on the initial fault content in a software system, software
reliability growth modeling as a binomial model is discussed here; allowing us to assess software
reliability even during the earlier stage of testing. The model is described by a nonhomogeneous
Markov process based on the assumption that the fault-detection rate is proportional to the number
of remaining faults in the system. In particular, assuming the prior distribution to be a Poisson and

a binomial distributions, we discuss the software reliability measurement.

Several assessment

measures for software reliability and the maximum-likelihood estimates for the required model
parameters are derived. The application of this model is demonstrated by analyzing a set of actual
fault-detection data observed during integration testing.

1. Introduction

Recently, since more breakdowns of a com-
puter system are caused by software failures than
by hardware ones, it is of great importance to
produce reliable software systems by using engi-
neering technologies. In general, an implement-
ed software system is tested in the final phase of
the software development to detect and correct
software faults latent in the system. We can
describe the software fault-detection or software
failure-occurrence phenomenon by analyzing the
fault or failure data observed during the testing
phase. Then, the progress of reliability improve-
ment can be evaluated. A software failure is
defined as an unacceptable departure of the
program operation caused by a software fault
remaining in the system.

During the software testing phase, a problem
on assessing software reliability arises. One of
the most useful tools assessing software reliabil-
ity quantitatively is a software reliability growth
model which describes the fault-detection or
failure-occurrence phenomenon during the test-
ing and operational phases (see e.g. the refer-

T Department of Industrial and Systems Engineering,
Faculty of Engineering, Hiroshima University

11 Department of Applied Mathematics and Physics,
Faculty of Engineering, Kyoto University

1601

ences3)-5), 8), 9)). A software reliability
growth is defined as a mathematical relationship
between the time spent in operating a software
system and the software reliability measures such
as the cumulative number of detected faults and
the time-interval between software failures (see
e.g. Ramamoorthy and Bastani®, Yamada?).
Using the software reliability growth model, we
can estimate several software reliability mea-
sures such as the initial fault content, the mean
time between failures, the expected number of
remaining faults, the software reliability func-
tion, and so on.

For making effective decisions, it is of great
importance to assess the software reliability
during the earlier stage of the testing phase.
Because of the data requirements to use the
existing software reliability growth models, most
are employed during the late stage of testing
after integration testing. Then, the software
reliability assessment during the earlier testing
phase has been accomplished by using the sub-
jective information of the project manager, the
experienced results from past projects, and the
simulated test data to estimate the needed model
parameters. If we develop a software reliability
growth model which can be employed during the
early testing phase, then it will provide the
project manager with useful information to con-
trol the resources for the testing to ensure highly
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reliable software.

In this paper, we discuss the software reliabil-
ity measurement during the early stage of soft-
ware testing phase. Describing uncertain infor-
mation on the initial fault content in the soft-
ware system by the prior probability distribu-
tion, we propose a plausible software reliability
growth model as a binomial model which was
first developed by Shanthikumar?. It is assumed
that the number of faults detected during the
testing is represented by a nonhomogeneous
Markov process and the fault-detection rate is
proportional to the number of remaining faults
in the system, which is a function of the testing
time. In this paper, the term ‘testing time’ means
the time spent for the dynamic software analyses.

Describing the fault-detection phenomenon in
the software testing by a nonhomogeneous
Markov process, a binomial reliability model for
software system is briefly reviewed in section 2.
Based on the binomial reliability model, soft-
ware reliability measurement with prior-
information on the initial fault content in the
system is discussed in section 3. In particular,
we discuss the case in which the initial fault
content is assumed to obey a Poisson and a
binomial distribution. Several assessment mea-
sures for software reliability are derived from the
newly developed model in section 4. In the case
in which the initial fault content obeys a bino-
mial distribution, i.e. the size effect of software
program on software reliability growth is con-
sidered, the model parameters are estimated by a
method of maximum-likelihood in section 5.
Section 6 applies the model to actual fault-
detection data, and shows numerical examples of
software reliability measurement.

2. Binomial Reliability Model

Let M () be the number of remaining faults
in the software system at the testing time ¢ (>
0). Considering a probabilistic nature associat-
ed with the fault-detection procedures in the
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software testing phase, we can regard M (7) as a

non-negative counting process. Here we assume

that the software system contains ng faults at the
initial testing time 7=0.

