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Efficient Pitch Estimation on Natural Opera-Singing by a
Spectral Correlation based Strategy

Fernando Villavicencio1,a) Jordi Bonada2,b) Junichi Yamagish1,c) Michel Pucher3,d)

Abstract: We present in this work a study for robust pitch estimation on signals presenting wide-range pitch con-
tent, as is the case of opera singing. Aiming to perform automatic features extraction for the further development of
parametric opera singing synthesis technology we evaluate four state-of-the-art pitch estimators, reporting in particular
technical details of one introduced in previous work, based in a technique called Spectral Amplitude Autocorrelation
(SAC). The results issued from subjective and objetive evaluations show clear performance trends, denoting robust
estimation performance for SAC without observing significant sensitivity to the pitch height.
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1. Introduction
Pitch estimation is an essential key technology in speech syn-

thesis. In the speech synthesis fields, there are two dominants
methodologies, that is, unit selection/waveform concatenation
and statistical parametric speech synthesis. In the unit selection
speech synthesis, pitch-synchronous overlap add is typically used
to generate speech waveforms and in the statistical parametric
speech synthesis, speech waveforms are typically generated using
either source-filter vocoders with F0-adaptive spectral smoothing
techniques ([1]), glottal-excitation based vocoders ([2]) or sinu-
soidal models such as harmonic plus noise model ([3]).

The robustness of the F0 (pitch) extraction task may repre-
sent an important factor of the performance of these techniques
to properly model the periodic information of the speech signal.
Note also the use of F0 information to achieve efficient estimation
of the spectral envelope ([4]) as a way to improve the synthesis
quality when modeling the voice timbre information ([5]).

There is a large list of algorithms proposed to estimate pitch
accurately (e.g. [6]) well evaluated for normal read speech but
poorly done for the case of singing voice despite the emergence of
technologies where speech synthesis strategies are applied to mu-
sical purposes. As prominent examples, the HMM-based singing
synthesis platform called Sinsy ([7]) and the technology develo-
ped by Yamaha Corporation called VOCALOID ([8]), of signi-
ficant commercial success and popularity among general public.
Note previous work in [9] and [10] presenting additional experi-
mentation with this technology.

Pitch estimation on opera-singing appears to be particularly
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challenging if compared to spoken speech and pop singing (in
which most of current singing synthesizers are mainly focused)
due to the large pitch range frequently used and the required pre-
cision to reproduce the musical sequence. Moreover, although
few recent work ([11]), opera-singing has not been well studied
yet in the sense of the F0 estimation and speech synthesis.

The purpose of our study is to experimentally evaluate the
performance of state-of-the-art strategies for automatic pitch-
estimation of natural opera singing with a view to high-quality
opera singing synthesis. For this purpose, we have recorded opera
songs by professional singers. By using segments selected from
these recordings we have evaluated four recently-proposed algo-
rithms on an automatic basis (no adaptation of analysis parame-
ters according to the pitch range of each segment), including one
introduced in previous work and described more in detail in this
paper.

This paper is organised as follows: In the section 2, we briefly
explain our opera-singing data. In section 3, we introduce the
selected pitch-estimation algorithms and explain the SAC algo-
rithms proposed by one of the coauthors recently in details in sec-
tion 4. Results of subjective and objective evaluation are shown
in the section 5 and 6, respectively. We summarize our findings
in section 7.

2. Singing-Voice Data
2.1 Opera Singing Collection

In speech synthesis, a corpus would be selected following a
minimum set-cover basis and then be read by a speaker in a se-
parate selection process. For selecting an opera corpus by fo-
llowing this way we would end up with a selection of opera songs
that no available opera singer has in his/her repertoire. Therefore
we decided to select a number of opera songs (≈ 8-10), with the
assistance a professional teacher, for four singer categories (bass,
tenor, mezzo, and soprano) that are in the current repertoire of
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Fig. 1 Musical interval of the recorded opera songs with four different professional singers.

that singer and that cover the space of opera songs along a lyrical
- dramatic and slow - fast axis. We also checked that these songs
cover the F0 range of that singer category. A further restriction in
the selection of songs was the fact that we were only looking at
songs in the German language.

Fig. 1 shows the range of the music scores on the piano roll
of all the recorded songs colored for each of the four singers, de-
noting that the total musical interval covered ranges from D2 (73
Hz) to D6 (1175 Hz). Note also that all songs show a range larger
than one octave, suggesting us that an adaptation of the analysis
range of the F0 estimator at a song level may not be enough to
avoid octave errors that can be found on many estimators when
working on these conditions.

