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Introduction

An Approximation Algorithm for MAX 3SAT

TAKAO ONO,' TOMIO HIRATA! and TAKAO AsANott

In this paper we present a 0.769-approximation algorithm for MAX 3SAT. It is a restricted
version of MAX SAT, in which every clause has at most three literals. The best previously
MAX SAT had 0.755-approximation ratio, whi i
by Goemans and Williamson. Thus,'we make a slight improvement by limiting MAX SAT to
MAX 3SAT. Since approximating MAX 3SAT within 38/39is N P-complete, our result means
that the best approximation ratio is between 0.769 and 38/39.

gorithm.

Oct. 1996

We consider the Maximum 3-Satisfiability
Problem (MAX 3SAT), a restricted version
of the Maximum Satisfiability Problem (MAX
SAT). For MAX SAT, 0.75-approximation al-
gorithms and 0.755-approximation algorithm
were proposed.  Yannakakis!®) first gave a
3/4-approximation algorithm for MAX SAT.
Goemans and Williamson® gave another 3/4-
approximation algorithm, and reported a slight
improvement of the ratio to 0.755 later?). But
no good approximation algorithms for MAX
3SAT are known. In this paper we present a
randomized 0.769-approximation algorithm for
MAX 3SAT. Thus we make a slight improve-
ment by limiting MAX SAT to MAX 3SAT.

Since MAX 3SAT is MAX SNP-complete8),
for some constant a < 1 no a-approximation
algorithms for MAX 3SAT exist unless P = NP.
In fact, approximating MAX 3SAT within the
approximation ratio 38/39** is known to be
NP-complete®). OQur result means that the
best approximation ratio is between 0.769 and
38/39.

Our result is inspired by the recent work of
Goemans and Williamson®) who used an algo-
rithm for semidefinite optimization problems to
obtain an approximation algorithm for MAX
2SAT. Their algorithm is 0.878-approximation.
But in the case of MAX 3SAT, we have to treat
polynomials of degree 4 instead of those of de-
gree 2. In our algorithm we carefully truncate
some portion of the polynomials. Furthermore,
we combine this algorithm with other known
algorithms to obtain a good approximation al-
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In Section 2, some definitions are given. We
present an approximation algorithm for MAX
3SAT based on the semidefinite programming
in Section 3. In Section 4, we analyze the ap-
proximation ratio of the algorithm. Combin-
ing this algorithm with Johnson’s algorithm®)
and LP-relaxation algorithm®, we show that
the 0.769-approximation ratio can be achieved
in Section 5. Conclusion with some remarks is
given in Section 6.

2. Definitions

Let {z,... »ZTn} be a set of variables, A lit-
eral is either a variable T; or its negation ;. A
clause is a disjunction of literals. An instance
of MAX 3SAT is a collection of clauses Cy, ...,
Cy with the corresponding positive weights wy,
-++» wr, where each clause has at most three
literals. We assume that no variables appear
more than once in a clause, that is, we do not
allow a clause like {z1,Z1,22}. We denote by
ICj| the number of literals in Cj. If and I
denote the sets of indices of the variables that
appear positively and negatively in Cj;, respec-
tively. The weight of an assignment is the sum
of the weights of the clauses which are satisfied
by the assignment.

For an algorithm A, Wa(I) denotes the
weight of the assignment produced by A for an
input I. The approximation ratio of A is o if
Wa(I) is at least a times the weight Wopr(I)
of the optimal assignment for any instance I.
We call 4 an a-approximation algorithm. We
use the notation f(x) for multivariate func-

* This is a revised version of Ref.7), in which we er-
roneously claimed that our algorithm achieves 0.80-
approximation.

** At present, the ratio is reduced to 26/272),
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tion f(z1,---,%n)
3. An Approximation Algorithm

In this section, we present an approxima-
tion algorithm for MAX 3SAT. This algorithm
solves MAX 3SAT in the same way as Goemans
and Williamson’s algorithm for MAX 2SAT.
The algorithm consists of the following steps.
(1) Translate an instance of MAX 3SAT into

an integer programming problem.

(2) Reduce the problem to a semidefinite
programming problem with relaxation
and solve it.

(3) Constructa truth assignment of the orig-
inal MAX 3SAT problem from a solution
to the semidefinite programming prob-
lem.

We explain each of the above steps in the fol-
lowing subsections.

3.1 Translation of an Instance into an

Integer Programming Problem

We arithmetize the clause C; as

CJ(:B) =1- H(l—zi) H x;.

el i€l
Thus, we can formulate MAX 3SAT by the fol-
lowing integer programming problem:
L
Maximize ijCj(a:)
Jj=1
subject to z; € {0,1} (1 Li< n).
Because Cj() < Yjerr Ti + Yier-(1— %)

7

we use the following formulation of MAX 3SAT.

L
Maximize Z w;z;

j=1
subject to
z; < Cj(x) (1<j< L),
zj < Z z; + Z(l—a:i)
el i€l

(1<j5<L),

0<z <1 (1<j5< L),

.’E,‘G{O,l} (1$15n)

In the rest of this paper we omit the ranges of
i and j if they are clear from the context.

