周囲が暗い環境での色の見えを考慮した トーンリプロダクション手法

三鴨 道弘^{1,a)} 川崎 洋¹ 金田 和文²

概要:本発表では、周囲が暗い環境での色の見えを表現する手法を発表する.色の見えは周囲の環境の明 るさに依存する.これは視細胞の感度が明るさによって変化するためである.視細胞は錐体と桿体の二種 類があり、周囲が暗い環境では、錐体よりも桿体の働きが大きくなる.桿体の感度は短波長側に寄ってお り、このため、周囲が暗い状況では色が青みがかって見える.提案するモデルでは、視覚分野で用いられ る二段階モデルと、周囲の明るさに対する 色知覚の計測データである波長弁別閾を取り入れた.さらに、 波長弁別閾を利用する際、既存のモデルには含まれていなかった桿体の感度分布を考慮した.波長弁別閾 を基に錐体・桿体の感度を変化させることで、周囲が暗い環境での色の見えを表現する.

1. はじめに

我々が日常的に感じる輝度のダイナミックレンジは広 範囲に及ぶ.例えば,月夜と日中のダイナミックレンジは 10¹⁴ 以上にわたる.さらに,日陰と日向のダイナミックレ ンジは 10⁴ 以上である [1].図1に,実世界の輝度範囲,そ れに対応する網膜照度 (単位:[Td]),そして,対応する視 覚状態を示す.図1に示すように,視覚状態は周囲の明る さと共に変化する.日中の屋外や屋内のように,周囲が明 るい環境の場合,明所視の状態にある.星空の下のように, 周囲が暗い環境の場合,暗所視の状態にある.そして,そ の中間の明るさの場合,薄明視の状態にある.

このような広範囲にわたる輝度を記録するために,ハイ ダイナミックレンジ (High Dynamic Range: HDR) 画像が 開発されてきた [2] [3]. HDR 画像は実世界の輝度やコン ピュータグラフィクスで計算した輝度を詳細に記録するこ とができる.しかし,ディスプレイに表示できる輝度ダイ ナミックレンジは実世界の輝度ダイナミックレンジよりも 小さい.そのため,HDR 画像をディスプレイに表示する ために,HDR 画像に記録された輝度を,ディスプレイに表 示できる輝度ダイナミックレンジに調整する必要がある.

² 広島大学大学院工学研究院情報部門 Department of Information Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8527 Japan

従来,HDR 画像を表示するため,輝度ダイナミックレ ンジを調整することを目的に研究が行われてきた.しか し,最近では,表示された画像からリアルな印象を得るた めには,輝度ダイナミックレンジの調整だけでなく,色の 見えの調整も必要であると認識されてきた [4] [5].これは, トーンリプロダクション問題と呼ばれ,この目的を達成す るために開発された手法はトーンリプロダクション手法と 呼ばれる [3] [6].

夜のシーンを描くことは、古くから画家の興味の対象で あった [7]. また、現在では、夜のシーンは映画で頻繁に 利用される. そのなかで、Day for night と呼ばれる手法 がある. これは明るい場面のシーンを撮影し、そのシーン を、コンピュータによる画像処理により、暗い印象を与え るシーンに変化させる手法である. これは、例えば、役者 のスケジュール上、撮影時間が限られている場合などで利 用される.

本論文では,周囲が暗い環境での色の見えを考慮した トーンリプロダクション手法を提案する.これは,日中の ように明るいシーンではなく,月夜や星空の下のような暗

鹿児島大学学術研究院理工学域工学系情報生体システム工学専攻 Department of Information and Biomedical Engineering, Kagoshima University, 1-21-40, Kohrimoto, Kagoshima, 890-0065 Japan

^{a)} mikamo@ibe.kagoshima-u.ac.jp

1. 錐体細胞 2. 桿体細胞 3. 双極細胞 4. 水平細胞 5. 網膜神経節細胞

図2 網膜の断面 [出展: [9]]

いシーンの表現を対象とする.提案手法では周囲が暗い環 境での色を表現するために,波長弁別閾と呼ばれる,色の 見えを測定したデータを用いる.