2.2 Test Data
For simplicity, we extracted short excerpts of continuous

singing as representative data of each singer to set up an experi-
mental evaluation. More precisely, five segments of four different
songs were chosen, resulting in a total of eighty test samples with
an average duration of five seconds. Most of the resulting samples
included vibrato phenomena, a recurrent feature of opera singing.
There were no additional restrictions for the data selection since
the fundamental interest is to perform robust pitch extraction on
naturally sung signals, independently of the singer type and the
singing style.

The samples were down sampled to S r = 44100Hz in order to
keep high-quality conditions. The ranges and average values of
the pitch on the test data of each singer (20 samples) are shown in
Table 1. The resulting overall pitch range of the signals used for
all our experiments was therefore found in [70, 1000]Hz, a range
significantly larger and higher than the values in which speech

based pitch extraction studies are typically carried out.
Table 1 Pitch statistics of the test data per singer (in Hertz).
Singer Bass Tenor Mezzo Soprano
range [72, 477] [107, 528] [195, 823] [130, 979]

mean(std) 206 (56) 283 (74) 542 (112) 575 (128)

3. Pitch Estimation Techniques
Most of pitch estimation techniques have been optimised for

spoken voice, which represents a reduced challenge in terms of
the expected pitch range to track (e.g. within [80, 300]Hz for
speech). In general, a proper adjustment of this range is an im-
portant factor of the performance, representing a problem for au-
tomatic features extraction of natural opera singing, due, as it was
mentioned, to the expected wide-range of the pitch. In this work
we experimentally compare for this task the state-of-the-art me-
thods introduced in this and next sections.

3.1 Sawtooth waveform inspired pitch estimator (SWIPE)
Estimation based on the selection of the F0 of a sawtooth

waveform template whose spectrum best matches that of the in-
put signal considering a pitch-dependant optimal window size.
The improved version of this technique (SWIPE’), using only
information of the first and prime harmonics, has shown out-
performing estimation performance on speech and musical ins-
truments databases when compared against state-of-the-art algo-
rithms [12].

3.2 Robust epoch and pitch estimator (REAPER)
Developed by D. Talkin (Google), this method is mainly based

on the identification of voiced epochs and further estimation of
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Fig. 2 Schema of SAC algorithm.

glottal closure instants (GCI) in order to compute the instanta-
neous F0 as the inverse between successive GCIs. This stra-
tegy uses time-domain information of a linear-prediction resi-
dual to find GCI candidates (furthermore processed by dynamic
programming) and low-frequency content for voicing characteri-
sation [13]. There is no available information concerning a per-
formance evaluation by the authors of the technique.

3.3 Summation of residual harmonics (SRH)
This method also uses a residual signal after auto-regressive

modeling of the input signal. The estimation is based on the f 0
value maximizing locally a proposed SRH measure. A threshold-
ing of this measure was also found useful for voicing boundaries
decisions. This strategy was reported with comparable perfor-
mance against state-of-the-art techniques and providing improved
robustness to additive noise [14].

3.4 Spectral amplitude autocorrelation (SAC)
This new technique has been only generally described so far

in [15], we include a more-in-depth description in the next sec-
tion. For a mater of space we refer to the referenced works for a
complete technical description of the other techniques.

Note that in our experimental study, focused on a straightfor-
ward application scenario we kept the default analysis settings
(e.g. analysis window, hop-size) as found in the implementations
from the authors that were found available ([16], [13], [17]). Ex-
ceptionally, the pitch search range was set to [70, 1400]Hz for all
estimators according to the conditions that can be expected on
opera singing in general.

4. SAC: Spectral-Amplitude Autocorrelation
This algorithm, briefly summarized in Fig. 2 is based on the

autocorrelation of the amplitude spectrum. It consists of several
steps comprising resampling, frame-by-frame F0 candidate esti-
mation, and post-processing.

4.1 Multiresolution Spectrum
First, the audio signal is resampled using polyphase filters to a

sampling frequency of S R = 11.025 kHz, in order to reduce the
computational cost. Next, the audio is segmented into a sequence
of overlapping frames of N = 640 samples (58 ms) with a hop-
size of 64 samples (5.8 ms). For each frame the DC is removed
and its Discrete Fourier Transform (DFT) spectrum is computed
with a rectangular window without zero-padding. Then, the spec-
trum is convolved with a variable convolution kernel that depends
on the bin frequency and that corresponds to the transform of a
Blackman-Harris window with a length of 640 samples for fre-
quencies lower than 200 Hz, 256 for frequencies higher than 1000
Hz, and linearly interpolated in between. Only 41 bins of the win-

dow transform are used in the convolution to reduce the compu-
tational cost. This process generates a multi-resolution spectrum
X with desirable properties. The amplitude spectrum is measured
in decibels (XdB).