In the software testing phase, since the
introduced faults are detected and eliminated,
then M (¢) gradually decreases as the test goes
on. In this respect, it is natural to consider that
the degree of its decrease is not constant through-
out the testing phase and that it gradually varies
being dependent on the number of remaining
faults. Therefore, we have to construct a sto-
chastic model reflecting such a software reliabil-
ity characteristic. We assume the following
properties with respect to the stochastic fluctua-
tion of M (¢):

(a) M (2) is a Markov process.

(b) A fault detected at the software testing
phase is immediately eliminated and no new
faults are introduced in the fault elimina-
tion procedure.

(c) The probability that one fault is detected
and eliminated in the infinitesimal time
interval (¢, ¢+ 4t] is proportional to the
number of remaining faults in the system at
the time ¢, ie.

P[M (t+40) =m—1|M (1) =m]
=a(t) mdt+o(Je), (1)
where @(7) is the fault-detection rate per
unit time and per fault remaining at the time
t, and o(4¢) means
Br_g)o (4t) /4t =0.

(d) M (1) has a rarity property, i.c.
P[M (1) =M (t+4t) >2]=0(41).
(2)
These properties are schematically illustrated in
Fig. 1.
Let us denote the transition probability of M
(t) as
Puc (m, t|mo) =P[M (1) =m|M (0) = m)
(m=0,1,2, -, m). (3)
Shanthikumar” clarified that this probability
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Fig. 1 Transition probabilities of the process M (7).
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distribution is the following binomial distribu-
tion under the assumptions (a)-(d):

Py (m, t|mp) :(Tn")e—ma(t) (1— e~ Ay mo=m
(m=0,1,2, -, my), (4)
40 =['at)ar, )

where (';"’) is a binomial coefficient defined as

On the other hand, let N (¢) be the total
number of detected and eliminated faults up to
the testing time ¢. Then, since the relationship
M (t) + N (t) =m, holds between M (¢) and N
(t) with probability one, the transition proba-
bility of N (¢) is given as follows:

Py (n, [10) —:(m0> (1 — e—A(t)) ne-(mo—n)A(t)
n
(n=0,1,2, -, mp). (6)

3. Modeling with Prior-Information on
Initial Fault Content

3.1 Probability Distribution of Initial
Fault Content

In the preceding section, it is assumed that
myp is a constant whose value can be specified,
which is the total number of the faults latent in
the software system at the initial time =0, i.e.
the total number of introduced faults until the
testing phase. However, in the actual situation,
we can not specify the value of my at the early
stage of the testing phase, and we can not but
estimate it based on the fault data obtained
throughout the software testing phase. More-
over, it will be varied depending on many fac-
tors such as the kind of developed software
systems, the progress of the development process,
the applied development technologies and tools,
and so on.

In this paper, we express such an uncertain
information in terms of a probability distribu-
tion. Let us denote the probability distribution
of the initial fault content M (0) as

Pmo=P[M (0) =my], (7)
and the probability distribution of the process
M (1) considering this prior distribution as

Py (m, t) =P[M (1) =m]. (8)
Then, with the Bayes’ rule, we obtain

Py(m, )= 21 Pu(m, t|m6) P

ml=m
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(m=0,1,2,-). 9)
Substituting (4) into (9), we can obtain the
following expression for the probability mass
function of M (¢):
Py(m, t) = (1— e AD))—mg-mAlz)

X 3 (mo>(1 —e Ay mop

m(=m)\ M
(10)

Similarly, the probability mass function of the
process N (¢) is given by:
Py (n, 1) = (1—e-A®) nenat) 1 <mo>
my(=m)\ H
X e ™4y, (11)

From (10) and (11), if we can use the informa-
tion of the prior probability distribution on the
initial fault content from software engineer’s
experience, then we can perform software reli-
ability analysis in more detail during the earlier
stage of the testing.

3.2 The Case of Poisson Distribution

As the most common case, we consider the
case in which the initial fault content M (0)
obeys a Poisson distribution, i.e. pn, is given as

Pro=t e (u=E[M (0)];

=
m=0,1,2, ), (12)

where u represents the expected value of M (0).

Substituting (12) into (10) and (11), we can

obtain
—AG@Nm

(13

n!
Xexp{—u(l—e™ )} (14)

Equations (13) and (14) mean that both of M
(t) and N(¢) are the well-known non-
homogeneous Poisson processes (NHPP’s).
Especially, if the fault-detection rate a(z) is a
constant and independent of the testing time ¢, it
is clear that the distribution (13) coincides with
the exponential reliability growth model
proposed by Goel and Okumoto?.