提案手法の特徴として,次の2点が挙げられる.1点目 は,生理学的な知覚モデルに基づいたモデルである点であ る.提案手法では,既存の色知覚モデルである二段階モデ ル[8]に,さらに,視細胞の桿体からの影響を考慮してい る.2点目は,実際の色の見え方を測定したデータを用い て表示する色を決定する点である.既存手法は,視細胞に おける桿体の応答量を基に周囲が暗い環境での色を表示し ていた.しかしながら,桿体の応答量と実際の色の見えの 関係は,未だ明らかになっていない.提案手法は,色の見 え方を測定したデータを用いることで,暗所視の色の見え 方を表現する.

2. 関連研究

コンピュータグラフィクスでは、シーンの見え方をディ スプレイ上で再現するために、色の見えモデルが開発され てきた.ここでは、まず、既存の色の見えモデルを説明す る.そして、提案手法で用いる、色の見えを計測したデー タである波長弁別閾と、心理学分野で開発された二段階モ デルについて説明する.

2.1 既存の色の見えモデル

既存の色の見えモデルは、主に、視神経の繋がりを基に モデル化されている.図2に網膜の断面図を示す [9].瞳 孔,水晶体を通った光は図の左から視細胞に達する.視細 胞は2種類あり、それぞれ、その形状から、錐体と桿体に 分類される.錐体は周囲が明るい場合に働き、明るさと色 を識別する能力を持つ.L,M,Sの三種類の錐体があり、 それぞれ、可視光内の、長波長、中くらいの波長、そして、 短波長に感度のピークを持つ.一方,桿体は周囲が暗い場 合に働き,明るさを識別する能力を持つ.短波長側にピー クを持つ.周囲が明るい環境では錐体が主に働き,周囲が 暗い環境では桿体が主に働く.その中間の明るさでは,錐 体,桿体が同程度に働く.

図2からわかるように,錐体,桿体細胞は視神経を共有 する.実際,文献 [10] にそれが報告されている.両方の視 細胞が視神経を共有することで,錐体,桿体からの応答が 混ざり合う.その結果,周囲の明るさによって色の感じ方 が変化する.

このような視細胞の応答をモデル化した代表的な手法に Pattanaik ら [11] の手法, Khan らによる手法 [12], Kirk らによる手法 [13], Wanat ら [14] による手法がある. Pattanaik らの手法 [11] は, 視神経の応答を基に, 総合的な視 覚モデルを開発した. しかし, 周囲が暗い環境での青みが かった表現はできていない. Khan ら [12], Kirk ら [13], Wanat ら [14] は, 桿体の応答を錐体の応答に加え合わせ ることで, 周囲が暗い環境の色の見え方を表現する手法を 開発した. これらの手法では, 視細胞の応答を基に表示す る画像の色を決定している. しかし, 視細胞の応答と, そ れがどの程度色の見えに影響を与えるかについては未だ解 明していない.

波長弁別閾から色の見えを表現した手法には三鴨らの手法[15][16]がある.これらモデルも提案手法と同様に,波 長弁別閾を基に各錐体の分光感度を決定している.しか し,手法[15]では桿体の影響は考慮されていない.また, 手法[16]では,錐体の分光感度の変化を一つの関数を用い て制御し,その関数を桿体の応答としている.

提案手法では、これら二つのモデルを拡張し、錐体の分 光感度に、さらに、桿体の分光感度を加え、それら全ての 分光感度を用いて色の見えを再現する.

2.2 波長弁別閾

波長弁別閾とは,色の違いを識別できる最少の波長差で ある [8] [17]. 図 3 に異なる 3 種類の明るさの環境下での波 長弁別閾を示す.赤線が 150[Td],紫線が 8.5[Td],そして 青線が 0.85[Td] である [17]. 横軸が可視光の波長 [nm],縦 軸が波長弁別閾 [nm] である. 図 3 より,例えば,網膜照度 150[Td] の光を見ている場合,可視光波長 520[nm] のとき 波長弁別閾は 1[nm] である. これは,波長 520[nm] の光に 対して,他の波長の光を識別するには,最低で 1[nm] の差 があればいいことを示している.すなわち,波長 520[nm] の光に対して,521[nm] の波長の光を識別することが可能 であることを表している.

