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Normalization is an efficient method of optimization and evaluation for linear recursions. It
facilitates the generation of efficient execution plans, since it can directly select the most effi-
cient evaluation algorithm from a set of candidates according to the structural characteristics
of recursions. Therefore, it is useful to develop new specialized algorithms for some frequently
appearing classes of linear recursions in the normalization framework. This paper focuses on
a class of linear recursions, which in terms of the graph model 1) are called one-directional
cycle recursions. We show that one-directional cycle recursion is a very frequently appearing
pattern in the normalization of linear recursions. We also prove that this kind of recursion can
be normalized to a specially formed formula in which all chains have same chain predicate.
Based on this interesting property, an efficient evaluation algorithm is proposed. It is efficient
because it evaluates only one binary transitive closure and does not need to trace initial driver
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information in evaluation of the transitive closure, as it is necessary in the multi-way counting

method 7)

1. Introduction

Normalization 37)8)10111) i an optimiza-
tion method for linear recursions. It transforms
linear recursive formulas into normally formed
formulas as follows:

P(.'E]_,"',.’L'n) : _Al(zlayl))"'a
An(xmyn)ap(yl;”"yn) (1)

It is also called n-chain recursion. Each pred-
icate A;(z;,yi) (i = 1,---,n) is called a chain
predicate.

One important advantage of normalization is
that it facilitates the generation of efficient ex-
ecution plans based on deep analysis of defini-
tion of recursion. The compiler can select an
appropriate evaluation algorithm directly from
a set of candidates. For example, a specialized
efficient algorithm can be applied to recursions
that can be compiled into bounded or single-
chain recursions®. It is clearly more efficient
than general linear recursion algorithms, such
as Semi-Naive algorithm !). In this framework,
therefore, it is meaningful to develop some effi-
cient algorithms for special classes of recursions,
especially if these classes of recursions appear
frequently. However, besides bounded recur-
sions, single-chain recursions, and two-chain re-
cursions, there are less efficient algorithms for
other classes of recursions. Hence, it is still nec-
essary to develop some efficient new algorithms

T Department of Intelligence and Computer Science,
Nagoya Institute of Technology

2284

. Some simulation results also show the efficiency of our method.

for those frequently appearing special classes of
recursions.

In this paper, we focus on a class of fre-
quently appearing linear recursions called one-
directional cycle recursions!!). By using a
graph model '), a linear recursion can be rep-
resented by a hybrid graph, which consists of
several connected components. By appropri-
ate graph transformation operations, a con-
nected graph can always be transformed into
a one-directional cycle®. This means that
one-directional cycle recursions are a very fre-
quently appearing pattern if we consider the
process of normalization; therefore, a corre-
sponding efficient algorithm is meaningful.

On the other hands, let us consider how
to evaluate normally formed formulas. The
Counting method ? is recognized as one of the
most efficient algorithms!) for linear recursive
query processing. The main reason for this is
that it reduces the interaction of EDB relations
on different chains of a recursion by registering
the relative distances (levels) from query con-
stants. Essentially, it transforms the process-
ing of a query on a two-chain recursion into the
processing of two single-chain recursions (tran-
sitive closures), so as to make many optimiza-
tion techniques for transitive closures applica-
ble to two-chain recursions. Unfortunately, this
does not work for recursions in which there are
more than three chains, and the performance
becomes very low, since it implicitly contains a
cross-product if we use the Counting method.
Hence the Counting method is essentially suit-
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able only for simple two-chain recursions.

The multi-way counting method ") is a gener-
alized counting method for evaluating n-chain
recursions. It first decides an appropriate pro-
cessing direction for each chain. All chains
are divided into up chains and down chains
by a quad-state variable binding analysis tech-
nique. Then, appropriate processing algorithms
are chosen for the evaluation of every chain.
However, since two-chain recursions have no the
properties, as mentioned above, it is necessary
to trace not only synchronization information
but also the initial drivers for all down-chains.
That means that all intermediate relations con-
tain at least four arguments, id, level, z, v,
where id is the identifier of the deriver in the
exit relation, level is the distance between z
and y, z is the distinguished variable in a chain
furthest from the exit, and y is the variable in
the same chain nearest to the exit. Registering
the id and level for each tuple clearly imposes a
heavy burden on the processing, and ruins the
performance, since it is known that the arity
of the intermediate relations strongly influences
the performancel). It is thus necessary to de-
velop an algorithm that can avoid the problem
for some special classes of recursions.