3.3 The Case of Binomial Distribution

Next, we will consider the case in which M
(0) obeys a binomial distribution, i.e.

Py JAm (1=

(0<ALL; m=0,1,2,-, K). (15)
This distribution is obtained under the follow-
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ing assumptions:

(a) The program size at the end of the coding
phase is K, i.e. the software system consists
of K lines of codes (L.O.C.) at the begin-
ning of the testing phase.

(b) Each code contains one fault with a con-
stant probability A.

(c) Each failure which is caused by a fault
occurs independently and randomly in time.

Therefore, under these assumptions, we can

incorporate the effect of program size in soft-

ware reliability analysis.
Substituing (15) into (10) and (11), we can
obtain the following probability distribution.

Pulm, 1) =( 1) (e ) m(1 — a0y k-
(m=0,1,2,-, K), (16)
Py (n, 1) =(nK>{A(1~e"”“)}”

(1= A(1 -0}

(n=0,1,2,-+, K). (17)
Equations (16) and (17) mean that both of M
(¢) and N (¢) obey a binomial distribution.

4. Software Reliability Measures

In this section, based on the probability distri-
bution of the number of remaining faults M (¢)
obtained in the preceding section, we derive
some useful quantitative measures for the soft-
ware reliability assessment. It is clear that the
software reliability measures obtained in this
section can be used at the earlier stage of testing
if we have the information of the prior probabil-
ity distribution on the initial fault content.

4.1 Software Reliability

Let R(z|t) be the probability that no software
failure occurs in the time interval (¢, 1+ ¢] (r>
0) under the condition that all software faults
detected up to the testing time ¢ are eliminated in
the testing ‘pha‘se. We call this conditional
survival function the software reliability in the
testing phase (see Goel and Okumoto® and
Yamada and Osaki!®). By the use of the proba-
bility distribution of M (1), the software reliabil-
ity R(r|¢) can be expressed as follows:

R(r|t):guP[M(tJrr):klM(t):k]

X P[M (1) =k]. (18)
Substituting (10) into (18), we can obtain

R(z|?) :go[ev}m(tu)(l D)
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Mooy —agnm :I
< B, (F)a=e ]

(19)

If M (0) obeys a Poisson distribution, sub-
stituting (12) into (19), then we can obtain the
following expression for the software reliability:

R(z|t) =exp{u(e 4+ —e=4®)}  (20)
On the other hand, if M (0) obeys a binomial
distribution, substituting (15) into (19), then we
can obtain

R(z]t) ={14A(e 4+ — e~ 401K (1)

4.2 Expected Number of Remaining Faults

and Its Variance

As well as the software reliability in the test-
ing phase, an information on the current number
of faults remaining in the system is important to
estimate the progress situation of the software
testing phase. Since it is a random variable in
our model, its expected value and variance are
useful measures. These can be easily calculated
from (10) as follows:

E[M (2) |=E[M (0)]e~*®,

Var[M (¢) ]=Var[ M (0) Je"24®

+E[M (0) Je4®) (1 — =4y,
(22.b)

If M (0) obeys a Poisson distribution, then
they are expressed as

E[M (1) |=pe *®, (23.a)

Var[ M (1) |= pe= 4. (23.b)
Similarly, if M (0) obeys a binomial distribu-
tion, then we have

E[M (1) ]=Kie 4,

Var[M (1) ]=Kle (1 — je=4®)

(24.b)
Therefore, from (23.a) and (24.a), the expected
initial fault content, E[M (0)]’s, are given by y
and KA when M (0) obeys a Poisson and a
binomial distribution, respectively.

(22.a)

(24.2)

5. Maximum-Likelihood Estimations

In this section, based on a method of
maximum-likelihood, we discuss the estimation
method of the model parameters in the binomial
reliability model discussed in section 3. In
particular, we deal with the case of a binomial
distribution for the initial fault content in order
to clarify the effect of the program size on soft-
ware reliability growth. For the case of a
Poisson distribution, we can easily estimate the
model parameters based on an NHPP (see
Yamada®19),
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First, we assume that the fault-detection rate o
(2) is proportional to the testing-effort function
w(¢) (see Yamada et al.'V), ie.

a(ty=aw(r), (25)
where w(#) is the current testing-effort expendi-
tures at the testing time 7. In this paper, the
‘testing-effort expenditures’ is defined as testing
resources measured such as CPU time, man-
power, executed test cases and so on. If the
testing-effort expenditures consumed for the
fault-detection is constant throughout the test-
ing, then we can assume that w(z)=1 without
loss of generality. Otherwise, w(¢) is deter-
mined from the testing-effort data. For example,
Yamada et al.!® proposed testing-effort func-
tions expressed by exponential and Rayleigh
curves. In this paper, we assume that the testing-
effort function w(¢) has been already deter-
mined.