波長弁別閾の逆数は, 視細胞全体の可視光の波長に対す る感度を表している. すなわち, 波長弁別閾が小さいほど, 可視光の波長に対する感度が大きいことを示す. 図 3 から 周囲の環境が暗くなった場合, 次の二つの特徴を見ること

ができる.まず,可視光の波長に対する感度は,網膜照度が 小さくなるにつれて短波長側に移動する.例えば,150[Td] の曲線で波長弁別閾が小さくなっている波長 495[nm]の波 長弁別閾(約0.5[nm])に着目すると,0.85[Td]では,短波 長側の波長約465[nm]に移動している.また,可視光全体 にわたり,網膜照度が小さくなるにつれて,波長弁別閾は 大きくなる.これは,色の違いを感じにくくなっているこ とを意味する.

論文 [8] 中で, Ingling と Tsou は波長弁別閾を次式 (1) で定義している.

$$\Delta W(\lambda) \equiv \frac{1}{\sqrt{\left(o_{rg}(\lambda)\right)^2 + \left(o_{yb}(\lambda)\right)^2}} \tag{1}$$

 $o_{rg}(\lambda), o_{yb}(\lambda)$ はそれぞれ,赤-緑,黄-青の反対色表色系に おける分光感度である.文献中で,反対色表色系で表され る分光感度は,視細胞のL,M,そして,S錐体の分光感 度を線形変換することで得られる.

$$v(\lambda) = k_{v,l}C_l(\lambda) + k_{v,m}C_m(\lambda) + k_{v,s}C_s(\lambda)$$
(2)

$$o_{rg}(\lambda) = k_{rg,l}C_l(\lambda) + k_{rg,m}C_m(\lambda) + k_{rg,s}C_s(\lambda) \quad (3)$$

$$o_{yb}(\lambda) = k_{yb,l}C_l(\lambda) + k_{yb,m}C_m(\lambda) + k_{yb,s}C_s(\lambda) \quad (4)$$

ここで, $v(\lambda)$ は反対色表色系で表される明度の分光感度で ある. $C_l(\lambda)$, $C_m(\lambda)$, $C_s(\lambda)$ は,それぞれ,L,M,そし て,S錐体の分光感度である. $k_{v,l}$, $k_{v,m}$, $k_{v,s}$ は,それぞ れ,明度の分光感度を得るために,各錐体の分光感度にか かる重み, $k_{rg,l}$, $k_{rg,m}$, $k_{rg,s}$ は,それぞれ,赤-緑の反対 色分光感度を得るために,各錐体の分光感度にかかる重み, そして, $k_{yb,l}$, $k_{yb,m}$, $k_{yb,s}$ は黄-青の反対色分光感度を得 るために,各錐体の分光感度にかかる重みである.

2.3 二段階モデル

また,心理物理学分野において Ingling と Tsou は二段 階モデル [8] を提案した.これによると,瞳孔から眼球に 入った光は,脳で知覚されるまでに次の二段階の処理が行

図 4 提案するモデル

われる.まず,第一段階目では,網膜の受光体細胞に到達 した光は LMS 表色系で処理される.ここで,各錐体の働 きにより光は電気信号に変換される.二段階目は反対色表 色系で処理される.ここで,電気信号はさらに,赤と緑, 黄と青,そして,黒と白の応答に変換される.

提案手法はこの二段階モデルを利用する.これは,次の 二つの理由からである.すなわち,二段階モデルが人の視 覚に基づいているということ,そして,後で述べるように, 提案手法で用いる波長弁別閾を満たす重みを設定できるモ デルだからである.

3. 提案手法

提案手法は色知覚の二段階モデルに基づく [8]. しかし, 文献 [8] 中の二段階モデルは明所視での処理を表現するた めのモデルであり,桿体の影響を考慮していない. そこで, 提案するモデルでは,さらに,桿体の影響を考慮する. 具 体的には,錐体からの信号に,さらに桿体からの信号を加 えて反対色系に変換する (図 4).