Next we introduce variables y; (1 =0, 1, ...,
n), whose values are +1 or —1 and replace z;
with (1 + yoyi)/2. Thus MAX 3SAT can be
written as:

L
Maximize E w;2;
=1
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subject to  z; < Cj(¥),

1+ youi
ey Lt
a‘efj

1 — Yoyi
+Y o
i€l
0 S Zj S 11
Vi € {—1, +1},
where Cj(y) = C;((1 + you1)/2,...,(1 +
YoYn)/2)-
Now we consider the case that C; has three
literals, say, T;, ; and Tk. In this case,

, 1
Ci(y) = 3 [(1 + yous) + (1 + yoys) + (1 + yoyx)
+(1—yiy;) + (1 —yi) + (1 - YrYi)
+ (1 + Yoyi¥; k)] -

Here, if there is a negative literal in those three
literals, we replace the corresponding variable y
with —y. We denote by c;(y) and d;(y) the sum
of the first six terms and the last term in Ci(v),
respectively, that is, C}(y) = ¢; (y) +d;j(y) and
cj(y) contains terms of degree at most 2. The
next lemma bounds the value of C(y)-

Lemma 1 For all C; containing three liter-
als, ¢;(y) < Ci(y) < (4/3)ci(y)-

Proof The first inequality is trivial be-
cause d;(y) > 0. The second inequality comes
as follows. Consider that clause C; has three
literals. If d;(y) = 0, then Ci(y) = cj(y) 20
and thus (4/3)c;(y) = Cj(y). We assume that
dj(y) # 0. This means that d;(y) = 1/4
and Ci(y) # 0 Because C'(y) € {0,1},
C'(y) must equal 1. Thus, cjiy) = 3/4 and
Cw) < (4/3)c;). 0

We define ¢;(y) = Cj(y) for all the clauses C;
which have less than three literals. Thus we can
reformulate MAX 3SAT as follows:

L

Maximize ijzj
j=1
subject to
zj <¢i(y) |G <2

4 .
5 < 36w H101=3

z 1+ yo¥i (1)
2

Z; <
€l
1 — yo¥i
+y
i€l]
0 S Zj S 1’
Y; € {—-1,+1}.
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3.2 Reducing to a Semidefinite Pro-

gramming Problem

In the problem (1), ¢;j(y) contains the con-
stant terms and the product terms of two vari-
ables. This fact enables us to relax the problem
by using the following replacements:

(1) replace variables ¥: with vectors v; whose
norms are 1,

(2) replace the product Yiy; with the inner
product of the corresponding vectors v; -
vy,

(3) replace the inner product v; - v; with a
new variable y;;.

Let V be the matrix (vo,v1,...,v,) and let
VT be its transpose. Then the (n+1)x (n+1)
matrix ¥ = (y;;) equals VTV, which is sym-
metric and positive semidefinite. Thus we de-
note by ¢;(Y") a relaxed version of ¢;(y) and we
have the maximization problem:

L
Maximize ijzj
=1
subject to
zj < ¢(Y) if |G| <2,
5 <36(Y) (0 =3,

2 < Z 1+ yo;

(2)
erf
1~y
5
i€l
0 S 2j S 1,
Yii =1,

matrix Y is symmetric
and positive semidefinite.

An optimization problem which is repre-
sented by a linear system of the entries of a
symmetric and positive semidefinite matrix is
called a “semidefinite programming problem.”
It is well-known that a semidefinite program-
ming problem can be solved in polynomial time
with respect to the input size and log(1/e)
within any additive error €!). See Goemans and
Williamson®) for details and references,

For (2) we consider the matrix

V= Y O
o dia,g(zl,zz,...,z[,) ’
where diag(z,, 25, .. -y2L) is a diagonal matrix
whose diagonal entries are 21,22, ..., 21. Then

the objective function and all constraints in (2)
are linear combinations of the entries of Y, and
Y is symmetric and positive semidefinite. Thus,
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(2) is a semidefinite programming, and hence
we can find its solution (Y*,2*) (with a negli-
gibly small error) in polynomial time.

3.3 Finding Approximate Solutions to

MAX 3SAT

We use the following scheme, which is used
in Goemans and Williamson?), to obtain an ap-
proximate assignment x5 of MAX 3SAT:

First we obtain the vectors v; by Cholesky
decomposition of Y*. Then we take the random
vector r whose norm is 1 and let v = sign(r -
v}). z7 is set to (1 + y§yf)/2.

4. Analysis of the Approximation Ra-
tio
In this section, we show the weight of the
approximate assignment z5.

Lemma 2 The weight of =5 is bounded as
Jollows.

L
Zw,-Cj(zs) >a Z w;z}
Jj=1

IC;|<2

3o .
+71— Z w;z;,
IC;|=3

where a = ming<o<,(8/7)/[(1 - cosf)/2] =
0.87856. . ..