In this paper, we find some important proper-
ties of one-directional cycle recursions. A one-
directional cycle recursion can be normalized as
a special n-chain recursion, in which each chain
predicate is one of a cyclic permutation of n ini-
tial predicates. This n-chain recursion can be
further transformed into a special n-chain re-
cursion in which all chains have the same chain
predicate. Based on these properties, an effi-
cient algorithm is proposed for evaluating n-
chain recursions of this kind. The algorithm
uses only one binary transitive closure and some
nonrecursive processing. Furthermore, it does
not need to register the information on the ini-
tial drivers in evaluating the transitive closure.

This paper is organized as follows: In Section
2. we briefly introduce a graph model defined
for single linear recursions®). Then, in Section
3, we show that one-directional cycle recursions

are a frequently appearing pattern in the nor-

malization process of linear recursion. We also
prove two properties of one-directional cycle re-
cursions. On the basis of these properties, we
propose a new algorithm in Section 4 for evalu-
ating such normally formed formulas. The ba-
sic theoretical analysis and simulation results in
Section 5 show that the algorithm is efficient.
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Our conclusions are presented in Section 6.
2. Graph Model

In this section, we briefly introduce a graph
model that is an extension of the I-graph in
Yong, et al.!!). A detailed definition can be
found in Du, et al.®.

Consider the following linear recursion:

T1 :P(ml""am’n) : —E(xl,"',xn)
T2 : P(zlv"')x'n) : —Al(yla"'ayk)a""
Am(zla'",zl)aP(wla"'awn) (2)

It can be represented by an IE-graph
(G;,G.)®. The rule r; can be represented by
a hybrid graph G;, called an I-graph, in which
variables are represented as nodes labeled with
variable names, and predicates A; are repre-
sented as undirected hyperedges labeled with
predicate names®. Between each pair of nodes
z; and w;, there is a directed edge labeled P .
The rule r; can be represented by an undirected
graph G., called an E-graph. This is similar to
an I-graph except that it contains no directed
edges. There may be more than one undirected
edge between a pair of nodes. For simplicity,
they can be replaced with a new edge, labeled
by a new label that is the set of all the labels
attached to the edge.

Example 2.1: Consider the following re-
cursive formula:

P(.’E, Y, Z) . El(z’ y)v E2(y7 Z)
P(-’E’y,z) L A(zay)7B('y:zl)’C(z7 Zl),
D(xl,ll),P(iEl,'yl,Zl)

Its IE-graph is shown in Fig. 1.
Traversals are allowed in I-graphs. A traver-
sal may form a cycle. A cycle is called a one-
directional cycle if all directed edges in the cycle
have the same direction; otherwise, it is called
a multi-directional cycle. A cycle has a weight.
Each directed edge is allocated a weight of 1 or

% The label should record the order of reference to
nodes, since predicates in Datalog are position-
sensitive
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(a) One-Directional Cycle

(b) n-Chain

Fig.2 One-directional cycle.

—1if it is in or opposite to the direction of the
traversal. The weight of an undirected edge is
0. A one-directional cycle with a weight of 1 is
called a unit cycle. An IE-graph consisting of
n unit cycles is called a normal IE-graph or an
n-chain.

Figures 2(a) and (b) show IE-graphs of a
one-directional cycle and a normal IE-graph, re-
spectively.

A node appearing in the tail of an arrow is
called a C-node, while a node appearing in the
head of an arrow is called an A-node*. They
are denoted as V, and V,, respectively. Node
z is called a derived node of y if  and y appear
in the head and tail of a directed edge, respec-
tively. An I-graph with n C-nodes is called an
n-D I-graph.

Based on the IE-graph representation, the
process of normalization can be considered as
a process of graph transformation, that is, a
process of transforming a general IE-graph into
a normal IE-graph.