光の分光分布から RGB 値を得るには, 視細胞がそれぞ れの波長成分に対して, どの程度感度を持つか表した, 分 光感度が用いられる.提案手法では,周囲が暗い環境での 波長弁別閾をもとに得られた分光感度を使用し, そのとき の色の見えを表現する.この分光感度を得るには波長弁別 閾の計測データと L, M, S 錐体, そして,桿体の分光感度 を用いて,最適化問題を解く.具体的には,各分光感度を 調節し,波長弁別閾を満たすような重みを求める.得られ た重みから分光感度を求め,それを利用して周囲が暗い状 況での三刺激値を決定する.三刺激値をディスプレイに表 示するため, RGB 値に変換するには,視覚状態の差を考 IPSJ SIG Technical Report

慮し,そして,輝度ダイナミックレンジの調整を行う.こ の二つを考慮することで,シーンを撮影した状況での見え 方をディスプレイに表示する.

提案手法が想定する入力画像は分光分布を記録した画像 であり,実世界と同じ輝度値を記録しているものとする. 提案手法を適用する場合,ディスプレイを見る者は周囲の 明るさに順応しているものと仮定する.

3.1 重みの決定

ここでは,周囲が暗い環境での波長弁別閾を満たす錐体, 桿体の分光感度を決定する重みの設定方法を説明する.こ の重みを決定するため,式(2)~式(4)を基に,次式を導入 する.

$$\begin{bmatrix} v(\lambda) \\ o_{rg}(\lambda) \\ o_{yb}(\lambda) \end{bmatrix} = \mathbf{M} \begin{bmatrix} C_l(\lambda) \\ C_m(\lambda) \\ C_s(\lambda) \\ C_r(\lambda) \end{bmatrix}$$
(5)

ここで,

$$\mathbf{M} = \begin{bmatrix} k_{v,l} & k_{v,m} & k_{v,s} & k_{v,r} \\ k_{rg,l} & k_{rg,m} & k_{rg,s} & k_{rg,r} \\ k_{yb,l} & k_{yb,m} & k_{yb,s} & k_{yb,r} \end{bmatrix}$$
(6)

である. 式 (5) において, $v(\lambda)$, $o_{rg}(\lambda)$, $o_{by}(\lambda)$ はそれぞ れ,順応状態での明度,赤-緑の反対色,黄-青の反対色の 分光感度である. $C_l(\lambda)$, $C_m(\lambda)$, $C_s(\lambda)$, そして, $C_r(\lambda)$ はそれぞれ, L, M, S 錐体, そして, 桿体の分光感度であ る. 錐体の分光感度は文献 [8] で示されているもの, 桿体 の分光感度は暗所視被視感度 [18] を用いた. M は各視細 胞に掛かる重みで構成される.重み $k_{v,l}$, $k_{v,m}$, $k_{v,s}$, $k_{v,r}$ を用いることで、L, M, S 錐体, そして, 桿体の分光感度 から,明度の分光感度 $v(\lambda)$ を得る.ただし,提案手法で は, $k_{v,l} = 0.6$, $k_{v,m} = 0.4$, $k_{v,s} = 0.0$, $k_{v,r} = 1.0$ とした. $k_{v,l}, k_{v,m}, k_{v,s}$, については, 文献 [8] に基づいている. また, k_{v,r} の設定については, 周囲が暗い環境では桿体も 働くので 1.0 に設定した. これらの重みの設定は, 我々の 調査によると、錐体と桿体の両方が働いているときの明度 知覚は厳密に定義されていないためである. k_{rg,l}, k_{rg,m}, *k_{rg,s}*, *k_{rg,r}*を用いることで, L, M, S 錐体, 桿体の分光 感度から、赤-緑の反対色分光感度 $o_{rg}(\lambda)$ を得る. $k_{yb,l}$, $k_{yb,m}$, $k_{yb,s}$, $k_{yb,r}$ を用いることで, L, M, S 錐体, 桿体 の分光感度から、黄-青の反対色分光感度 $o_{by}(\lambda)$ を得る.

