Vol. 37 No. 9

Regular Paper

Transactions of Information Processing Society of Japan

Sep. 1996

A Parallel Algorithm for the Longest Path Problem
on Acyclic Graphs with Integer Arc Lengths

QIAN-PING GU' and TADAO TAKAOKA'™

This paper presents a parallel algorithm that computes the single source longest path prob-
lem on acyclic graphs G(V, A) with integer arc lengths on SIMD-SM-EREW parallel com-
puters. The algorithm solves the problem in O(log?(in)) time, O({In)?376) processors, and
O((In)?) memory space, where n = |V| and the arc lengths are integers in the set {1,2,...,1}.
For any constant I, our algorithm solves the single source longest path problem in O(log? n)
time, O(n?376) processors, and O(n?) memory space. Our algorithm is then used to de-
rive O(log? n) time, O(n?:37%) processors, and O(n?) memory space parallel algorithms for a
number of problems, such as minimum coloring, maximum clique, and so on, of permutation

graphs on an SIMD-SM-EREW computer.

1. Introduction

Let G(V, A) be an acyclic graph, where V
and A denote the set of vertices and the set
of arcs in graph G, respectively. Let |V| = n.
The arc lengths of G are drawn from the inte-
ger set {1,2,...,1}. The single source longest
path problem of graph G is to find the longest
distance from a source vertex s to all other ver-
tices in G. This problem can be solved in O(n?)
time by a sequential algorithm 1), A naive par-
allel algorithm for this problem is to repeatedly
square the distance matrix of graph G(V,A)
over the semi-ring (N J{—o0}, max, +), where
N denotes the set of natural numbers, until
the transitive closure of the distance matrix is
obtained. This algorithm solves the problem
in O(log®n) time, O(n®/logn) procesors, and
O(n?) memory space on an SIMD-SM-EREW
computer (Single Instruction, Multiple Data,
Shared Memory, Exclusive Read and Exclusive
Write).

It is known that the matrix multiplication can
be performed more efficiently over a ring than
over a closed semi-ring. Applying the matrix
multiplication over the integer ring, Gazit and
Miller 3 gave an algorithm for the single source
shortest path problem in graphs with unit
length edges. The algorithm of Ref.3) solves
the above shortest path problem in O(log® n)
time, M(n) processors, and O(n?logn) mem-
ory space, where M(n) denotes the number of

t+ Department of Computer Software, The University
of Aizu

1t Department of Computer Science, University of
Ibaraki

1631

processors needed to multiply two n x n inte-
ger matrices over the integer ring (Z, +, x) in
O(logn) time. The best known upper bound
of M(n) is O(n?376)2). In this paper, follow-
ing a similar approach of Ref.3), we present a
parallel algorithm for the single source longest
path problem on acyclic graphs with arc lengths
drawn from the integer set {1,2,...,1}. Our
algorithm solves the problem in O(log?(ln))
time, M (In) processors, and O((In)?) memory
space on an SIMD-SM-EREW computer. For
any constant I, our algorithm solves the single
source longest path problem in O(log® n) time,
O(n?37%) processors, and O(n?) memory space.
Our algorithm is then used to derive algorithms
for several problems, such as minimum color-
ing, maximum clique, and so on, of permu-
tation graphs. The derived algorithms solve
those problems in O(log®n) time, M(n) pro-
cessors, and O(n?) memory space on an SIMD-
SM-EREW computer. Our algorithm can also
be used for the single source shortest path prob-
lem.

The rest of the paper is organized as follows.
In Section 2, we give a brief review of Gazit
and Miller algorithm. Our algorithm for the
longest path problem is given in Section 3. Ap-
plications of our algorithm to problems in per-
mutation graphs is given in Section 4. Finally,
Section 5 concludes this paper.

2. Gazit and Miller Algorithm

Let G(V,A) be a directed graph with unit
arc length and V = {1,2,...,n}. The shortest
distance from vertex u to vertex v, denoted by

1632 Transactions of Information Processing Society of Japan

Procedure Find_Distances(My, ..., Miiogn1);
begin
for (1 <u < n) do in parallel
if (u = s) then D[u] := 0 else D[u] := oo;
for (i :=0) to [logn] do
for (1 <u < n) do in parallel
D[u] := minyev {D[u], D[w] + M;[w, u]};
end.