Under the assumptions above, the model
parameters to be specified are @ in (25), K and
A in (16) or (17). We use a method of
maximum-likelihood to estimate these parame-
ters based on fault-detection data observed in the
testing.

Let y. (k=1,2,---,n) be the cumulative
number of detected software faults up to the
testing time 7, (k=1,2,, 1, 0< (< <0<
t,). The likelihood function / for the process N
(1) is given by the following joint probability
mass function:

[=Pr[N (&) =y, N (&) =y, ",

N (t) =ya]. (26)
Using the Bayes’ rule, we have
l:Pr[N(ZZ) =2 "0, N(tn) =an
N () =y )Pr[N () = y]. 27N
Further, iterating the same procedure and using
the Markov property, we can obtain the follow-
ing expression:

lz{ﬁZPT[N(tk) :yklN(lk——l) :yk—l]}

XPr[N (#) =n]. (28)
The conditional probability Pr[N (#,) = yu/ N
(Z.—1) = yr-1] can be easily evaluated by consider-
ing that the initial time is moved to 1=1,_;, and
that the distribution range of N (¢) after that
time is confined to the range 0< N (f) < K —
Vr-1, hence,
Pr[N (8) = pu|N (tx-1) = Y1)

()
Ve Vr—1
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XL (tey timy) PH 2
X{1—=x (s, tay) Y¥72%, (29)
where,

—Ar-1__ p—Ar
X (ty— te-1) :%’(‘l":e%ﬁtr))‘,

Substituting (11) and (29) into (28), we finally
obtain the likelihood function / as follows:

—_ & K_yk“1> V-1
I et

><{1——x(tk, lk—l)}K_yk], (31)

where %=0 and y,=0.
Substituting (25) into (31) and taking the
natural logarithm of (31) yield
L=logl=logK !—log{(K—y,)}

- é}log{ (V= ye-1) 1}

+ y» logd+ kZ:}l (Vo= Yu-1)

Xlog(e*aw(tk—l)_e"aw(fk))
+ (K —yn)log{l—A
X (1 — e«aw(tn))}’ (32)

where W(¢) is the cumulative testing-effort
function defined as

W(t) = £ W dr. (33)

As mentioned in section 3, we can consider, as
a common case, that the parameter K corre-
sponds to the program size. If the program size
is known, then we have only to determine A and
a. From (32), the maximum likelihood esti-
mates A* and @* can be obtained as the solutions
of the following simultaneous likelihood equa-
tions:
oL ;
%=tk
(l . e—aW(tn))
= A —e @0

oL &
2= 2 e y-)
AW () e "™ — W(ty_y) e” ¥ 0]

(34)

[e eV g-aW (@]
—(K—yn) e
: [ f_j/((ltn_) z—aW(tn)) ] =0. (35)
Solving (34) with respect to A, we obtain
A=y (36)

Substituting (36) into (35),
n
El(yk—ykq)
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[ W(t) e — W(g, ;) emawitrn]
. [e—aW(tlz—l)_ e—lZW(tk)]

e~ aW(tn)
=Yn* W(t”)m’ (37)
The maxmum-likelihood estimates a* and A* of
unknown parameters @ and A can be obtained as
the solution of (36) and (37).
It is noted that the solutions satisfy the follow-
ing conditions:
0<A* <1, a*>0. (38)
In particular, if we have the empirical infor-
mation about A, i.e. the fault rate, then we have
only to solve (35) with respect to a.

6. Numerical Examples

In this section, we analyze actual software
fault-detection data to show numerical examples
for application of the model proposed in this
paper.

