Vol.35 No.9

Regular Paper

Transactions of Information Processing Society of Japan

Sep. 1994

Recursive Types in a Calculus of Objects

VASCO THUDICHUM VASCONCELOS

We introduce a name-passing calculus featuring objects as guarded labelled-sums, each summand
representing a method, and asynchronous labelled messages selecting a branch in the sum. A
decidable type assignment system allows to statically verify whether all possible communications in
a given program are secure, in the precise sense that no object will ever receive a message for which
it does not have an appropriate method. Then we present a recursive type system based on that of
Cardone and Coppo for the A-calculus, and of Vasconcelos and Honda for the polyadic z-calculus.
The new system extends the class of typable terms while preserving basic syntactical properties of the
simple type system, including subject-reduction and existence and computability of principal typings.

Introduction

Object technologies are a promising paradigm
towards the management of complex, concur-
rent, distributed and open-ended systems. Types
are an acknowledged tool to describe protocols
of communication, and to isolate classes of
programs guaranteed not to suffer from protocol
errors at runtime. The calculus of objects brings
these two worlds together in an elegant
implicitly-typed name-passing calculus.

Inspired in Milner’s polyadic z-calculus,®
Honda’s y-calculus®” and Hewitt’s actor
model,” we developed a calculus intended to
capture basic features present in most notions of
objects, and to give precise (operational) seman-
tics and type inference systems to object-oriented
concurrent programming languages.'¥ The cal-
culus is built along the trends of name-passing
caleuli, by introducing labelled-sums represent-
ing methods, and asynchronous labelled mes-
sages selecting a branch in a sum. A type system
assigns types to the free names in (untyped)
terms, specifying in some sense the communica-
tion protocol of the term, and ensuring that
objects in well-typed programs do not receive
messages for which they do not possess an
appropriate method.

The present paper consolidates the presenta-
tion of the calculus of objects,'® and introduces
an extension to the basic type system to accom-
modate recursive types. Recursive types, of the
form pt.q for ¢ a type-variable and @ an arbi-

T Department of Computer Science, Keio University,
Japan

1828

trary type, are interpreted as (possibly infinite)
frees; a new type inference rule allows to
replace a type by another representing the same
tree. This small extension effectively enlarges
the class of typable terms while preserving basic
syntactic properties including subject-reduction.

Notions of typing subsumption and principal
typings are achieved via constraints on the types
that may substitute a given type-variable, in the
form of Ohori’s kinds.'® Kindings, assigning
kinds to type-variables, are required to be acy-
clic in the simple type system. Recursive kinds
(implicitly) arise as cycles in kindings, thus
making it unnecessary to introduce new con-
structors to describe recursive kinds. The exis-
tence and computability of principal typings is
ensured by an algorithm capable of unifying
kinded recursive types in the form of kinded
infinite trees.

The outline of the paper is as follows. Section
I introduces the calculus of objects, Section 2
presents the simple typing assignment system,
and Section 3 studies the notion of principal
typings. Then, Section 4 introduces the notion
of recursive types and the recursive typing
assignment system, and Section 5 deals with
principal typings in the recursive setting. The
last section summarizes the results and points
out directions for further work.

1. The Calculus of Objects

In this section we introduce the calculus of
objects, its syntax and semantics. The exposition
is brief since the behaviour of programs is not
the main topic of the paper.

Vol.35 No.9

Syntax. Terms are built from an infinite set N
of names and a set L of labels, by means of the
five constructors below. We use a, b,--- and also
v, X,*++ to range over N, and [/, /’,--- to range
over L ; finite sequences of names are denoted
¥, X,--+, with ¢ representing the empty sequence.
Definition 1.1 (SyNTAX) The set P of ferms
is inductively defined by the grammar
P..=a 4 [: i/"|a D[ll: (fl)Pl&"'
&l (X)) P | P, Q| vxP|!P
for n>=0, where P, Q,--- range over P. Names
in each X; for i=1,---, n, as well as labels £,---,
l,, are assumed to be pairwise distinct.