これらの重みは,図3の網膜照度が0.85[Td]のときの波 長弁別閾を基に最適化手法によって求める.具体的には, 波長弁別閾のデータ(図3,0.85[Td]),式(1),式(5),そ して,式(6)を用い,データとの二乗誤差を最小にする重 みを求める.これは,次式で表される.

$$\min ||\Delta W(\lambda)_{I_m} - \Delta W(\lambda)||^2 \tag{7}$$

s. t.
$$k_{rg,lI_m} > 0$$
, $k_{rg,mI_m} < 0$, $k_{rg,sI_m} > 0$, $k_{rg,sI_r} > 0$
 $k_{yb,lI_m} > 0$, $k_{yb,mI_m} > 0$, $k_{yb,sI_m} < 0$, $k_{yb,sI_r} > 0$
 $(I_m = 0.85)$

 $\Delta W(\lambda)_{I_m}$ が計測されたデータのの波長弁別閾である.添 え字の I_m は、順応状態が0.85[Td]の場合であることを意 味する.各重みの制約条件は、反対色の関係を保つために 用いる.すなわち、赤-緑の反対色では、赤の分光感度がL とS錐体の分光感度が混ざったもの、緑の分光感度がM錐 体の分光感度に対応する.このとき、赤が正の応答を、緑 が負の応答をする.同様に、黄-青の反対色では、黄の分光 感度がLとM錐体の分光感度が混ざったもの、青の分光 感度がS錐体の分光感度に対応する.このとき、黄が正の 応答を、青が負の応答をする.これら、反対色の関係を満 たすための制約条件である.この最適化問題は非線形最適 化問題であり、遺伝的アルゴリズムを用いて求めた.これ を解くことで、以下の行列式を得る.

$$\mathbf{M} = \begin{bmatrix} 0.60 & 0.40 & 0.00 & 1.00\\ 0.52 & -0.62 & 0.16 & 0.24\\ 0.11 & 0.04 & -0.05 & 0.04 \end{bmatrix}$$
(8)

この重みを適用することで,式(5)より,周囲が暗い状況 での波長弁別閾を満たす分光感度を得る.この分光感度を 次式に適用し,三刺激値*V*,*O_{rg},<i>O_{yb}*を得る.

$$Z = \int_{\Omega} S(\lambda) z(\lambda) d\lambda, \tag{9}$$

ここで, Ω は可視光域の波長であり, $Z \in \{V, O_{rg}, O_{yb}\}$, $z(\lambda) \in \{v(\lambda), o_{rg}(\lambda), o_{yb}(\lambda)\}$ である. $S(\lambda)$ はそれぞれの 画素での分光分布である.

3.2 デバイス表示のための変換

三刺激値を計算した後、画像をディスプレイに表示する ためには次の二つを考慮する必要がある.すなわち,視覚 状態の違いと輝度ダイナミックレンジの調整である.視覚 状態の違いは、シーンが撮影されたときの視覚状態と、そ の画像が表示されるときの視覚状態の違いである.例え ば、明るいシーンが撮影され、それを蛍光灯下のように明 るい屋内で見る場合では、いずれの状況でも、ともに明所 視の状態にあり、視覚状態に違いはない.しかし、月夜の ような暗いシーンを撮影し、それを蛍光灯下の明るい屋内 で見る場合では、前者は暗所視、後者は明所視の状態にあ り、視覚状態に差が生じる.この違いを考慮して表示しな ければ、自然な印象を得ることは難しい.

本論文では、ディスプレイの視聴環境下で、視聴者は明 所視にあるものと仮定する.この仮定を用いて、得られた 三刺激値 V, O_{rg}, O_{yb} を RGB 表色系に変換する.これ には、文献 [13] と同様な考え方で行う.すなわち、反対色 表色系から LMS 表色系を経て、さらに RGB 表色系に変 換する.反対色表色系から LMS 表色系に値を変換すると

図 5 計測された波長弁別閾 [8](実線) と最適化問題を解くことで得 られた波長弁別閾 (破線)

きには,文献 [13] 中で使われている変換行列を用いる. さらに, RGB 値に変換するにはディスプレイで出力される RGB の分光分布を考慮する. RGB の分光分布と LMS 分 光感度を用い, LMS 表色系から最適な RGB 表色系への変 換行列を求める. このとき, RGB 値に,負の値が得られ る場合があるが,その場合,提案手法では,値を0に置き 換えた.