Fig.1 Gazit and miller algorithm.

d(u,v), is the number of edges in the shortest
path from u to v, and equals infinity (co) if no
path exists from u to v. Gazit and Miller pro-
posed an algorithm which computes the short-
est distances from a given source vertex s to all
the other vertices of G(V, A) by applying the
matrix multiplication over the integer ring?.
The algorithm works as follows.

Let By be a Boolean matrix with By[u,v] = 1
if (u,v) € A or u = v, Bylu,v] = 0 otherwise.
The algorithm first computes the Boolean ma-
trices By, ..., Bjiogn], Where B, = B? over
the Boolean ring. Obviously, B;[u,v] = 1 if
d(u,v) < 2%, B;[u,v] = 0 otherwise.

Next, the algorithm substitutes new values
into the entries of each matrix B, to get matri-
ces Mo, My, ..., M[1og) OVer the semiring (N U
{o0}, min, +), where

0 ifu=vw .
Miu,v] =< 2° ifd(u,v) <2 and u # v
oo otherwise

M;[u,v] gives an approximation of the shortest
distance from u to v. M;[u,v] > d(u,v) and the
least i with M;[u,v] # oo implies that 2:-1 <
d(u,v) < 2%

Finally, the algorithm computes the short-
est distances from the given source vertex s
to all the other vertices by the procedure
Find_Distances given in Fig.1. The correct-
ness of the algorithm follows from the following
lemma.

Lemma 1 Let D;[u] be the value of D[u] at
the end of the ith iteration. If d(s,u) < 2!*!,
then D;[u] = d(s,u).

Proof: To prove the lemma, we first show that
D;[u] > d(s,u) for every i and u € V. Ob-
viously, Do[u] = Mpy[s,u] > d(s,u). Assume
D;_[u] > d(s,u) and we prove D;[u] > d(s,u).
Note that D,’[U] = minu,ev{Di_l[u], Di_l[w] +
M;[w,u]}. I D;_y[u] < D;_y[w] + M;[w,u] for
all w € V then D;[u] = D;_i[u] > d(s,u).
So, we assume D,_[u] > D, [w] + M,;[w,u]

[

Sep. 1996

and D;fu] = D;_[w] + M;[w,u] for some
w € V. Fromud(s,w) + d(w,u) > d(s,u),
D;_;|w] > d(s,n;B, and M;[w,u] > d(w,u), we
have D;[u] > d(s,u).

Next, we prove that D;[u] < d(s,u) if
d(s,u) < 2'*!, Obviously, the claim holds for
¢ = 0. Assume the claim is true for i — 1 and
we prove it for ¢. If d(s,u) < 2! then from the
induction hypothesis D;_;[u] < d(s,u). There-
fore, D;[u] < D;_;[u] < d(s,u). So, we may as-
sume that 2! < d(s,u) < 2/t1. Then, there is a
vertex w € V such that d(s,w) < 2!, d(w,u) =
2', and d(s,u} = d(s,w) + d(w,u). From the
induction hypothesis and the definition of M;,
D;_,[w] < d(s,w) and M;[w,u] = 2*. There-
fore, D;[u] < Dy [w] + M;[w,u] < d(s,u). O

The Boolean matrix B;;; = B? can be com-
puted over the integer ring as follows:

n
By = 1iff Y Bifu, k] x B;[k,v] > 1.
k=1

Let M(n) be the number of processors needed
to multiply two n x n integer matrices over the
integer ring (Z,+, x) in O(logn) time. It takes
O(log®n) time and M (n) processors to com-
pute Bi, ..., Bjogn]. The best known upper
bound of M(n) is O(n?376)2) M,, ""Mﬂosn;
can be computed in O(1) time by at most n

processors. It is easy to see that Procedure
Find_Distances can be computed in O(log? n)
time by at most O(n?/logn) processors. Thus,
the algorithm solves the single source shortest
path problem in O(log” n) time and M(n) pro-
cessors. Note that the original Gazit and Miller
algorithm®) computes D; from i = logn to 0
(¢ decreasing) which takes O(n?logn) memory
space and makes its proof complicated. The re-
vised version described in this section is simpler
and takes O(n?) memory space.