Obviously, a graph equivalence definition
is necessary for graph transformation. Our
method is based on a set of generated graphs
obtained from the IE-graph.

A set of basic graph operations are proposed
for representing the generated graphs. (1)
Breeding, denoted as 8y(G), is a unary opera-
tion on graph G to generate a new graph as fol-
lows: Let z be a C-node in I-graph H, and let Y
be the derived node of z in H. If z appears in G,
then replace it with y. All other nodes in G are
replaced with new nodes. (2) Gluing, denoted
as G = H, is a binary operation that merges all
identical nodes, and replaces two directed edges
P(z,z:) and P(z,, ;) with a new directed edge

* There may be some nodes that are neither C-
nodes nor A-nodes. Such “intermediate” nodes can
be eliminated by join and projection in relational
terms. Therefore, we consider only C-nodes and A-
nodes here.
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P(z,z,). Moreover, if G or H is a set of dis-
joint graphs, then GxH = {z+y|lz € G,y € H}.
(3) Generating, denoted as gen(H), is a unary
operation on an I-graph H, which eliminates all
directed edges from H to form an undirected
graph.

Definition 2.2: Let G(r) = (G, G,) be an
IE-graph. A generated graph of G, denoted as
Rg, is a set of undirected graphs (E-graph) de-
fined as follows:

{Rk(r) = gen(G¥ * fgx(G.)) (k=1 ")
R(r) =@,
where G¥ = G5! * Bge-1(Gi), and G} = G;.

Since an E-graph corresponds to a conjunc-
tive formula, the equivalence of two generated
graphs can be defined by the equivalence of the
corresponding conjunctive formulas.

Definition 2.3: Let G and H be two E-
graph representations of conjunctive formula r
and s, respectively. G = H if and only if the
two formulas 7 and s have same results. Let R,
and R be two sets of E-graphs. R; = R, if and
only if there is a one-to-one correspondence f
between R; and R, and for each z € R,, there
is z = f(z).

Definition 2.4: Let G(r1) = (G, G.) and
H(r;) = (H;, H.) be two IE-graphs defined for
two linear recursive formulas r; and Ty respec-
tively. Let Rc and Ry be the generated graphs
of G and H, respectively. G and H have strong
equivalence, denoted as G = H, if Rg = Ry.
G and H have weak equivalence, denoted as
G ~ H,if Rc = AU B * Ry, where A and
B are two undirected graphs and U is the set
union operation.

Two strongly equivalent IE-graphs will pro-
duce same results, while two weakly equivalent
IE-graphs will not. However, if two IE-graphs
are weakly equivalent, we can derive the result
of one IE-graph by some nonrecursive opera-
tion, such as join and union, on the result of
the other IE-graph. Strong equivalence is ba-
sic, but weak equivalence is still meaningful in
optimization, as we show in the next section.

3. One-directional Cycle Recursions

In this section, after showing that one-
directional cycle recursions are frequently ap-
pearing patterns in normalization, we study
their properties.
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3.1 Normalization Based on Graph
Transformations
A general linear recursive formula can be
transformed into a normally formed formula by
a set of equivalence-preserving graph transfor-
mation operations that we proposed in a previ-
ous paper ®). Here we merely introduce the def-
initions of these operations and theorems rela-
tive to normalization, explaining these concepts
and theorems by means of examples. Details
can be found in the above mentioned paper®).
3.1.1 Reducing
Definition 3.1: Let G = (G;,G.) be an
IE-graph. Assume that C-nodes z; and z, are
connected by an edge*, and that their derived
nodes are y; and y2, respectively. They can
then be vectorized into a new node X. Through
this vectorization, G is transformed into a new
IE-graph H = (H;, H.), called a reduction of
G, as follows:
e H, is obtained by replacing z, and z; with
X, and replacing ¥ and y2 with Y, where
Y is a vector of 3, and y2. If there are two
identical directed edges P(X,Y’), they are
merged.
e H, is obtained by replacing z; and z; with
X, and merging identical nodes.
Example 3.2: Consider the following lin-
ear recursion:

P(z1, 22, T3,%4) : —E(21,%2,%3,%4)