最後に,輝度ダイナミックの調整を行う.ディスプレイ に表示できる輝度ダイナミックレンジは,実世界のそれよ りも小さい.そのため,実世界に匹敵する輝度ダイナミッ クレンジを保存している画像をディスプレイに表示するた めには,輝度ダイナミックレンジの調整を行う必要がある. 輝度ダイナミックレンジの調整には,既存の手法 [6] を用 いた.

4. 結果と考察

まず、提案手法で、どの程度波長弁別閾が再現できてい るかを示す.図5に計測された波長弁別閾と、最適化問題 を解いて得られた波長弁別閾を示す.図5の実線で示した グラフが計測された波長弁別閾 [8],破線で示したグラフ が最適化問題を解くことで得られた波長弁別閾である.全 体的に見て、ピーク位置の波長は近い.しかし、最小、最 大の波長弁別閾は外れている. これより, 次のことが言え る. まず, 波長 460[nm] 付近 (水色), 600[nm] 付近 (オレン ジ色)では、計測された波長弁別閾が最適化問題を解くこ とで得られた波長弁別閾よりも小さい. これは、この付近 の色は表示できる色が少なくなっていることを意味する. また, 逆に, 波長 520[nm] 付近 (黄緑色) では, 計測され た波長弁別閾が近似による波長弁別閾よりも大きい. これ は、この付近の色は表示できる色が増えていることを意味 する.これ以降の結果、図6、図7は、図5緑線に見られ る波長弁別閾を示す重みを用いて得られた結果である.

図6に既存手法と提案手法による表示結果を示す. 星空の下での住宅街を撮影したシーンに手法を適用した結果である. 画像は HDR 画像として撮影したものを文献 [19] を基に分光画像に変換した. 図6(a) が代表的な手法である Kirk らによる手法 [13] による表示結果,図6(b) が提案手法による表示結果である. 提案手法は既存手法よりも青みが弱い結果が得られる.

図7に提案手法を用いて,夜の雰囲気を追加した結果を 示す. HDR 画像は文献 [20] によって作成されたものであ る.図7(a)が日中に撮影されたシーンであり,図7(b)が (a)に提案手法を適用した結果である.全体が青みがかか り,夜の雰囲気を与える画像になっている.

5. まとめと今後の課題

本論文では、周囲が暗い環境での色の見えを考慮した トーンリプロダクション手法を提案した.本手法は以下の 2点の特徴を持つ.一つは、生理学的な知覚モデルに基づ いたモデルである.提案手法では、既存の色知覚モデルで ある二段階モデルに、さらに、視細胞の桿体からの影響を 考慮した.もう一つは、実際の色の見え方を測定したデー タを用いて表示する色を決定する.既存の手法は、視細胞 における桿体の応答量を基にしていた.しかしながら、視 細胞の応答量と実際の色の見えの関係は、未だ明らかに なっていない.これに対し、提案手法は、色の見えを測定 したデータを用いることで、周囲が暗い状況での色の見え を表現する.これによって、既存手法よりも青みが抑えら れた表示ができる.また、提案手法を明るいシーンに適用 することで、夜の暗い雰囲気を与える表示ができることを 示した.

今後の課題として,以下が挙げられる.まず,その他の 視覚特性表現の追加である.例えば,暗所視の状態になっ たとき,シーンが青みがかって見えるだけではなく,視力 が低下する.この視力の低下を再現することで,より,周 囲環境にあった表示が可能になると考えられる.また,現 在は画像全体について同様に処理を行っている.しかし, 人がシーンを見たとき,シーンの全体だけではなく,着目 する場所ごとにも順応することが知られている.そこで, 画像の場所ごとに異なる処理を用い,部分的な順応による 影響を考慮することが挙げられる.そのためには,明るさ に応じた処理に拡張する必要があり,これも今後の課題で ある.