3. Algorithm for the Longest Path
Problem

In this section, let G(V,A) be an acyclic
graph with unit length arcs. Assume V = {1,
2,..,n}. The single source longest path prob-
lem of G is to compute the longest distances
from a source vertex s to all other vertices in
G. Let D(u,v) denote the longest distance from
u to v, i.e., D(u,v) is the number of edges in
the longest path from u to v, D(u,u) = 0, and
D(u,v) = —o0 if there is no path from u to v.

Following a similar approach of the previ-
ous section, we give an algorithm for the sin-
gle source longest path problem of G(V,A). To

Vol. 37 No. 9

Procedure Longest_Path
begin

A Parallel Algorithm for the Longest Path Problem

1633

/* C is the adjacent matrix of G(V, A). */

for (1 < u < n) do in parallel

if (s = u) then E[u] := 0 else E[u] :
for (1 <u < n) do in parallel Plu,u]:

for (i := 0) to [logn] do
begin

— 003

0;

i

for (1 < u,v <n and u # v) do in parallel
if (C[u,v] = 1) then P[u,v] := 2* else Plu,v] := —oc;
for (1 < u < n) do in parallel Efu] := maxyev{E[u], E[w] + Plw,ul};

C:=CxC;
end;
end.

Fig.2 A parallel algorithm for the single source longest path problem.

make the idea of Gazit and Miller work on
the longest path problem, the key point is how
to construct the approximation matrix for the
longest distances. The idea here is as follows:
Suppose that the longest path from u to v has
the length ! with 2! < I < 2!, Then, there
is vertex w in the path such that D(u,w) < 2%,
D(w,v) = 2, and D(u,v) = D(u,w)+ D(w,v).
Our starting point is then to construct the ma-
trices C; whose (u,v)-entry is 1 if and only if
there is a path from u to v of length 2°.

Let C, be the adjacent matrix of graph

G(V,A),ie.,
_ {1 (true) uw#wvand(u,v)€A

Colu,] = {0 (false) otherwise :
and C; = C;_, x C;_, be defined as:

Ci[u,v] = V2, Ci—i[u,w] A Ci—1[w,v].
Then C;[u,v] = 1 if and only if there is path
of length 2¢ from u to v which implies 2* <
D(u,v). Similarly, we substitute new values
into the entries of C; to get matrices P; over
the semiring (N U {—o0}, max, +), where

0.
Pi[u,v] = 2!
—00

Obviously, P;[u,v] < D(u,v) for every i. Let
E be a row vector of length n with E[s] = 0
and E[u] = —oo for u # s. We finally com-
putes the longest distances from s to u by
multiplying E and P; over the semiring (N U
{—o0},max,+). The algorithm Longest_Path
for the single source longest path problem of an
acyclic graph with unit-length arcs is given in
Fig. 2. In the algorithm, —o0o+(a € N) = —oo.
Obviously, the matrix P obtained in the i-th it-
eration of the algorithm is equal to P;. We now