4.2 Salience Spectrum
Next, spectral peaks (local maxima) are estimated {pi}

P
i=1, and

the spectrum is segmented into P peak regions with the corres-
ponding P+1 boundaries {si}

P
i=0 set at local minima.

si =


0 i f i = 0

arg mink∈[pi ,pi+1] XdB (k) i f 0 < i < P
N/2 i f i = P

(1)

Then, a salience spectrum S dB is estimated: for each peak re-
gion [si, si+1], a local weighted mean of XdB is subtracted and
negative values are set to zero. The local mean X is computed as

Xi =

∑r
k=−r w (pi + k) ·XdB (pi + k)∑r

k=−r w (pi + k)
(2)

w (k) =

(
1 −

pi − k
r

)2

(3)

r =

 r1 +
pi
kc

r2 i f pi ≤ kc

r1 + r2 i f pi > kc
(4)

where pi is the peak bin index, kc = 700·N
S R , r1 = 80·N

S R , and
r2 = 200·N

S R . Xp is subtracted to all the bins in the peak region.

S dB (k) =

{
0 i f XdB (k) < Xi

XdB (k) − Xi i f XdB (k) ≥ Xi
∀k ∈ [si, si+1] (5)

Since the constant values subtracted to each region are likely to
be different, we expect that discontinuities will appear at region
boundaries. In order to avoid them, for each region boundary si,
the corresponding local means Xi−1 and Xi are linearly interpo-
lated along 4 bins around the boundary bin.
The salience spectrum is non-linearly scaled so that values above
20 dB to the maximum S max are raised, while values lower than a
frequency dependent threshold are lowered. This scaling is wri-
tten as follows.

Ŝ dB (k) =


S dB (k) ·

(
1 +

S dB(k)−thh
20

)
if S dB (k) ≥ thh

S dB(k)
1+ 1

2 (thl−S dB(k))
if S dB (k) < thl

S dB (k) otherwise

(6)

th (k) =


50 i f k < k1

40 + 10 · k−k1
k2−k1

i f k1 < k < k2

40 i f k ≥ k2

(7)

where thh = S max − 20, thl = S max − th (k), k1 = 150·N
S R , k2 = 300·N

S R
and S max = maxk∈[0,N/2] S dB (k) .

4.3 Spectrum Correlation
A peak is artificially added at zero frequency to help fundamen-

tal frequency detection of signals with few or just one harmonic:
Ŝ dB (0) = Ŝ max, Ŝ dB (1) = 0.9 · Ŝ max, and Ŝ dB (2) = 0, where
Ŝ max = maxk∈[0,N/2] Ŝ dB (k) . The next step is to compute the co-
rrelation of Ŝ dB multiplied by a zero-centered Hann window by
means of the Fast Fourier Transform. The peaks of the corre-
lation function C correspond to spectral bin distances likely to
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explain a harmonic structure of the spectrum. A subset of peaks
is computed {ci}

C
i=1 with the following constraints

C (ci) > C (k) ∀k ⊂ {ci − 2, ci − 1, ci + 1, ci + 2}

C (ci) > 0.57 ·Cmax

0.1 · cmax ≤ ci ≤ N/2

where cmax = arg maxk∈[0,N/2] C (k) and Cmax = C (cmax) . The
estimated fundamental frequency bin is the peak with lowest
index c f 0 = c1. Finally, the fundamental frequency estimation is
refined with a 2nd order polynomial interpolation. The estimated
pitch in Hz is f0 = S R

N c f 0.

4.4 Trajectory Locking
Let it be cm

f 0 and Cm the estimated fundamental frequency bin
and correlation function of the mth frame. If the previous five
frames were estimated as voiced with frame-to-frame differences
lower than 20 bins, then the estimated fundamental frequency is
updated (if it exists) as the largest peak of C around the previous
frame estimation cm−1

f 0 that fulfills the following constraints

cm
f 0 = arg max

k
Cm (k) ∀k

∣∣∣∣∣∣∣∣∣∣
⌊
0.8 · cm−1

f 0

⌋
≤ k ≤

⌊
1.25 · cm−1

f 0

⌋
Cm (k − 1) < Cm (k) < Cm (k + 1)

Cm (k) > 0.3 ·Cm
(
cm

f 0

)
4.5 Voiceness Probability

A voiceness probability is computed by combining the voici-
ness probability of several descriptors. One descriptor is related
to the variance of the correlation function A around the estimated
fundamental frequency. it is computed as