Terms of the from a >{l;: (X)) P& &l
(%) P,] are intended to describe objects located
at name a, and possessing a (unordered) collec-
tion of methods, each labelled with a distinct
label /.. For each i, the sequence of names X;
represents the formal parameters of the method,
whose body is an arbitrary term P;. Messages
are terms of the form a < /: 7 and select a
method labelled with / in some object located at
name . Names in ¥ constitute the actual
contents of the message. The interaction
between a message a </ /: ¥ and an object a [>
[4: (%) P& &L, : (%) Py is the term P; with
names in X, replaced by those in ¥, provided
that / labels some method in the object, and that
the lengths of X, and ¥ match.

Concurrent composition P, Q denotes the

term composed of terms P and Q running in
parallel. Terms of the form yxP allow to create
a new name x and use it in a scope restricted to
term P. Replication provides for unbounded
computation power. A term of the form !P
intuitively represents as many copies of P as
needed, running in parallel.
Semantics. Methods [: (X)P, and scope
restriction yxP, are the binding operators of the
calculus, binding free occurrences of X, and x,
in the respective bodies P. The set of free
names in a term is defined accordingly. When
X and Z are two sequences of names of the same
length, and the names in X are pairwise distinct,
P{z/x} denotes the simultaneous substitution
of the free occurrences of names in X by those in
zZ.

Equivalence of terms over concrete syntax is
captured by the structural congruence relation
= (see Ref 14) for a definition). Message
application constitutes the basic communication

Recursive Types in a Calculus of Objects 1829

mechanism of the calculus, and represents the
reception of a message by an object, followed by
the selection of the appropriate method, and the
launching of its body with the formal parameters
replaced by the message contents.

Definition 1.2 (MESSAGE APPLICATION) Let
C=1l;: ¥ be the communication of some mes-
sage, and let M=[}: (%) P& &L, : (X,) P,]
be a collection of methods. The application of
C to M, denoted by M @ C, is the term P{ ¥/
X.}, whenever 1 <i<n and the lengths of ¥ and
X; match.

The following definition of reduction relies on
fact that each term in P can be transformed into
a structural congruent term of the form vxP,
where P denotes concurrent composition of
messages and objects (replicated or not).
Definition 1.3 (REDUCTION) One-step reduc-
tion, denoted by P — Q, is the smallest relation
generated by the following rules.

P=P P>Q Q=0
P'— Q

Comm vi(al> M,a< C,Q)
-y (M e C, Q)

STRUCT

2. Simple Typing Assignment

In this section we introduce the notion of
(simple) types for names and an inference sys-
tem assigning typings (that is, sets of name-type
pairs) to terms. We briefly review some of the
properties of the simple typing assignment sys-
tem.

Types. Types are built from an infinite set ¥ of
type-variables and the set L of labels introduced
in the previous section, by means of a single
constructor.

Definition 2.1 (SiMpLE Types) The set T of
types is inductively defined by the grammar

ai=t|[L: @y i @n)

where 4,---, [, are pairwise distinct labels. We
use t, t,--+ to range over V ; a, 8,+- to range
over T ; and @, f3,--+ to range over sequences of
types in T*.

A record of the form [4: @i, b: @n] is
intended to denote some collection of names
identifying objects containing #» methods
labelled with 4,---, [,, and whose arguments of
method I, belong to types @; Similarly to
methods in terms, records are unordered, so that
[1: @ 1: f] and [/': B,1: &) represent the
same type.

1830 Transactions of Information Processing Society of Japan

Simple typing assignment. Type assignments
are formulas x: @, for x a name and ¢ a type,
where x is called the subject and « the predicate
of the assignment. While we assign types to
names, to terms we assign typings. Typings,
denoted by I, 4,-+-, are sets of type assignments
of the form {x;: a1, X, : an}, where no two
assignments have the same name as subject. If ¥
=X1"* X, 18 a sequence of distinct names, and &
=a1° -y a sequence of types, we often write X :
@ for the typing {x:: a1,-, X»: @}, and "+ % :
@ for ['U X : @, provided that names in X are
not subjects in [

MsG a<bL:vPp{V:ay,a:[h: @, b a.l}

Sep. 1994

Definition 2.2 (TyprING COMPATIBILITY) Typ-
ings I" and A are compatible, denoted by 1<,
if g=p for all x: ¢=I" and x: BE4.