P(z,, T2, T3,%4) : —A(T1,¥2), B(T2,¥3),
C(z3,%4), D(y3,94), F(y1,¥4),
P(y1,¥2,Y3,Y4) (3)

The corresponding IE-graph is shown in
Fig. 3 (a). It can be converted into (b) by vec-
torizing 3 and z4. |

The I-graph in Fig.3(b) contains a one-
directional cycle component. In fact, we have
the following theorem:

Theorem 3.3: A connected general I-
graph can be transformed into a simple I-graph
by finite reducing operations, where simple I-
graph is an I-graph in which there is no con-
nection between any two C-nodes x and y. %)

This theorem means that a connected I-
graph contains at most a one-directional cy-
cle that may be connected by some detachable
nodes 4% after reduction. These detachable
nodes can be eliminated by the following re-

* Two nodes z and y are connected if there is an undi-
rected edge between them or if there is another node
2 such that z and z are on an undirected edge and
z and y are connected.
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Fig.3 Reducing.
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Fig.4 Realigning C(X) in Fig.3(b).

aligning operation:

3.1.2 Realigning

Definition 3.4: Let G = (Gi,G.) be an
IE-graph of a linear recursive formula r, and
let K be a subgraph of G; satisfying the condi-
tion that if A-node z; is in K, then z € K and
all edges that contain node z are in K, where
z, is the derived node of z. Realigning K in
G means transforming G into H = (H;, He) as
follows:

e H,; is obtained by replacing every edge

C(z,y) € K in G; with C(z1,y1), where
z; and y; are derived variables of z and y,
respectively. If z or y is not connected to
any other nodes, then it is also eliminated.

e H, is obtained by eliminating all edges

C(z,y) € K from gen(G; * Bg,(Ge))-
Realigning is a weak equivalence-preserving op-
eration.

Example 3.5: The C-node X in Fig.3(b)
can be eliminated by realigning the edge C(X).
The resulting IE-graph is shown in Fig.4. 0O

Please note that Fig.4 is a pure 2-arity one-
directional cycle. As stated in Section 2, all the
connected undirected edges between two nodes
can be replaced by a new edge. For example,
the IE-graph in Fig.4 can be simplified to ob-
tain a new IE-graph, shown in Fig. 5 (a), where
F and E; represent sets of labels in the original
graph.

Realigning can detach all those elements that



2288 Transactions of Information Processing Society of Japan

X X2 X X
A £

Yi F

(2)

X1 X X, E1x, x; x5
A F — A -
Y. 1 Ej |
F A Y2 n
2

(b)

Fig.5 2-expanding operation.

are not in the cycle, so as to transform the sim-
ple IE-graph into a pure one-directional cycle.
3.1.3 Expanding
Definition 3.6: Let G = (G;,G.) be an
IE-graph of a linear recursive formula r. k-
expanding is a graph transformation operation
that converts G into H = (H;, H.) as follows:
Hi = Gf,
H =G, U gen(G'11 * ﬂG.‘ (Ge)) u---

U gen(GF ! % B5e-1(Ge))
Clearly, the 1-expanding of G; is itself.

Example 3.7: The IE-graph in Fig.5(a)
can be converted into Fig. 5 (b) by 2-expanding.
Figure 5 (b) is a pure 2-chain recursion. )

An expanding operation transforms a one-
directional cycle into a normal IE-graph.

The above discussion shows that all con-
nected general IE-graphs can always be trans-
formed into one-directional cycles by applying
reducing and realigning operations. The one-
directional cycle can be further transformed
into a normal IE-graph by expanding. Hence
we can show that a one-directional cycle is a
frequently appearing pattern of an IE-graph in
normalization.

3.2 Properties of One-directional Cy-

cle Recursions

We further study the properties of one-
directional cycle recursions, which are the basis
of our evaluation method.

Theorem 3.8: Consider a one-directional
n-weighted cycle recursions:

P(.’El, e a$n) : _Al(mlyy2)) e 1An(zn, yl)a
P(y1, -, ¥n) (4)
Its IE-graph is shown in Fig.2(a).