To prove this lemma, we use the next
lemma®). Proof is given so that this paper may
be self-contained.

Lemma 3 Fora in Lemma 2,

E[(1 - y:9;)/2] > a(1 - vi;)/2,
E[(1+yiy;)/2] > a(1 + vi)/2.

Proof We can prove both inequalities in
the same manner, so here we prove only the
first one. Because the value of (1 —wyiy;)/2 is
either 0 or 1,

E[(1 - yy,)/2]
= Pr{y; # y;}
= Pr{sign(r - v}) # sign(r - v})}
=2Pr{r-v! >0 and r-v; <0}
(by symmetry).
We denote by 0;; the angle between v} and v}.
The set {r:r-v} > 0 and T-v} < 0} is a spher-
ical lune with angle 0:;, whose measure equals
0;/(27) times the measure of the full sphere.
Thus
E[(1 - y:y;)/2]
=2Pr{r-v} >0 and T-v; <0}
= 26,;/(2)
= Oij /ﬂ'.
From the definition of a, for any 0 (0< 8 <)
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6/% > a(l — cos6)/2. Thus
E[(1 - yiy;)/2] = 0i5/7
>a(l - cos8;;)/2
= a(l - y3;)/2. o
Proof (of Lemma 2) From Lemma 3,
Elc;(y)] > acj(Y™). Thus for clauses C; which
has at most two literals
E[C;(@)] = Elc;(v)] 2 ac;(Y") 2 az;.
On the other hand, for the clauses C; which has
three literals,
E[Cj(2)] > Elc;(w)] 2 ac;(Y™") 2 3ezj/4.
Combining these inequalities,

L
Z ’ijj(:BS)

5=1

L
>E [Z ijj(m)]

j=1

L
Jj=1

= ¥ wEC@)]+ ) wEBC;(=)]
|C;1<2 IC;|=3

> z wjaz; + Z w; - 3az] /4

IC;1<2 IC;1=3

3a
= §: 2t 2: 2
=a w;iz; + m w;z;- O
IC;1<2 IC;1=3

5. 0.769-Approximation Algorithm for
MAX 3SAT

In this section, we consider the approxima-
tion algorithm A which selects one of three as-
signments ¢’, =¥ and z° with some proba-
bilities. x5 is obtained by using the rounding
scheme described in Section 3. z” and z” are
obtained by the random assignment method?,
that is, each variable z; is independently set to
1 with probability p;.

For z7, we let p; = 1/2 for all ¢. For zl, we
let p; = (1+3;)/2. Thus for the weights of z’
and =L, we can show the following lemmas.

Lemma 4 The weight of ¢’ is bounded as
follows.

L 3 1
Zw]'Cj(a:J)ZZ (1—5) z wj| -
j=1 k=1 iCil=k

Proof Because we consider that p; = 1/2
for all 4, the probability that the clause Cj is
satisfied is 1 — 1/2!C!. Thus,
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L L
ijCj(a:") > E {Z ijj(m)]
=1 j=1

L
=Y w;E[C;(a)]
i=1

21C;l

1
55‘ wj .
ICj|=k

O
Lemma 5 The weight of L is bounded as
follows.

L 3
3 wCiat) 2y [ﬂk > wjz;] ’
j=1

k=1 IC51=k

Il
M-
S
“.
7~
—
|
p—
Na—"

.
il
—

I
ool
N
—
/~
[y
[

where B =1 — (1 — 1/k)*.

Proof We can see that (2) is a version of
LP relaxation of MAX SAT®. Thus, we can
apply lemma 3.1 in Ref.5) to = to obtain the
bound of its weight:

L L
Z w;Cj(z") 2 Zﬂlchwﬂ;,

j=1 =1

whe:e Br=1-(1 1 /k)¥. Restricting MAX
SAT to MAX 3SAT, we can obtain the lemma.O

Finally we show the approximation ratio of
algorithm A. We assume that A selects z’,
zL and &5 with the probabilities ps, pr, Ps,
respectively.

Theorem 1 Algorithm A is 0.769-approzi-
mation for appropriate py, PL and ps.

Proof Algorithm A is a-approximation for
the value of a satisfying

1
P+t PLt aPs 2 a,
§ +§ + « Z a

These inequalities express the expectations of
Cj(z) corresponding to the clauses with one,
two and three literals, respectively. The up-
per bound of a, obtained by solving a linear
programming problem, is 0.7694.... Thus al-
gorithm A is 0.769-approximation. a

6. Concluding Remarks
We have presented a randomized 0.769-
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approximation algorithm for MAX 3SAT. The
best previously known approximation algo-
rithm for MAX 3SAT had 0.755 approximation
ratio as a special case of the same bound for
MAX SAT, so we have made a slight improve-
ment by limiting MAX SAT to MAX 3SAT.

For MAX 3SAT, approximating within the
ratio 38/39 is known to be NP-complete. The
approximation ratio of our algorithm is much
smaller than 38/39. A challenging problem is
to narrow this gap.
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