Typing assignment statements are formulas P
P [, for any term P and typing I'. We write
FoPP " if the statement PP [is provable
using the axioms and the rules of system TAj
below. Whenever - PWI", we say P is typa-
ble, and call I" a well-typing for P.
Definition 2.3 (TYPING ASSIGNMENT SYSTEM
TAp) TAy is defined by the following axioms
and rules.

(n>1)

({a : [11 . C?l,'"a ln : &n]}xna szn, lgl»1£n9 nzo)

PlPFl'XHi dl"’Pn’Fn'fn: C?n

O DTk () P&y () P a: [h: Gy G UL U—UT,
PrI-x: a I Je) V| -

Scorp PP Comp P.OpTUd =4
Id Z8 Py

REPL Py T WEAK Py Tixia

We conclude the section with a brief overview
of some important properties of TA;;. The free
names in a term constitute the interaction points
of the term, and the types of these names
describe, in some sense, the interface to the term.
Well-typings assign types to all free names in
terms and, whenever a term is typable, there is a
derivation assigning types to exactly the free
names in the term.

Subject-reduction ensures that a typing for a
term does not change as the term is reduced. As
a corollary, typable terms do not run into
runtime errors. We say a term P contains a
possible runtime error if it can be reduced to a
term of the form vX(a> M,a < C, Q) and
the message application M @ C is not defined.
Finally, the property of decidability of typing
inference and computability of typings is left to
the next section.

3. Principal Typings

We would like our type system to verify the
two properties below (cf. Ref. 1)).
i. Decidability of the typing inference
problem PP " ?: given a term P and
a typing I, decide whether — PP .
ii. Computability of the typing existence
problem |~ PP ?: given a term P,

decide whether there is a typing I'
(computable from P) such that - Pp
I.

The solution to both problems is usually
obtained via the notions of subsumption and
principal typings (cf. Ref.9)). 1In general, a
typing I" subsumes I'" if every term with typing
I' also has typing I""; a principal typing for a
term P is a well-typing for P that subsumes all
other typings for P. If a type system has a
computable notion of principal typings and
subsumption is decidable, then the decidability
of typing inference, — PP I" ?, reduces to com-
pute the principal typing for P and verifying if it
subsumes /. Computability of typing existence,
= PP 7, amounts to compute the principal
typing for P, since this is a well-typing for P.

In A-calculus, subsumption is often connected
with substitution of type-variables for types.
When records are a form of types, subsumption
also takes into account the number and nature of
labels in records. Unfortunately, system TAj
possess no simple notion of subsumption. The
reason seems to lie in that we cannot assign
“closed” records to names that never occur at
object locations, for we cannot know all sorts of
messages objects associated with those names
may receive (see Ref. 14) for a concrete exam-

Vol.35 No.9

ple). Nevertheless, subsumption and principal
typings may be recovered with a notion of con-
straints on the types that may substitute a given
type-variable, by using Ohori’s kinds.!®

Kinds and kind assignment. Intuitively, kinds
describe constraints on the substitution of type-
variables: a kind of the form </i: @i, In:
d»> denotes the subset of record types contain-
ing at least the components h: @i, ", lr: @n.
In particular, unconstrained (completely free)
type-variables have the empty kind .
Definition 3.1 (KiNnDs) The set K of kinds is
given by all expressions of the form

i @y b @n

where 4,---, [, are pairwise distinct labels in L,
and @y,--+, @, are sequences of types in T*, for n
>0. We use k, k’,--+ to range over K.