We use the fault-detection data set denoted by
DS-1 which was analyzed by Yamada et al.!®
This data set was first cited by Brooks and
Motley?. The data set DS-1 takes the form of
(Tos Wy Y2) (k=1,2, -+, 35), where 1, Wy, and
e represent the calendar time (months), the
wall clock hours consumed at calendar time 7,
(ie. a realization of w(z,)), and the cumulative
number of faults detected up to the calendar time
7 (i.e. a realization of N (z)), respectively.
The program size K of this software system
written by ALC and CENTRAN is 1.24 X 10°
lines of code.

NUMBER OF FAULTS

1400+

12004 ACTUAL
PREDICTED

10004 ANALYZED

> —>

800+

6007
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Suppose that we begin to measure the software
reliability at the middle of testing phase, ;. We
have the empirical information that the fault rate
(the number of faults per one code prior to the
testing) is 1.30%, that is A=1.30X 1072 There-
fore, by applying the well-known Newton-
Raphson method to solve (37) for the observed
data (za, W, 3») (k=1,2, -, 17), the maximum
likelihood estimate a* of unknown parameter @
is obtained as follows:

a*=9.791 x 10~*. : (39)
In the above calculation, we use the cumulative
wall clock hours W;=31%w; as a realization of
W(t.). Hence the testing-effort function w(t)
in (25) is assumed to be equal to unity.

Accordingly, we estimate the expected cumu-
lative number of faults detected up to testing
time ¢ as

B[N () ]=Ka—EB[M (1)]

= (124000).(0.0130)
(1 _ e—0.0009791t) . (40)

Moreover, to compare the performance of soft-
ware reliability prediction, we also apply an
exponential software reliability growth model
based on an NHPP to the same data. As a
result, we can estimate the expected cumulative
number of detected faults (i.e. the mean value
function of the exponential software reliability
growth model) as follows:

E[N (£)]=2960 (1 — g~0-000s604t) (41)
Figure 2 shows B[N (#)]s in (40) and (41)
along with the actual software fault data DS-1.

BINOMIAL MODEL

4001

200t

EXPONENTIAL MODEL

0 250 £, 500 750

1000 1250 1500 1750
TESTING TIME (HOURS)

Fig.2 The estimated expected number of detected

faults, B[N (7) ].
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Both the models fit to the actual data points well
by testing time #,=642.9. However, we have
found that the exponential software reliability
growth model does not fit in the later stage of the
testing phase. So, if the software development
manager used such a model for software reliabil-
ity prediction, he or she may make a wrong
decision in terms of software management in the
later stage of testing. This also means that the
trustworthy information prior to testing can
contribute to forecasting of software reliability.

By using of the estimated model parameter,

NUMBER OF FAULTS

1500+
1250+
10001

7501
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the expected number of remaining faults, E[M
(#)] is shown in Fig. 3. Further, Figs. 4 and 5
show estimated software reliability functions R
(z]t)’s versus r and ¢, respectively, where ¢ in
Fig. 4 is evaluated at the forecasting time

mentioned above, i.e. #;,=642.9.
7. Concluding Remarks

In this paper, we have modified the binomial
reliability model first proposed by Shanthi-
kumar, and have derived the probability distri-
bution of the number of detected software faults

0 t t t
250 500 750

1000 1250 1500 1750
TESTING TIME (HOURS)

Fig.3 The estimated expected number of remaining

faults, B[M (1) ].

SOFTWARE RELIABILITY
14

3 4 s
TESTING TIME (HOURS)

Fig. 4 Dependency of 7 on the estimated software reli-
ability, R(r|¢) (z=642.9[hours]).
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0 250 500 750

1000

1500 1750
TESTING TIME (HOURS)

1250

Fig. 5 Dependency of ¢ on the estimated software reli-

ability, R(z|z).

and some useful reliability measures by express-
ing the uncertain information on the initial fault
content in terms of the probability distribution.

In particular, we have shown that both the
processes M (¢) and N(¢) obey a binomial
distribution if the initial fault content obeys a
binomial distribution. This model is very useful
to the point that we can easily take the objective
program size into the reliability analysis. Fur-
ther, according to the maximum-likelihood esti-
mations discussed in section 5, we can estimate
the program size K from the fault-detection data
in the testing phase even if it is unknown. In
addition if we can use the information of the
prior probability distribution on the initial fault
content from a software engineer’s experience,
we can perform software reliability analysis in
more detail during the earlier stage of testing.
These are other advantageous points of our
binomial model.

In future, we are planning to study the testing-
effort function to reflect an actual environment
of software testing, and to study the problem of
what type of distribution is best for the probabil-
ity distribution of the initial fault content.
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