参考文献

- Ferwerda, J. A., Pattanaik, S. N., Shirley, P. and Greenberg, D. P.: A model of visual adaptation for realistic image synthesis, *SIGGRAPH'96*, pp. 249–258 (1996).
- [2] Debevec, P. E. and Malik, J.: Recovering high dynamic range radiance maps from photographs, *SIGGRAPH* '97, pp. 369–378 (1997).

(a) Kirkらによる手法[13]を適用した結果

(b) 提案手法を適用した結果

図 6 既存手法との比較

(a) 日中のシーン

(b) 提案手法により夜の 雰囲気を追加した結果

- [3] Reinhard, E., Ward, G., Debevec, P., Pattanaik, S., Heidrich, W. and Myszkowski, K.: *High Dynamic Range Imaging 2nd edition*, Morgan Kaufmann Publishers (2010).
- [4] Fairchild, M. D. and Johnson, G. M.: Meet iCAM: A next-generation color appearance model, *IS&TSID 10* th Color Imaging Conference, pp. 33–38 (2002).
- [5] Reinhard, E.: Tone Reproduction and Color Appearance Modeling: Two Sides of the Same Coin?, 19th Color and Imaging Conference, pp. 171–176 (2011).
- [6] Reinhard, E., Stark, M., Shirley, P. and Ferwerda, J.: Photographic tone reproduction for digital images, *SIG-GRAPH '02*, pp. 267–276 (2002).
- [7] the Vincent Van Gogh Gallery: http://www.vangoghgallery.com/painting/ starrynight.html (2015).
- [8] Ingling, C. R. and Tsou, B. H.-P.: Orthogonal combination of the three visual channels, *Vision Research*, Vol. 17, pp. 1075–1082 (1978).
- [9] Ferwerda, J. A.: Elements of Early Vision for Computer Graphics, *IEEE Comput. Graph. Appl.*, Vol. 21, No. 5, pp. 22–33 (2001).
- [10] Cao, D., Pokorny, J., Smith, V. C. and Zele2, A. J.: Rod Contributions to Color Perception: Linear with Rod Contrast, *Vision Research*, Vol. 48, No. 26, pp. 2586– 2592 (2008).
- [11] Pattanaik, S. N., Ferwerda, J. A., Fairchild, M. D. and

Greenberg, D. P.: A multiscale model of adaptation and spatial vision for realistic image display, pp. 287–298 (on-line), DOI: 10.1145/280814.280922 (1998).

- [12] Khan, S. M. and Pattanaik, S. N.: Modelling blue shift in moonlit scenes using rod cone interaction, *Journal of Vision*, Vol. 4 (2004).
- [13] Kirk, A. G. and O'Brien, J. F.: Perceptually based tone mapping for low-light conditions, *SIGGRAPH '11*, pp. 42:1–42:10 (2011).
- [14] Wanat, R. and Mantiuk, R. K.: Simulating and Compensating Changes in Appearance Between Day and Night Vision, ACM Trans. Graph., Vol. 33, No. 4, pp. 147:1– 147:12 (online), DOI: 10.1145/2601097.2601150 (2014).
- [15] Mikamo, M., Raytchev, B., Tamaki, T. and Kaneda, K.: A Tone Reproduction Operator for All Luminance Ranges Considering Human Color Perception, *Eurographics 2014 - Short Papers*, The Eurographics Association (2014).
- [16] 三鴨道弘, Raytchev, B., 玉木徹, 金田和文:広範囲の 輝度変化に伴う色知覚を考慮したトーンリプロダクショ ン手法, 情報処理学会グラフィクスと CAD 研究会 第 158 回研究発表会, pp. 1–8 (2015).
- [17] McCree, K. J.: Small-field Tritanopia and the Effects of Voluntary Fixation, *Optica Acta*, Vol. 7, pp. 317–323 (1960).
- [18] munsell color science laboratory: USEFUL COLOR DATA, http://www.cis.rit.edu/mcsl/online/cie.php (2014).
- [19] Smits, B.: An RGB-to-spectrum Conversion for Reflectances, J. Graph. Tools, Vol. 4, No. 4, pp. 11–22 (1999).
- [20] Fairchild, M. D.: The HDR Photographic Survey, MDF Publications (2008).