K =~ [11: &71,
K-t: <l12 a1, ln: s> =
Kinded typing assignment. Kinded typing

assignments are formulas K — PP I, for any
acyclic kinding K, term P, and typing I". We
write K +, PP I" if the statement PP I’ is
provable from kinding K using the axioms and
rules of system TA, below. When K is the
empty kinding, we simply write -, PP 1.
Definition 3.3 (KINDED TYPING ASSIGNMENT
sysTeM TA,) TA, is defined by the axioms in
the Definition 3.2 of kind assignment to types, by
the rules in the Definition 2.3 of TAy with
formulas PP I replaced by K — PP [, and by
the MsG,-rule below.
Ki-opp @

K-a</l: ?p{v: @, a: B}

The following result shows that TA, is correct
with respect to TAq.
Theorem 3.4 Terms in P are typable in TA,
if and only if they are typable in TAy.

MSsG,

Recursive Types in a Calculus of Objects

K[k @n b @l <h: ao
Kra<l:vw{a:{h: Gioib: @), 0 @)
K+ l» <113 ﬁ1>
KrHa<l: vw{la:t, v: ai}

K+ Py’

(I'=4)

(&)Suppose that + y PP 1. Replace,

throughout the deduction of ~y PP I, occur-

1831

Kind assignments are formulas ¢: k, for ¢ a
type-variable and k a kind. Kindings, denoted
by K, K’,---, are sets of kind assignments where
no two assignments have the same type-variable
as subject. We denote by dom K the set of
subjects in K. A kinding is cyclic if it contains
kind assignments f: ky, >+, t,: kn such that #.4
occurs in k;, and # occurs in k,, for i=1,---, n
and n>=1. Acyclic kindings ensure that the
replacement of type-variables by types yields
finite types.

Definition 3.2 (KIND ASSIGNMENT TO TYPES)
A type a has a kind k under a kinding K, if @
P k can be deduced from K by one of the
following axioms. In this case we write K +..a

» k.

*t ln: @na”'] | 4 <11: anes ln: an>
t P b odn b @w
PrOOF : (=)Suppose that K —, PP I. We

build a substitution s from K, and show that
PP sl’. Without loss of generality, let 4,--,
t, be the subjects of K. Define a system of
equations S with unknowns #,---, #;, and equa-
tions of the form #=[l,: &y, b: & for
each kind assignment #;: <L, : @i,y byt @a

in K. Since K is acyclic, standard arguments
yield that S has a unique solution in I". Let
(B1,'-+, Bn) be the solution of S, and define a
substitution s : ¥—1T by putting st;= 3, if 1 <i
<n, and st=1 otherwise.

Noticing that typing compatibility is preserv-
ed by substitution, replace throughout the deduc-
tion of K +, PP I, occurrences of the MSGp-
rule, formulas, and side-conditions below on the
left by the Msg-axiom, formulas, and side-
conditions on the right, to obtain a deduction of
F(]P’SF.

all: vW{a: s[h: @ b @7 sa)
adl: vW{a: st, ¥: sa}
PysI’
(s s4)

rences of the MsG-axiom below on the left by the
deduction on the right, to obtain a deduction of

1832 Transactions of Information Processing Society of Japan

. Ppr.

a<lhb: vp{a: [h: an- b @, 7: a)

Subsumption and principal kinded typings. A
substitution on types is a mapping s: V —> T
from type-variables to types. Such a substitution
can be easily extended to types, typings and
kinds. Following Ohori,'® we say a kinded
substitution is a pair (K, s) composed of a
kinding K and a substitution s. A kinded
substitution (K’, s) respects a kinding K if K’
st sk, for all t: kK. A kinded typing
is a pair (K, I') composed of a kinding X and
a typing I'. We say (K, I') subsumes (K’, 4)
if dom K Sdom K’, and there is a substitution s
such that (K”, s) respects K and sI"S /.
Lemma 3.5 If K+ ,PW»I and (K, I") sub-
sumes (K’, A4), then K't—, Pp 4.
Definition 3.6 (PriNCIPAL TYPINGS)
ed typing (K, I") is principal for P if

i. K&,PpI, and

ii. if K'~, PP 4, then (K, ") subsumes

(K, 4).

It easy to see that principal typings, when they
exist are unique up to renaming of type-
variables, and contain exactly the free names in
the process. The following result if from Ref.
14).