A =
C

(
c f 0

)
−C (cminr)

Cmax
·
C (cmaxr) −C (cminr)

Cmax
·
C

(
c f 0

)
−C (cminl)

Cmax
(8)

where

cminr = arg min
k∈[c f 0 ,2·c f 0]

C (k)

cmaxr = arg max
k∈[cminr ,2.3·c f 0]

C (k)

cminl = arg min
k∈[0.2·c f 0 ,c f 0]

C (k)

Another descriptor relates to the variance of the correlation func-
tion in the 2-5kHz frequency band B, computed as

B =
σB ·C

(
c f 0

)
µB

2 (9)

where

kB1 =
2000 · N

S R
, kB2 =

5000 · N
S R

µB =

∑kB2
k=kB1

C (k)2∑kB2
k=kB1

C (k)

σB =

√∑kB2
k=kB1

(C (k) − µB)2

kB2 − kB1

Other descriptors used are time-domain zero-crossing ZC, energy

E and waveform tremolo T̂ . The waveform tremolo is modified
depending on A as follows

T =


T̂ i f A ≤ 0.015

T̂ ·
(
1 − A−0.015

0.008

)
i f 0.015 < A < 0.023

0 i f A ≥ 0.023
(10)

The voiceness probability for each descriptor is computed as
follows

PA =

 1 i f A ≥ 0.2

e−
1
2

(A−0.2)2

0.152 i f A < 0.2

PB =

 1 i f B ≥ 0.52

e−
1
2

(B−0.52)2

0.042 i f B < 0.52

PZC =

 1 i f ZC ≤ 0.1

e−
1
2

(ZC−0.1)2

0.22 i f ZC > 0.1

PT =

 1 i f T ≤ 0.2

e−
1
2

(T−0.2)2

0.162 i f T > 0.2

PE =

 1 i f E ≤ 0.00002

e−
1
2

(E−0.00002)2

0.000012 i f E > 0.00002

Finally, the resulting frame voiceness probability is estimated
multiplying the voiciness probability of each descriptor as

Pvoiced = PA · PB · PZC · PT · PE . (11)

4.6 Voicing decision and post-processing
Let it be Pm

voiced the voiciness probability of the mth frame. If
the previous five frames were estimated as voiced with frame-to-
frame c f 0 differences lower than 20 bins, then the frame is con-
sidered to be voiced if max

(
Pm
voiced, P

m−1
voiced

)
> 0.44. Otherwise,

the frame is considered voiced if Pm
voiced > 0.44.

The last step consists of a 5 frames post-processing that allows
octave jumps typical of speech signals (e.g. creaky voice) while
avoiding octave up or down segments of less than 3 frames. Also
it avoids irregular F0 sequences with several large jumps of a few
or more semitones, as well as avoids voiced segments shorter than
4 frames.

5. Perceptual Evaluation
Following our informal observations we found distinctive per-

formance across the different techniques, with SAC, SWIPE,
REAPER and SRH in order of performance . As expected, the
most of errors were found as octave or random jumps within
short time intervals, principally in vibrato regions and high-pitch
singing (mezzo and soprano voices). SAC and SWIPE appeared
to be the most robust and less sensitive to these phenomena.
Moreoever, pitch oscillations (e.g. vibrato) were commonly not
extracted smoothly by REAPER and SRH, as shown in Fig. 3
on a segment of a soprano sample. This could be perceived as a
degradation after performing STRAIGHT resynthesis [18] using
the pitch estimates as input. A MUSHRA test [19] reported in the
next section, was conducted using these synthetic signals seeking
to confirm our findings by perceptual evaluation.
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Fig. 3 Example of pitch estimation on high-pitched singing (soprano
singer). Time-domain signal (top), estimates comparison (bottom).

Fig. 4 Perceptual evaluation results (MOS scaled to [0, 100]).

5.1 MUSHRA Test
Ten samples of each of the four singers were used for resynthe-

sis using the four different pitch estimations, resulting in a total
of two hundred samples (including the originals). Ten listeners
with music or singing background participated in the test. The
test interface presented the original sample as reference and the
five samples to evaluate randomly selected (including again the
original). The listeners were asked to score in a MOS basis and
to give the maximal value (in a scale up to 100) to the assumed
hidden original. The participants were asked to focus principally
in the quality of the pitch reproduction. It was allowed to replay
any sample as many time as necessary until feel comfortable with
the scores.

The results are shown in Fig. 4, organized by singer type. The
tests confirmed the performance trends in both techniques and
pitch range aspects. Resynthesis from SAC estimates obtained
the highest scores, showing low sensibility to the pitch range.
As expected, SWIPE was found the second best, followed by
REAPER and SRH, in which were perceived noticeable artefacts
due to jumps.