(1) It can always be transformed into an n-
chain recursion by an n-expanding oper-
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Fig.8 Generation graph Rj.

ation on its corresponding IE-graph.
(2) The n-chain recursions have the following

form:
P("L‘ls" "zn) : _fl(xhyl))" 'afn(xn,yn),
P(ylv""yn) (5)
where f1, ---, f, are cyclic permutations of the
list of initial predicates A4;, ---, A,,.

The first part of this theorem is proved in Yong
et al.1) and the second part can be derived
directly from its formalization process.

Example 3.9: The one-directional recur-
sion in Example 3.7 is transformed into a
two-chain recursion after a 2-expanding opera-
tion. Its two chain predicates are AF and FA,
which are two cyclic permutations of predicates
{A, F}, respectively (see Fig. 5). O

Theorem 3.10: n-chain recursion (5) is
weakly equivalent to a special n-chain recursion
called the same-chain normally formed formula
(SCNF for short), in which all chain predicates
are the same:

Q(CEl,"',.’l)n) : _fl(‘rlayl)i" '}fl(xn’yn))
QY1,¥2:" -, Yn) (6)

Proof: We show how to construct such an
SCNF recursion from formula (5). Let all the
generation graphs of an n-chain recursion (5)
be Ro,R;,---,R,,. Consider the generation
graph R; (¢ > 0). It can be divided into three
parts: an exit-part, an extra-part, and a loop-
part (see Fig.6). The extra-part consists of
n disconnected edges h;, which are generated
from edges f; (j = 1,---,n). Edge h; is labeled
with A4;,---, A, predicates (j = 1,-- -,n). Cor-
respondingly, the exit-part consists of n edges,
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e1,---,en, connected by E edges, where e; is
labeled with predicates A;,---,A4; in f; (j =
2,---,n) and e; is an empty set. The loop part

contains n chains, each of which consists of a
set of connected edges labeled with f;.

Let Q; denote the subgraph of R;y; when
the extra-part is deleted. Clearly, the set
{Qo,Q1, -+, Qm-1} is exactly a set of gen-
eration graphs of an SCNF recursion, where
the exit-part in R; is the exit predicate of
the SCNF recursion. Since the extra-part is a
non-recursive part, from the definition of weak
equivalence, this SCNF recursion is weakly
equivalent to the original recursion formula (5).

Corollary 3.11: If the chain predicates of
an n-chain recursion are a subset of cyclic
permutations of a set of initial predicates
{A1,A2,---,An}, then the recursion can also
be transformed into an SCNF.

According to Theorems 3.8 and 3.10, it is pos-
sible to obtain a two-step method for evaluating
a one-directional cycle recursion. That is, we
can first evaluate a corresponding SNCF recur-
sion, and then obtain the final result by a set of
nonrecursive join operations and union opera-
tions. Although SCNF recursions can be evalu-
ated by general methods, such as the Counting
method, Semi-Naive method, they can be eval-
uated more efficiently by considering the prop-
erties that all chain predicates in an SCNF are
the same. We propose such an algorithm in the
next section.

4. Query Processing Strategy

In this section, we propose a processing strat-
egy for a normally formed formula normal-
ized from one-directional cycle recursions. The
strategy consists of two steps: query analy-
sis and SCNF evaluation. The query analy-
sis method is tacken from Han?). Its purpose
is to decide a suitable entry point of the pro-
cess so as to reduce the relative data set for
recursion evaluation. The evaluation algorithm
for SCNFs is the key to this processing strat-
egy. It first transforms a general n-chain re-
cursion into an SCNF recursion according to
the theorems in Section 3, and then evaluates
an SCNF by means of a specialized algorithm.
This algorithm contains only one transitive clo-
sure and some non-recursive processing. As in
the Counting method, only synchronization in-
formation should be traced in the evaluation
of the transitive closure. Some post-processing
is necessary to obtain the final answer to the
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Fig.7 Processing direction of chains.

query.

4.1 Query Analysis

The purpose of the query analysis step is
to divide all chains into two classes: up-
chains (driving chains) and down-chains (driven
chains). A chain is an up-chain if the chain
predicate is restricted by some highly selective
query constants. Otherwise, it is a down-chain.
Up-chains should be processed first, starting at
the end of the chain furthest from the exit, and
forming some selection conditions on the exit.
Down-chains should be processed from the end
connected to the exit down along the chain to
the far end (Fig. 7).