ifu=v
if Ci[u,v] =1
otherwise

show the correctness of algorithm Longest_Path.
Theorem 2 Let E;[u] be the value of Efu]
at the end of the ith iteration in algorithm
Longest_Path. If D(s,u) < 2**!, then E;[u] =
D(s,u).
Proof: The proof is a dual argument of that
for Lemma 1. We first show that E;[u] <
D(s,u) for every i and u € V. Obviously,
Eo[u) = Po[s,u] < D(s,u). Assume E;_1[u] <
D(s,u) and we prove E;[u] < D(s,u). From
El[u] = ma‘waV{Ei—l[u]aEi—l[w] + Pi[’lU,’lL]},
if E;_1[u} > E;_1[w] + Pi[w,u] for all w then
Ei.[u] = Ei_1[u] < D(s,u). So, we assume
E,_1[u] < Ei_i[w] + Pfw,u] and E[u] =
E;_1[w] + P;{w,u] for some w. From E;_[w] <
D(s,w), Piw,u] < D(w,u), and D(s,w) +
D(w,u) < D(s,u), we have Ei[u] < D(s,u).
Now we show that E;[u] > D(s,u) if
D(s,u) < 21, Obviously, the claim holds
for i = 0. Assume the claim is true for ¢ — 1
and we prove it for i. If D(s,u) < 2 then
Ei[u] > E;_1[u] > D(s,u). So, we may as-
sume that 2! < D(s,u) < 2'*'. Then, there
is a vertex w € V such that D(s,w) < 2,
D(w,u) = 2¢, and D(s,u) = D(s,w)+ D(w,u).
From the induction hypothesis and the defini-
tion of P;, E;_[w] > D(s,w) and P;[w,u] = 2t
Therefore, E;[u] > E;_1 [w]+Pi[w,u} > D(s,u).
O
In algorithm Longest_Path, matrices C and
P take O(n?) memory space. Matrix E is a
1 x n matrix. However, we need n copies of
E on an SIMD-SM-EREW computer. There-
fore, the algorithm uses only O(n?) memory
space. The computation time of the algorithm
is clearly O(logn) x t(n), where t(n) is the
time of multiplying two n x n integer matrices

1634 Transactions of Information Processing Society of Japan

v

Y
Arc length
clu,v)=1, clu,w)=2
clu,x)=k, clu,y)=l

Fig.3

over the integer ring of (Z, x,+). We have an
upper bound of t(n) = O(logn) by O(n?376)
processors on an SIMD-SM-EREW computer.
Thus, the computation time of the algorithm
is O(log® n) using O(n2376) processors and n?
memory space. From this and Theorem 2 we
have

Theorem 3 Algorithm Longest_Path solves the
single source longest path problem of an acyclic
graph with unit-length arcs in O(log®n) time,
O(n?37) processors, and O(n?) memory space.

Algorithm Longest_path can be extended into
one which solves the longest path problem on
acyclic graphs with arc lengths drawn from
the integer set {1,2,...,l}. Given an acyclic
graph G(V,A) with arc lengths drawn from
{1,2,...,1}, we transform G(V, A) into a new
acyclic graph G'(V’, A’) with unit-length arcs
which preserves the distance between every pair
of vertices in G(V, A). The vertex set V' of G’
is constructed as:

Vi=V.

For u € V, V= Vu {ul,ug, . u,_l}.
The arc set A’ of G’ is constructed as:

Step 1, A" := 0. Foru € V, 4" := 4'|J
{(U,Ul),(ul’uz,),---,(U1—2,U1—1)}-

Step 2, For u € V and (u,v) € A, if d(u,v) =
k then A" := A'J{(uk—1,v)}, where uy = w.
Obviously, |V’| = In. Figure 3 gives an ex-
ample of the transform. Applying algorithm
Longest_Path to graph G(V', A’), we have
Theorem 4 The single source longest path
problem on an acyclic graph with arc lengths
drawn from the integer set {1,2,...,1} can be
solved in O(log?(In)) time, O((In)2-378) proces-
sors, and ((In)?) memory space.

4. Applications to Permutation Graphs
An undirected graph G(V,E) with V =

{1,2,...,n} is called a permutation graph if
there exists a permutation P on set V' such that

Replacing arcs of length k in G(V, A) with paths of length k in G'(V’, A’).

Sep. 1996
w ‘/ x
%1 : 1
y
All arc lengths are 1
i 1 2 3 4 5
PGi): 2 5 4 1 3

4

Fig.4 A permutation graph and its matching
diagram.

for any i,5 € V,
E=DNPH-P()) <0

if and only if (¢,5) € E. Pictorially, draw
the vertices 1,2,...,n in order on a line, and
P(1), P(2),...,P(n) on a parallel line in such a
way that 7 is directly above P(i) for all i € V.
Next, for each ¢ € V, draw a line segment
from 7 on the upper line to i on the lower line.
There is an edge (i,5) € E if and only if the
line segment for ¢ intersects the line segment
for j. An example of permutation graph (with
V ={1,2,3,4,5} and P = (2,5,4,1,3)) and its
“matching diagram” is given in Fig. 4.