Fig. 5 Cross pitch-deviation comparison matrices (in cents).

5.2 Crossed Comparison
Since we lack of information of the glottal activity (i.e. EGG

signals) an objective evaluation it is not straightforward. Never-
theless, we wanted to measure the degree of deviation between
the different techniques and their sensibility to the pitch range
(singer type) as informative of the stability of the techniques and
the performance trend related to the height of the voice (singer).
Therefore, we did a crossed comparison measuring the average
standard deviation between the different estimates per sung ex-
cerpt. The computation was done also in cents as a musically
motivated measure (100 cents represent a distance of a semitone).

For a matter of space we only show the result in cents in Fig. 5.
The matrix shown correspond to four sub-matrices ordered as fol-
lows: Bass (left-top), Tenor (right-top); Mezzo (left-bottom); and
Soprano (right-bottom). The horizontal axis denotes the tech-
nique used as reference and the vertical one the evaluated esti-
mates following this order: SAC, SWIPE, REAPER, SRH. For
each comparison, the time-axis of the reference estimation was
fixed and the pitch of the evaluated one was linearly interpolated
accordingly. All pitch deviations were calculated exclusively on
segments identified as voiced by both SAC and REAPER voi-
cing decisions. There were not found visible voicing mismatches
across the different estimators that could significantly impact the
performance comparison.

The results confirmed the distinctive performance in the ex-
pected order in terms of the degree of deviation between esti-
mates. This was specially observed for low and high voices (bass
and soprano) when measuring in hertz. SAC and SWIPE were
systematically found stable and close, specially for mid and high
pitch cases. It was interesting to find that, in general, the per-
formance did not drop significantly on high or very high pitch
(soprano), which is commonly considered a major challenge in
the bibliography. The results measured in cents (Fig. 5) showed
similar trends, with slightly closer rates for miid and high pitch
voices but larger differences appearing on low pitch, suggesting
that the impact of pitch errors may be more noticeable, in a mu-
sical or perceptual basis, on bass voices.
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6. Objective Evaluation
We carried out an evaluation using synthetic signals. Follow-

ing the subjective results we used SAC estimates as pitch tem-
plates that were furthermore scaled one semitone up and down
to produce two synthetic versions. Then, we measured again the
average standard deviations using the scaled templates as refe-
rence. Note that the characteristics of STRAIGHT resynthesis
may have an impact on the performance due to: 1) a potential
emphasizing/degradation of the information of the signal used by
a particular algorithm, or 2) limitations when processing signals
with extremely low or high pitch. We claim however that the per-
formance trends might follow, globally, those of measurements
using actual pitch information and natural signals.

The results are shown in Table 2 (hertz) and Table 3 (cents).
The order of performance remains (excepting a switch between
REAPER and SRH for the bass voice), denoting SAC as the best
and more stable estimator with larger benefits at the extreme pitch
ranges (low, high). Also, note that the effect of the pitch range
does not seem to be as significant as it would be expected. More-
over, excepting SAC technique, there were confirmed larger error
intervals on low-pitched singing. The overall results allow us to
claim improved accuracy and high robustness of SAC over the
other techniques for automatic wide-range pitch extraction.

Table 2 Average estimation deviation (in hertz) per excerpt.
algorithm Bass Tenor Mezzo Soprano

SAC 4.77 2.61 3.41 4.32
SWIPE 21.22 2.80 3.86 7.82

REAPER 47.68 9.71 11.09 22.32
SRH 29.73 17.63 37.52 37.07

Table 3 Average estimation deviation (in cents) per excerpt.
algorithm Bass Tenor Mezzo Soprano

SAC 36.99 17.95 12.86 14.35
SWIPE 137.05 19.66 13.64 27.71

REAPER 249.20 53.64 38.65 86.90
SRH 207.53 96.68 117.64 110.21

7. Conclusions
We presented in this work a robust strategy for automatic pitch

estimation denoting high performance on wide pitch-range sig-
nals independently of the voice height. The proposed technique,
called SAC, was evaluated and compared with three state-of-the-
art techniques on natural opera singing observing rich pitch con-
tent. SAC estimation clearly showed the best and more robust es-
timation results according to subjective and objective evaluations
when the F0 search interval in all methods is set wide enough to
cover the overall expected range of opera singing.

Further study should be done to consider a global optimisation
of the analysis settings in the other techniques that may improve
their results seeking to complement the findings reported in this
study. Also, a potential impact of STRAIGHT resynthesis on the
performance of the different techniques might be clarified.
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