0Y-4

THRLEE 25 70 B2ERS

An Internet File System for Random Access Protected Data

Ahmad Syahir™ Yasushi SHINJO™' Kozo ITANO™" Akira SATO" Hisashi NAKAT'

* University of Tsukuba
TJapan Science and Technology Agency

1. Introduction

Internet is ubiquitous on these days and has been essential for
collaborating people. Therefore, sharing data on the Internet is
really common for easy access. In this paper, we deal with
distributing protected data through the Internet. For example, in
the sports coaching area, video data is shared among scattered
organizations with annotations [1]. Typically, to distribute
protected video data, Digital Rights Management (DRM) is
often used. Representative DRM products include Windows
Media DRM, Helix DRM, FairPlay DRM, and DReaM.

Existing DRM mechanisms for video have a problem in the
random access capability. Random access is really important for
video seeking. This problem is inherent for these existing DRM
mechanisms because they are optimized for major users who
watch video sequentially. In concrete, these existing DRM
mechanisms use a large buffer and often download entire video
data in advance. This feature is nice to mitigate jitters, high
latency, and slow throughput. However, this feature is not
suitable for applications that need random access.

In this paper, we propose a new data protection mechanism to
access protected data through the Internet. In this mechanism,
we reuse existing media players for the Windows operating
system (OS) without any modifications to applications and the
OS. Instead, we extend the OS in the Virtual File System (VFS)
layer. To simplify the implementation of a VFS module, we use
a framework for user-level file systems called Dokan [2].
Encrypted protected remote files are accessed thought HTTP in
a VFS module. The VFS module decrypts protected data in the
remote files, and gives to the OS. The OS passes the decrypted
data to applications. The applications can access the remote files
as if they are local files. Hence, the applications can open the
remote files with a random access capability as if they are local
files.

In this mechanism, we need to protect the data from
malicious programs that run in the same operating system as the
legitimate applications. We solve this problem by using secure
channels between the legitimate applications and the VFS
module.

2. Overview of Our Data Protection Mechanism

2.1 Distributing protected data

Our mechanism introduced in this paper consists of several
modules as shown in Figure 1. The encryption software sends
the filename and requests a token to the authentication server.
The authentication server generates a random token for the file,
replies the token to the software and stores the filename/token
pair. We will elaborate details of token in Section 5. The

User PC

Application

Kernel
level
VFS
module

User-level
VFS module

Internet

encryption software encrypts the file based on the provided
token. Encryption software can be executed on any computer as
the encrypted file can be uploaded later to the web server. The
application logins to the authentication server to receive the
filename/token pair. Upon opening the file, the application
passes the token to the VFS module. The VFS module accesses
the data from the web server and decrypts it using the received
token before sends it back to the application.

This paper focuses on the following programs: The VFS
module, encryption software and applications. We assume that
we can use some token distribution mechanism such as Smart
System [1].

2.2 DirectShow API

DirectShow is a multimedia framework and API provided by
Microsoft for software developers to perform various operations
with media files [3]. Based on the Microsoft Windows
Component Object Model (COM) framework, DirectShow
provides a common interface for media across many of
Microsoft's programming languages, and is an extensible filter-
based framework that can render media files on demand by
applications.

Most video-related applications on Windows, not only
Microsoft's Windows Media Player but also most third-party
applications use DirectShow to manage multimedia data.
However, DirectShow has a problem with a random access
capability. Applications that use DirectShow API can perform
random access for local files but cannot when opening files over
HTTP. In other words, the video seeking does not work when
applications open files over HTTP.

3. VFS Module

The virtual file system (VFS) layer is an abstraction layer on
top of more concrete file systems. The purpose of VFS is to
allow applications to access different types of concrete file
systems in a uniform way. VFS specifies an interface (or a
"contract") between the kernel and a concrete file system.
Therefore, it enables to add new file system types to the kernel
by fulfilling the contract.

Windows has several ways to implement a new file system.
The easiest way is through user land Shell namespace
extensions [4]. However, this does not support the lowest-level
file system access API including DirectShow API in Windows.
Not all applications are able to access file systems that are
implemented as namespace extensions. The other way is using
Installable File System (IFS), a file system API in Microsoft
Windows that enables the OS to recognize and load kernel
module for file systems.

Authentication server

[Filename[Tokenj

Web server

Encryption
software

Encrypted files

Figure 1 Dataflow and token (cryptography key) distribution in proposed data

3-141

The VFS module we use in this research project is same as
IFS but with a difference. It is separated into two components:
the kernel module and the user level module.

3.1 Dokan Library

In this research, we use Dokan library [2] for simplifying
kernel level programming. Dokan library contains a user mode
library and a kernel mode file system driver. File operation
requests from applications like CreateFile and ReadFile are sent
to the Windows I/O subsystem (runs in kernel mode) which
subsequently forwards the requests to kernel-level module of
Dokan. The kernel-level module of Dokan forwards the requests
to the user-level module of Dokan. By using functions provided
by the Dokan user mode library, user-level module is able to
register callback functions which are invoked in order to
response to the forwarded requests. The results of the callback
routines are sent back to the kernel-level module and then to the
application. The user-level module itself can be written in C, C#
or Ruby.