The simplest type of query analysis is two-
state variable binding analysis, which is
used in the Counting method?). The only
possible states for any distinguished variable
are “bound” and “free”. Chains that contain
bounded distinguished variables are treated as
up-chains, while others are down-chains. This
strategy is based on the assumption that a
bounded variable is highly selective, and on a
well-known heuristic that selection should be
performed first. However, this assumption and
heuristic are not always true.

Therefore, a more precious “quad-state
variable binding analysis” method is pro-
posed in Han?). A distinguished variable relat-
ing to a query can be characterized by two es-
sential notions: instantiation and inquiry. For
example, if a variable is constrained as a con-
stant in a query, then it is an instantiated but
not necessarily an inquired variable, related to
the query.

Furthermore, after the operations of reduc-
ing and expanding, the distinguished variables
of a chain in an n-chain recursion may consist
of more than one initial distinguished variable,
or may come from the composition of some ini-
tial distinguished variables. Therefore, a set of
state folding rules are necessary; such a set is
also given in Han 7.
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4.2 An Evaluation Algorithm

The n-chain recursion queries can be eval-
uated by means of the multi-way counting
method ”), which first processes all up-chains,
and then all down-chains. However, there are
two kinds of information that should be traced
in the processing of each chain:

1. The synchronization of all chains.

2. The initial driver of each result in the
transitive closure of down-chains.

As we stated in the introduction, this imposes

heaven burden on the processing. Therefore,

we propose a new algorithm that needs only to

evaluate one transitive closure without tracing

any initial drivers.

Our algorithm is applicable only to one-
directional cycle recursions. The algorithm con-
sists of two parts: SCNF evaluation and post-
process. The post-process part consists of a set
of nonrecursive join operations and union op-
erations. These can be evaluated directly by
means of an existing query processor.

If some chains are up-chains - that is, if they
have the role of conveying query-bounding in-
formation to the exit relation - then they can
be processed as in the Counting method, and
form a restriction on the exit relation. We can
replace the exit relation, together with some re-
striction from the up-chains, with a new exit
relation. Furthermore, from Corollary 3.11, the
remaining down-chains can still be transformed
into SCNFs. In other words, the following al-
gorithm for SCNF evaluation is available.

In this algorithm, to simplify description, we
assume without loss of generality, that all n
chains are down-chains.

Algorithm 4.1 (Evaluation of one-direc-
tional cycle recursions):

Input: An n-arity one-directional cycle recur-

sion formula (4)

Output: Result of the recursive predicate P

Method:

Step 1: Evaluating the new exit relation, de-
noted as FE,,.,.

Enew(xla e ;xn)

Al (11?2, ?,12)
A Ay(zs, Y3)

Al e An—-l(‘rnayn)

Step 2: Evaluating the distinctive values that
appear in Ey,,, denoted as V;(E,.,,).

Vd(Enew) = U?:I(H:t. (Enew(xla T 11771)))
Step 3: Evaluating the transitive closure of

E(xla' ayn)

Dec. 1996

f1, denoted as Cy, with the initial driver
set Vy(Frnew)-
Cf(:l‘, Y, 7') = fl*(Vd(Enew))
where z € Vy(E,.,), y is the end of f;
furthest from the exit, and ¢ is the distance
between z and y in f;.

Step 4: Evaluating the SCNF.

R(yy,--- yYn) = Enew(zy,- - yTn),
Cy(z1,91,1), -+, C1(Tn, Yn, 4)
Step 5: Post-processing.
P(z1,23,- -, ,)
A1A2"'An(-’51,y1)
A2...An(x2,_1‘;?)' R(y1,,up)

An(Tn,yn)

5. Performance Analysis

In this section, we first analyze the perfor-
mance of the algorithm, and then design some
experiments to support our analysis.

5.1 Basic Analysis

The following points can be viewed as evi-
dence of the efficiency of our algorithm.

5.1.1 Number of Joins

A large number of join operations may be
generated in the evaluation of recursive queries.
This is regarded as one of the major reasons
for the low efficiency of the evaluation. There-
fore, an algorithm that contains fewer join op-
erations can reasonably be considered more ef-
ficient.