Permutation graphs have numerous applica-
tions in solving intersection-free layout prob-
lem, optimal schedules for memory reallocation,
modeling, and so on*)®). In this section, we
consider minimum coloring, maximum clique,
minimum covering by cliques, and maximum in-
dependent set problems on permutation graphs.
Many sequential algorithms have been devel-
oped for those problems. Supowit® proposed
an O(nlogn) algorithm for the above problems.
The idea in the algorithm of Ref.6) is trans-
forming the problems of permutation graphs
into the longest chain problem on a two dimen-

Vol. 37 No. 9

Fig.5 The acyclic graph G’ for the graph of Fig. 2.

sional real space R?. Let < be the partial or-
dering on R? defined by (z1,¥1) < (22,92) if
and only if z; < z2 and y; < y2. A chain is a
set of points in R? that are pairwise comparable
under this ordering. For a permutation graph
G(V,E) and the corresponding permutation P,
if the vertex i € V is mapped to R? by the map-
ping function f(i) = (i, P~*(2)), then it is easy
to show that the minimum coloring of G can
be solved by partitioning {f(1), f(2),..., f(n)}
into a minimum number of chains. Based on the
idea of Ref.6), we define a new mapping func-
tion from V to R?. Then the minimum coloring
problem, maximum clique problem, and so on,
of a permutation graph can be solved by find-
ing the single source longest path problem of a
graph consisting of mapped vertices in R?.

Let G(V,E) be a permutation graph and P
be a corresponding permutation. Let the map-
ping function for i € V to R? be defined by
f@G) = (i,—P7'(z)). Let the point f(i) in R?
be denoted by ¢'. For the graph G, let G'(V', A)
be a directed graph defined as:

V' = {i'li e V}{J{s}

and
A= {(i',j’)li',j' € V' and 7' <j'},

where s = (n+1,0) and < is the partial ordering
on R? defined by (z1,71) < (z2,y2) if and only
if ; < o and y; < yo. Clearly, G’ is an acyclic
graph. The distance associated to the arcs in
G' is one. Figure 5 shows the graph G’ for the
graph G in Fig. 4.

We now show that the minimum coloring
problem of G is equivalent to the single source
(with source s) longest distance problem of

A Parallel Algorithm for the Longest Path Problem 1635

Procedure Minimum_Coloring()

begin
/* Construct Graph G’ */
Vii=0; A:=0;

for 1 <i < n do in parallel V' := V' {J{i'};
s:=(n+1,0); V' :=V'U{s};
for 1 <i,j < n do in parallel
if ! < j' then A := AU{(,j")};
for 1<i<n do in parallel A:=AJ{(s,7")};

Call Logest_Path() for Graph G’ with source s;
end.

Fig.6 A parallel algorithm for the minimum coloring
problem of a permutation graph.

G'. By the definition of a permutation graph,
(i — (P71 — P71(j)) < 0 if and only if
(i,7) € E. Therefore, (i',5') € Aor (j',i') € A
if and only if (¢,7) € E. From this, the longest
distances from vertex s to vertices ¢’ and j' are
the same, i.e., d(s,i’) = d(s,j') if and only if
(¢,7) ¢ E. If there is no arc from 4’ to j' or
j' to 4’ in G’ then we can give the same color
to i and j in G. Thus, 7 and j can be given
the same color if d(s,¢') = d(s,j'). So it is easy
to see that max{d(s,1'),d(s,2'),...,d(s,n')} is
the minimum number of colors for graph G.
This number is also the size of the maximum
clique of G. We now give our parallel algo-
rithm for the minimum coloring problem of G
in Fig. 6.