Theorem 3.7 (Existence and computability of
principal typings) If P is typable in TA,
there exists a principal kinded typing for P. It
can be effectively computed.

Typing inference. Computability of principal
kinded typings is ensured by the existence of a
unification algorithm that computes the most
general unifier of a kinded set of equations.!?

A kinded set of equations is a pair (K, E)
composed of a kinding K, and of a set of equa-
tions E of the form a=p, for @ and g types in
T. We say a kinded substitution (K’,s) is a
unifier of (K, E) if (K’, s) respects K and sg=
5B, for all g=BE E. A kinded substitution (X,
§) is more general than (K’,r) if there is a
substitution # such that r=us and (K’, u)
respects K.

We proposed an efficient algorithm to extract
the principal kinded typing of a given term.!®
The algorithm follows the construction tree of
the term, annotating constraints on names (in

A kind-

Sep. 1994

[4: @y by
ip{a: [L:

dn]> <he av
@nl, Vi oay}

oy b

the form of type equations) and on type-
variables (in the form of kind assignments), thus
producing a kinded set of equations. This
kinded set of equations is then submitted to a
kinded unification algorithm. The inference
algorithm is based on that of Wand for the
simply typed A-calculus.’® and that of Vascon-
celos and Honda for the polyadic 7-calculus.'®

4. Recursive Types and Recursive Typing
Assignment

There are numerous meaningful and useful
terms that cannot be typed in the simple type
system described so far. Terms representing
natural numbers, lists and trees are examples of
a more general class of terms representing recur-
sive data-structures. Lists, for example, can be
built from two basic objects, Nil and Cons,
capable of receiving one single val message. To
such a message, Nil objects reply nil (short for
nil : ¢), stating “I am a Nil object,” and Cons
objects reply cons : f5, stating “I am a Cons
object, and here is my first and second elements.”

Nil(DY 1 > [val : (r)r < nil
Cons (I £)% 1 >[val: (r)r < cons: fs]

Actual lists can be built from these two
objects by appropriately hiding the links
between the Cons and the Nil cells involved. So,
for example, a list of two elements @ and b,
located at name /, can be written as the term
vs(Cons(/ as), vs’(Cons(s bs’), Nil(s"))).

Conventional usage of lists forces the type of
a Cons cell and that of its second element to
coincide. Given a term Cons(/ f s), it is easy to
see that no typing can assign the same (finite)
type to names /" and s, for we would need a type
@ such that a=[val : [cons : fa,--]], for some
type 5.

Recursive types. We can use equations
between type expressions whose solutions are
infinite trees. For example, to an equation of the
form a=[val : [cons : ta, nil : &£]] corresponds
the tree depicted in Fig. 1. Then we introduce a
special notation, ut.a, to denote the solution of
the equation ¢=¢, where 7 is a type-variable and
@ an arbitrary type. Intuitively, a type x¢.¢ may

Vol.35 No.9

val

cons - nil
< val
cons - _nil
t

Fig. 1 The infinite tree associated with the equation a=
[val: [cons : ta, nil : £]].

be considered as a finite notation for the pos-
sibly infinite tree that solves the equation t=ga.
Definition 4.1 (RECURSIVE TYPES) The set of
recursive types T, is defined by adding to the
syntax of simple types in Definition 2.1, a pro-
duction uf.a, for any type-variable 7 in ¥ and
any type ¢ in T,.

Recursive types as infinite trees. Assume that
the set L of labels is totally ordered and
equipped with a ranking function rank : L—
where /' is the set of natural numbers. We build
the set of tree labels—a ranked alphabet F—as
the set of strings of pairwise distinct labels in L,
such that 4+--,,&F only if f<-+-<[,, and define
the rank of a tree-label 4---}, as X%, rank (/)
for n=0. A type-variable in V is a symbol of
rank 0.

Following Courcelle®, a tree over a ranked
alphabet FJ V is defined as a partial mapping,
o: N¥>FUV, from the set of strings over
positive integers /, into tree-labels in F or
type-variables in ¥V, satisfying a tree domain
condition.