3.2 User-level Module for Dokan

We implement the user-level module of Dokan in the C#
language. Upon opening files, the CreateFile callback function
is called and this module accesses the file header from the
server to obtain the meta-information such as file sizes and file
timestamps. These pieces of meta-information are store in
memory for later use. When the ReadFile callback function
called, the module opens a connection to the server. The module
downloads data using the connection based on the given offset
and buffer size. After that, the module decrypts the downloaded
data using the passed key from the application and returns it to
the OS via Dokan.

3.3 Secure Channels

It is vital to prevent malicious applications from opening the
protected files. To realize this, a file needs to be encrypted and
the legitimate application must pass a token to the VFS module,
which is needed to decrypt the requested file. To pass the token,
a secure channel between the VFS module and the application
needs to be established. We are considering two ways to
implement this: a named pipe and a filename extension.

3.3.1 Named Pipe

A safe way to make communication between the VFS module
and the application is by using a named pipe. The VFS module
sets up a named pipe that can be accessed by the application.
Upon opening a file, the application passes the token along with
self process ID (PID) to the VFS module through the pipe. The
VES module then compares the received PID with the PID of
the application that opens the file. If the PIDs are same, the
requested data is decrypted using the passed token.

3.3.2 Filename Extension

In this method, a token is passed with the filename upon
opening a file. For example, if the application want to open
‘sport.wmv’, it must open ‘sport.wmv;11-22-33-44-55-66-77-
88-11-22-33-44-55-66-77-88 while ‘11-22-33-44-55-66-77-88-
11-22-33-44-55-66-77-88’ is the token. The VFS module parses
and splits it using the semicolon as the separator. However,
there is a limitation using this method. In Windows, a filename
is limited up to 255 characters long for Windows XP and 260
characters for Windows Vista. This problem prevents the
application from opening file since the token itself is can exceed
40 characters long.

3.4 Performance Issues

In file systems, performance always becomes a matter. To
avoid high latency to the whole system, we perform several
optimizations.

3.4.1 Pooled Connections

Upon accessing data by an application, data is usually
accessed in small chunks from random positions in the file. This
leads to rapid ReadFile requests in a very short time. To avoid
delays to establish a new connection, we use pooled connections
to the server. In other words, the VFS module reuses same
connections to access several portions of data from the same file.

3.4.2 Cache and Prefetch

Since we implement a decryption capability, data needs to be
downloaded based on block sizes instead of requested buffer
sizes. The VFS module downloads data that is slightly bigger
than the requested buffer size. Data chunks are cached first then
decrypted before the module sends them to the application.

In addition, when playing audio and video files, either from
beginning or after perform seeking across the file, data are
usually accessed sequentially. Therefore, we improve the
performance by using prefetching. The algorithm guesses next
data, fetches it and stores it in memory. Each time user performs
skipping backward or forward, a new prefetching session is
started. To support prefetch properly, we perform the prefetch
function in a dedicated thread.

4. Server-side Programs

For the web server, we use the most common web server
application, Apache that supports HTTP 1.1. HTTP 1.1 is vital
because it contains what we need to realize the random access
idea. Since version 1.1, it supports range request (byte serving)
and persistence connection (keep-alive) [5]. The range request is
needed for random access and persistence connection is
essential for pooled connections.

S. Encryption and Decryption

The encryption we use in our mechanism is Advanced
Encryption Standard (AES) with Counter (CTR) mode. We use
CTR mode because it is suitable with random access. In our
mechanism, the token provided by the authentication server
consists of two elements: a key and a nonce (or initialization
vector). Encryption software splits the file into small blocks and
fixes a counter for each block. Each block is encrypted based on
the key and the nonce which is concatenated with the block
counter. For decryption, the VFS module uses the
filename/token pair passed from the application to decrypt the
file block.

6. Conclusions

In the paper, we have proposed a new data protection
mechanism and how it works. By using this mechanism, users
are able to access protected data over HTTP with a random
access capability while providing a tight security. In future, we
evaluate the use of multiple pooled connections for each file to
relief stress on the single connection. We are also considering
implementing support to FTP servers.

References

[1] Chikara Miyagi, Koji Ito, and Jun Shimizu: “Creating the
SMART system - A Database for Sports Movement", The
Engineering of Sport 6, Vol.3, pp.179-184, 2006.

[2] Hiroki Asakawa: Design and implementation of user-mode
file system library, 2008 http://decas-dev.net/en/

[3] Microsoft Developer Network (MSDN) Documentation:
DirectShow, 2008 :

[4] MSDN Documentation: Registering Shell Extensions, 2008

[5] RFC 2616: Hypertext Transfer Protocol -- HTTP/1.1, 1999

3-142