Theorem 5 The minimum coloring problem
of a permutation graph can be solved by algo-
rithm Minimum_Coloring() in O(log® n) time,
O(n?37%) processors, and O(n?) memory space.

Similar results can be obtained for other prob-
lems mentioned above for permutation graphs.

5. Conclusion

This paper gave a parallel algorithm for the
single source longest path problem on acyclic
graphs with integer arc lengths. For an acyclic
graph with arc lengths drawn from the inte-
ger set {1,2,...,1l}, the algorithm solves the
problem in O(log?(In)) time, M (In) processors,
and O((In)?) memory space on an SIMD-SM-
EREW computer, where M(n) is the number
of processors needed to multiply two n X n inte-
ger matrices in O(logn) time. The best known
upper bound of M(n) is O(n?376)2). For any
constant [, the algorithm solves the longest
path problem on acyclic graphs with integer
arc lengths in O(log® n) time, O(n*3"®) proce-

1636 Transactions of Information Processing Society of Japan

sors, and O(n?) memory space. If Strassen’s
method V), which is more practical, is used
then the algorlthm can solve the above prob-
lems in O(log? (ln)) time, O((In)28!) proces-
sors, and O((In)?) memory space. The algo-
rithm in this paper is then used to solve sev-
eral problems, such as minimum coloring, max-
imum chque and so on, of permutation graphs
in O(log® n) time, M(n) processors, and O(n?)
memory space on an SIMD-SM-EREW com-
puter.
Acknowledgement

The authors would like to thank the reviewers
for the constructive comments.

References

1) Aho, A.V., Hopcroft, J.E. and Ullman, J.D.:
The Design and Analysis of Computer Algo-
rithms, Addison-Wesley, Reading, MA (1974).

2) Coppersmith, D. and Winograd, S.: Matrix
Multiplication via Arithmetic Progressions,
Proc. 19th ACM Symposium on Theory of Com-
puting, pp.1-6 (1987).

3) Gazit, H. and Miller, G.: An Improved Parallel
Algorithm that Computes the bfs Numbering
of a Directed Graph, Information Processing
Letters, Vol.28, pp.61-65 (1988).

4) Knuth, D.E.: The Art of Computer Program-
ming, Vol.1, Addison-Wesley, Reading, MA
(1968).

5) Liu, C.L.: Introduction to Combinatorial
Mathematics, McGraw-Hill (1968).

6) Supowit, K.J.: Decomposing a Set of Points
into Chains, with Applications to Permuta-
tion Graphs, Information Processing Letters,
Vol.21, pp.249-252 (1985).

(Received November 30, 1995)
(Accepted June 6, 1996)

Sep. 1996

Qian-Ping Gu received his
B.S., M.S. and Ph.D. degrees, all
in computer science, from Shan-
dong University, China, Ibaraki
University, Japan, and Tohoku

* University, Japan, in 1982, 1985,

" and 1988, respectively. He is
currently Assoc1ate Professor in the Depart-
ment of Computer Software, the University of
Aizu, Japan. He was with the Institute of
Software, Chinese Academy of Sciences, Beijing
China. He visited Ibaraki University, Japan
from 1990 to 1991, and the Department of Elec-
trical and Computer Engineering, the Univer-
sity of Calgary, Canada, from 1991 to 1993.
His research interets include algorithms, com-
putational complexity, machine learning, paral-
lel processing, and optimization. He is a mem-
ber of ACM, IEEE Computer Society, and IE-

ICE of Japan.
Ph.D. degrees from Kyoto Uni-

. iﬁ) versity in 1968 and 1971. He

{ worked in the NTT Laboratory
gg\h Q ﬁ since 1971 and was engaged in
theoretical research. Since 1974
he has been at Ibaraki University as an asso-
ciate professor and later a professor. His cur-
rent research interests include analysis of algo-
rithms and program verification. He taught at
the University of Canterbury and the Univer-
sity of Alabama at Birmingham. He is a mem-
ber of IPSJ, IEICE, IEEE and ACM.

Tadao Takaoka was born in
1943. He received his M.S. and