Strings of positive integers describe paths in a
tree ; the nodes of the tree being either type-
variables or strings of pairwise distinct labels
representing records. If p1,+, o, are n trees, n>
0, and the rank of the tree-label f&F is n, we
write f (po1,--+, pn) for the tree o such that

Recursive Types in a Calculus of Objects 1833

val
v|al cons - nil
val cons - nil t val
| /N !
4 1 1 L 1

Fig.2 The first approximations of the solution of the
equation a=[val: cons : ta, nil : ¢]].
ole) =f for e the empty string of
. : positive integers, and
o(ij)=p:(j) for i=1,--, n and jent

Let T, be the set of all trees over FUV.
Introducing a new label 1, we can define a
partial ordering of 7. by putting

i. LEp for all trees p, and

i. flor0)T f (ot 0n)if 00T 05+, on

L o5 for all n=0.

It is easy to see that 7., is a ¢.p.o. and thus any
infinite tree can be seen as the least upper bound
of a denumerable sequence of finite approxima-
tions. For example, the infinite tree associated
with equation a=[val: [cons: ta, nil : £]] is
the least upper bound of the denumerable
increasing sequence of approximations depicted
in Fig. 2.

A substitution on infinite trees is a mapping
s: V—TI, Given a substitution s and an
infinite tree p, we obtain the infinite tree Sp as
the result of the simultaneous substitution of tree
st for each occurrence of type-variable ¢ in p.
We write o[: =¢] for the tree sp, when substi-
tution s assigns the infinite tree ¢ to type-
variable ¢ and leaves unchanged all other type-
variables. Any such substitution s is a continu-
ous function from 7, to T.. This fact allows to
define a translation function (-)* from recursive
types in 7, into infinite trees in 7., as follows.*

r* = for ¢ a type-variable,

[]*=e
§n]* :ll"'ln(@?fk"“, Cﬁ‘)
pta* =fix(Ao.a*[t: = p])

[4: @yeee, by

Trees obtained by the above translation are
regular, that is, they have finitely many subtrees.
The results of Braquelaire and Courcelle?
ensure that every regular tree has a notation in
T.. This allows to prove results in 7, using
regular trees, and will be particularly useful in

for ¢ the empty sequence of labels,
for 1<---</, and n>1,
for o an infinite tree.

establishing the equivalence between TA, and
the kinded recursive type system, and the exis-
tence of principal kinded typings.

* Naturally, @* means of, -, @f, whenever &=
a1 Un.

1834 Transactions of Information Processing Society of Japan

Recursive typing assignment. An interpreta-
tion of recursive types as infinite trees naturally
induces an equivalence relation = on T, by
putting a=x f if o*=p*.
Definition 4.2 (RECURSIVE TYPING ASSIGN-
MENT SYSTEM TA,) TA,. is defined by the
rules in TA with the addition of the =-rule, and
by replacing the Msg-axiom by the MsSG,.-
axiom.**
Pyl-x: «a
Py g @¥d

MsG, a<lh: vP{a: B, ¥: &}

(B=lh: @y b @)

All syntactical properties of system TA[dis-
cussed in Section 2 continue to hold when for-
mulated in the extended system TA,, notably
subject-reduction implying that programs whose
names can be assigned recursive types do not run
into type mismatch errors during execution.
Existence and computability of principal typings
is the theme of next section.

=~

5. Principal Recursive Typings

Not surprisingly, system TA, does not possess

Sep. 1994

a notion of principal typings in the sense discus-
sed at the beginning of Section 3. Nonetheless,
starting from system TA,, and by following the
same path that took us from TAj to TA,, we
can define a kinded recursive typing assignment
system TA .
Kinded recursive typing assignment. Recur-
sion at the level of kinds is achieved by allowing
cycles in kindings. In this way, recursive kinds
(implicitly) arise as cycles in a kinding, making
it unnecessary to have recursive kind expres-
sions.
Definition 5.1 (KINDED RECURSIVE TYPING
ASSIGNMENT SYSTEM TA,.) TA,, is obtained
from system TA,, with the MsG,-rule replaced
by the MsG..-rule below, together with the
~x-rule with formulas PP " replaced by K ~ P
p I, and by allowing cycles in kindings.
K }_<>B» <l a»
Kta<li: vp{a: v,7: a}
(B=7y)

As an example, let us derive a typing for the
term Cons(/ f /), starting from a (cyclic) kind-
ing K={u: <{cons: t[val:ul>}.