Here we consider the number of join opera-
tions in evaluation of formulas (4) and (5) by
multi-way counting and our method, respec-
tively. The two formulas are generated from
the same initial formula (2).

For formula (4), there is a preprocess for eval-
uating all chain predicates f; (i = 1,---,n) and
a new exit predicate, and a counting process
for evaluating all transitive closure of f; (z =
1,---,n) and their join with the exit. Let n be
the arity of the recursive predicate, and let m
be the average number of iterations in an eval-
uation of transitive closures. We also assume
that some intermediate results are saved for fu-
ture evaluation. Then there are n+2n(n—2)+n
joins in the preprocess, and mn + n joins in the
counting process. Thus, the total number of
joins is g1(m,n) = nm + (2n2 — n).

In evaluation of formula (5) by our method,
there is an extra step in the preprocess for
evaluating the new exit predicate, and an ex-
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tra postprocess. The numbers of joins in the

three parts are n + 2n(n — 2) + n, m + n,

and n — 1, respectively. Hence, the total is

go(m,n) =m +2n% — 1.

The lines of g;(m,n) and g2(m,n) withn =2,
3, and 5 are shown in Fig.8. From this figure,
we have following results:

(1) The crossing point of gi1(n,m) and
go(n,m) is m = 1 if n > 2. This means
that our method is more efficient when
more than two times of iterations are nec-
essary for evaluation of the closures of
any linear recursions with more than two
chains.

(2) The slope of ga(n,m) becomes larger
when n is increased. This means that the
larger n is, the more efficient our method
is. In other words, the main advantage
of our method is that it gives the fewest
in 2-chain recursions.

5.1.2 Cost of Evaluating Partial Tran-

sitive Closures

It is well known that evaluation of transitive
closures is the major part in the process of re-
cursive queries. It is meaningful to analyze the
time cost of evaluating partial transitive clo-
sures in the two methods.

(1) Bancilhon and Ramekrishnan!) showed
that the size of intermediate relations is
an important factor affecting the per-
formance of recursive evaluation. The
lower the arity of the intermediate rela-
tions, the more efficient the algorithm.
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It is not necessary to trace the initial
driver information when evaluating tran-
sitive closures in our method, and conse-
quently the size of intermediate relations
is smaller than in the multi-way counting
method.

(2) Our method first evaluates the union of
all initial derivers, and then evaluates
only one partial transitive closure. In
contrast, the original method evaluates
all the necessary n transitive closures,
respectively. It is easy to show that
S(A*(S)) € Laes(c(4°(a))), where c(f)
is the time cost of operation f. There-
fore, our method is more efficient.

Besides the above two major aspects, there are

some other aspects in which the performance

can be improved. For example, since all the side
relations in an SCNF are the same, only one
copy of that relation needs to reside in mem-
ory. This means that there is more free space,
which can be used for storing intermediate data
and reducing the time spent on paging when
evaluating the joins.

5.2 Experiments

Although the above theoretical analysis is im-
portant, some experiments are still necessary
to confirm that our method has good perfor-
mance. This subsection explains the design of
several experiments for comparing the time cost
of our method and the multi-way counting in
the 2-arity case. Note that the advantage of
our method is lowest in this case, and that the
advantage of the multi-way counting method is
the highest, because it is reduced and replaced
by the ordinary counting method.

Consider a 2-arity one-directional cycle recur-
sion:

P(IL‘,y) : -A(x,yl)aP(zlvyl)vB(yaxl) (7)

P(m,y) : —‘E(.'L', y)
By means of normalization method, this can be
transformed into

P(z,y) : —E(w,y)

P(.’E, y) : _A(x’yl)’E($1$y1)$B(ya 1'1) (8)

P(Il?,y) : —C(xsml)’P(mlv'yl)’D(yvyl)
By means of our method, it can be further
transformed into

Ei(z,y) : —E(z,9)

El(xv y) : —A(.’Z, yl)v E(wlvyl)’ B(yvzl)

Q(mvy) : —C(xaxl)aEl(Il,yl)>A(yay1) (9)
Q(-T,y) : —C(x,xl)aQ(xlsyl)’c(y,yl)
P(z,y) : —E1(z,y)

P(z,y) : —Q(z,z),B(y,z)
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Fig.9 Experiment results.

where C(z,y) = A(z, 2), B(z,y) and D(z,y) =
B(z, z), A(z,y).