MSG/Ak

K +— ub<cons : t[val : u]>

MSG/.zk
OBl

K+ r < cons:fIR{f:t,1:[val: ul r:u)

In this case, since name » (the address of the
object meant to receive the reply to message val/)
does not appear in an object location position,
the recursive nature of the Cons cell manifests
itself in a cyclic kinding. Contrast this situation
with the term

Cons({f 1), (I < val: r,r >[nil . Nil-
Case & cons : (xy)ConsCase])

K= 1ID[val: (r)r < cons:fIIW{f:t,1:[val:ul}

where we evaluate the Cons cell and branch,
according to the result, into terms NilCase or
ConsCase. Here, the principal type of / is a
recursive type a=gpu wfval: [cons : tu, nil :
€]]. The derivation of the subterm Cons(/ f /)
is depicted below. Notice that ¢=[val : [cons :
ta, nil : €]].

[cons : ta, nil - ¢]» {cons : ta>

MSka

r<lcons:fIW{f:t,l:a r:[cons:ta, nil : cl}

r <l cons : fIW{f :t,1:[val :[cons : ta, nil : £]l,r : [cons : ta, nil :]}

[D[val: (r)r < cons: fIIP{f :t,1:[val :[cons : ta, nil :]|}

I>[val: (r)r < cons:fIIW{f:t,1:al

Theorem 5.2 Terms in P are typable in TA,,

** This allows to type messages whose target is
contained in the message’s communication, as in a

41l oa

if and only they are typable in TA,.

Proor: The proof of the corresponding result
in TA(, Theorem 3.4, easily adapts to the recur-
sive setting. The key issue is that the system of

Vol.35 No.9

regular equations generated by a kinding has a
unique solution whose components are regular
trees,” and that each of these trees define a type
in T.» The cases concerning the MsG ,-axiom
and the MsGu.-rule also need a slight adapta-
tion.]
Typing inference. Existence and comput-
ability of principal kinded typings in TA .
(the counterpart of Theorem 3.7 in the recursive
setting) is ensured by the existence of a unifica-
tion algorithm capable of handling recursive
types (in the form of regular infinite trees) and
cyclic kindings. The proof of the following theo-
rem is out of the scope of this paper and will ap-
pear in the author’s forthcoming PhD thesis.
Theorem 5.3 Let (K, E) be a kinded set of
equations with types in T..

i. If (K, E) is unifiable, it has a most
general unifier containing at most the
type-variables occurring in (K, E).

ii. If (K, E) is regular and unifiable, its
most general unifier is regular. It can
be effectively computed.

The very same algorithm discussed at the end
of Section 3 to extract the principal TA, kinded
typing of a term can be used to extract the
principal TA,, kinded typing, provided that we
use a unification algorithm capable of handling
recursive types.

Concluding Remarks

We presented an extension to the simple type
system for the calculus of objects.!¥ The new
additions encompass a new type constructor,
and a new rule in the type system, allowing to
type terms with a recurring name structure, in
particular, terms denoting numerals, lists and
trees. The recursive type system extends the class
of typable terms, while preserving basic syntactic
properties of the simple system, including
subject-reduction, and the existence and
computability of principal-typings.

The incorporation of recursive types is one of
the two extensions envisioned for the calculus of
objects, towards an effective modelling of typed
concurrent object-oriented systems. The second
extension, comprising a notion of predicative
polymorphism in name-passing calculi,'? is
intended to capture the idea of a polymorphic
class (a stack, for example) from which we can
instantiate objects with different types instances

Recursive Types in a Calculus of Objects 1835

of the type of the class (stacks of integers and
stacks of lists of boolean values, for example).
Also, as noted by a referee, the treatment of
recursive types presented in this paper could be
easily transposed into the usual A-calculus with
records.

A pragmatic issue is the application of the
calculus of objects and its type system to define
precise operational semantics and type inference
systems for existing object-oriented concurrent
programming languages. We picked up ABCL/
1 as a case study ; the results can be found in
Ref. 11).

Acknowledgements. 1 would like to thank
Prof. Mario Tokoro for continuous support,
Kohei Honda for discussions on types for con-
currency, and a referee for invaluable comments
on an early draft of the paper.

References

1) Barendregt, H. and Hemerik, K.: Types in
Lambda Calculi and Programming Languages,
3rd European Symposium on Programming, vol-
ume 432 of LNCS, pp.1-35, Springer-Verlag
(1990).

2) Braquelaire, J. P. and Courcelle, B.: The Solu-
tions of Two Star-height Problems for Regular
Trees, Theoretical Computer Science, Vol. 30, pp.
105-239 (1984).

3) Cardone, F. and Coppo, M.: Two Extensions
of Curry’s Type Inference System, Logic and
Computer Science, pp.19-75, Academic Press
(1990).

4) Courcelle, B.: Fundamental Properties of
Infinite Trees, Theoretical Computer Science, Vol.
25, pp. 95-169 (1983).

5) Hewitt, C., Bishop, P. and Steiger, R.: A Uni-
versal, Modular Actor Formalism for Artificial
Intelligence, 3rd International Joint Conference
on Artificial Intelligence, pp. 235-245 (1973).

6) Honda, K. and Tokoro, M.: An Object Calcu-
lus for Asynchronous Communication, 54 Eu-
ropean Conference on Object-Oriented Program-
ming, volume 512 of LNCS, pp.141-162,
Springer-Verlag (1991).

7) Honda, K. and Yoshida, N.: On Reduction-
Based Process Semantics, /3th Foundations of
Software Technology and Theoretical Computer
Science, volume 761 of LNCS, pp.371-387,
Springer-Verlag (1993).

8) Milner, R.: The Polyadic z-Calculus : A Tuto-
rial, ECS-LFCS 91-180, University of Edin-burgh
(Oct. 1991).

1836 Transactions of Information Processing Society of Japan

9) Mitchell, J. C.: Type Systems for Programming
Languages, Handbook of Theoretical Computer
Science, pp. 366-458, Elsevier Science Publishers
B.V. (1990).

10) Ohori, A.: A Compilation Method for ML-
Style Polymorphic Record Calculi, /9th ACM
Symposium on Principles of Programming Lan-
guages, pp. 154-165 (1992).

I1) Vasconcelos, V. T.: An Operational Semantics
and a Typing System for ABCL/! Based on a
Calculus of Objects, CS94-001, Keio University
(Apr. 1994).

12) Vasconcelos, V. T.: Predicative Polymorphism
in z-Calculus, Sth Parallel Architectures and
Language Europe, LNCS, Springer-Verlag (July
1994).

13) Vasconcelos, V. T. and Honda, K.: Principal
Typing-Schemes in a Polyadic z-Calculus, 4th
International Conference on Concurrency The-
ory, volume 715 of LNCS, pp. 524-538, Springer-
Verlag (Aug. 1993). Also as Keio University
Report CS 92-002.

14) Vasconcelos, V. T. and Tokoro, M.: A Typing
System for a Calculus of Objects, /st International

Sep. 1994

Symposium on Object Technologies for
Advanced Software, volume 742 of LNCS, pp.
460-474, Springer-Verlag (Nov. 1993).

15) Wand, M.: A Simple Algorithm and Proof for
Type Inference, Fundamenta Informaticae, Vol.
X, pp. 115-122 (1987).

(Received November 4, 1993)
(Accepted April 21, 1994)

Vasco Thudichum Vasconcelos

1988, Bachelor in Computer
Science, New University of Lis-
bon, Portugal. 1992, Master in
Computer Science, Faculty of
Science and Technology, Keio
. University, Japan. Presently
completing a PhD degree at Keio University.
Interests include concurrent, distributed, and
object-oriented systems and programming lan-
guages ; algebraic calculi and type systems.
Member of the ACM.