The Counting method is used to evaluate the
formulas (8) and (9).

5.3 Experiment System

The system used for the experiment consists
of three layers. It is implemented in C lan-
guage on Sun Sparc station 5/110 with SunOS
4.1.4. The first layer is a storage subsystem.
All available memory units are linked by bidi-
rectional links. Memory units are assigned in
groups of 1000 per request. The second layer
is a data manipulation subsystem, in which the
main data operations are implemented, includ-
ing join, union, sort, and transitive closure. A
Counting algorithm is implemented in the third
layer.

5.3.1 Data Generator

We prepare three kinds of data set: tree, re-
versed tree, and random data set. The tree and
reversed tree sets are characterized by two fac-
tors: fan-out and size of relation. The fan-out is
the average value for a tree. It means that, for
each node in the tree, the number of out edges
is from 0 to 2 times the fan-out. For example, if
the fan-out is 1.5, then the number of out edges
is 0 to 3 for the tree. The random data set is
characterized by the size of domain and that of
the relation.

For simplicity, we specify that the Counting
method is only applicable on non-cyclic data
sets (trees and reversed trees).
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5.3.2 Experiments and Result Analy-

sis

The first experiment is done on tree data sets.
The fan-out of base relations A and B are var-
ied from 1.0 to 3.0 by step 0.5, and for each
fan-out we vary the size of relations from 100
to 2000 by step 100. Base relation E is gen-
erated randomly. All three base relations have
the same size in each test.

Figure 9(a) is a typical one in this group
of tests. However, the greater the fan-out, the
closer the two curves. This is reasonable, since
the number of iterations becomes smaller and
smaller when the fan-out is increased for the
same data volume. This trend is showed in
Fig.9(b).

Figure 9(c) shows the ratio of the time cost
of two methods when the fan-out is varied. Our
algorithm can improve the performance by 22.2
percent on average. The other interesting re-
sult shown in this figure is that the shapes of
relations A and B have little effect on the time
cost.

There are similar results for reversed trees.
Figure 9 (d) shows the ratio of the time costs of
the two methods. In this case, we vary the ratio
of duplication for base relation A and B from
1.0 to 3.0 by step 0.5, and the data volume is
varied from 100 to 2000 by step 100.

For a random data set, the Semi-Naive
method is used to evaluate formulas (8) and (9).
In this case, our method cannot gain any advan-
tage from its transitive closure evaluation. It
fact, it does not directly compute directly tran-
sitive closures in the Semi-Naive method. How-
ever, our method is still efficient when the inter-
mediate result is large enough, because in this
case the paging becomes very frequent. Our
method requires only one copy of the chain
predicate to reside in memory, and thus gains
more space for storing intermediate results so
as to reduce the number of paging operations.

In the test, we vary the ratio of size of the
domain to that of the relation from 1 to 5 by
means of step 1, and vary the size of the rela-
tion from 100 to 2000 by step 100. Figure 10
shows that the performance of our method can
be improved rapidly when the size of the rela-
tion is close to the size of the domain. In this
situation, the connectivity between data in the
relations is very high, and thus the intermediate
results are huge.
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6. Conclusion

This paper has proposed an efficient algo-
rithm for evaluating a class of linear recursive
queries, that is, one-directional cycle recursions.
It first transforms a one-directional cycle re-
cursion into a special form called an SCNF,
which is an n-chain recursion with the same
chain predicate. It then evaluates an SCNF re-
cursion by means of only one binary transitive
closure registering only the level information,
and executing some non-recursive processing.
The importance of the algorithm lies in three
aspects: (1) one-directional cycle recursion is a
very frequently appearing pattern in normaliza-
tion of linear recursions, (2) in the framework of
normalization, specialized algorithms for some
kinds of recursion can be applied directly, and
(3) the algorithm is efficient, as is shown by ba-
sic theoretical analysis and experiments.
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