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This paper describes the recovery of connection relationships among two-dimensional ob-
jects. Two-dimensional objects can be expressed by their boundary curves. For a given set of
boundary curves of objects, the dominant points of every boundary curve are detected. Then,
by considering a set of dominant points as separation points, the corresponding boundary
curve is segmented into partial boundary curves called curve segments. The curve segments
belonging to the boundary curve of an object are then translated and rotated to match those
of another object to obtain the matched curve segments. From these matched curve segments,
the longest consecutive matched curve segments are detected. Based on these longest con-
secutive matched curve segments, the connection relationship between the two-dimensional
objects is recovered. Finally, experiments are performed with real-world images, and the

effectiveness of our method is confirmed.

1. Introduction

The shapes of objects play a very important
role in object recognition, analysis, and classi-
fication. Research in this field can be roughly
classified into four areas: (1) edge detection, (2)
detection of the dominant points of boundary
curve, (3) shape recognition, and (4) determi-
nation of connection relationships.

Research on the edge detection focuses on
edges or contours and how to extract them
precisely 2:5):8):9):11),16)  while work on domi-
nant point detection focuses on the points of
high curvature and how to detect them cor-
rectly. Many methods for this have been
proposed 1):6):13),15),17),18),20),22)  Regearch on
shape recognition focuses on the entire shape of
the boundary curve and how to identify or clas-
sify objects. Several methods have been sug-
gested 12)14):19) | Lastly, work on connection re-
lationships focuses on the relationships between
objects, that is, whether a part of an edge of an
object can be connected with that of another.
This kind of problem is often encountered in
robot assembly systems and map-matching sys-
tems. To the authors knowledge, only one study
of how to deal with this kind of problem has
been carried out by Freeman and Garder ). In
the present paper, in an attempt to alleviate
this deficiency, we present a method for recov-
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ering the connection relationships among ob-
jects?V. In our method, the boundary curves
of objects are first extracted from the input
image after binarization, and dominant points
with high curvature are detected. Each bound-
ary curve is then broken into a set of partial
boundary curves called curve segments, by tak-
ing the dominant points as separation points.
Segments of a curve of an object are matched
with curve segments of other objects to obtain
matched curve segments, and the longest con-
secutive matched curve segments are detected.
Finally, the connection relationships among ob-
jects are recovered on basis of the longest con-
secutive matched curve segments.

The organization of the rest of this paper is
as follows. In the next section, we briefly review
Freeman and Garder’s work, and point out an
important problem with their algorithm. Sec-
tion 3 introduces the symbols and notations em-
ployed in the description of our method. Sec-
tion 4 gives an overview of the method. A dig-
ital implementation of our method is given in
Section 5. Experimental results obtained by us-
ing real-world images are given in Section 6.
The paper ends with some concluding remarks.

2. Brief Review of Freeman and

Garder’s Work

Freeman and Garder’s algorithm for deter-
mining the connection relationships among two-
dimensional objects may be briefly summa-
rized as follows: (1) Express the objects by
means of chain-encoding boundary curves, and
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find the slope-discontinuity points or curva-
ture inflection points if very few or no slope-
discontinuities exist; (2) Separate the boundary
curves into a set of chainlets, each of which is
likely to mate with one and only one chainlet
from another set, and then compute their fea-
tures; and (3) Calculate the feature separation
between a given chainlet and all chainlets in the
set of objects, to obtain the mating candidates.

This algorithm works well if the slope-
discontinuity points can be obtained correctly.
However, it is difficult to determine the slope-
discontinuity points uniformly. For example,
Fig. 1 shows an example of a boundary curve
of an object included in a real-world image.
According to the above description, this curve
should be separated into chainlets at the points
marked “0”, which seem to be the slope-
discontinuity points. But the points marked

“x” have similar properties to those marked

“0”, and they can also be treated as slope-
discontinuity points. This gives rise to the
wrong segmentation of the boundary curves,
with the result that the chainlet candidates and
the mating chainlet cannot be determined cor-
rectly. This is because the segmentation of a
boundary curve at slope-discontinuity points is
a kind of coarse segmentation.

To solve this problem, we perform fine seg--

mentation at points with local maxima of the
absolute curvature, to separate the boundary
curve into boundary curve segments rather than
chainlets. Owing to this fine segmentation, the
features defined in Freeman and Garder’s work
can no longer be used. Here, we perform match-
ing between the boundary curve segments be-
longing to every two different objects, and then
determine the mating partial boundary curves
where the two objects can be connected opti-
mally. For convenience in describing the details
of our method, we introduce some symbols and
notations in the next section.

Fig.1 Boundary curve of an object included in a
real-world image.
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3. Definitions, Symbols, and Notations

Before explaining the definitions, symbols,
and notations, let us give two hypotheses for
the target objects:

[Hypothesis 1] Only two-dimensional connec-
tion relationships exist among the objects; that
is, the objects cannot be connected three-
dimensionally.

[Hypothesis 2] For any three objects, there is no
case in which any two of them can be connected
to each other.

These two hypotheses will be used later. The
remainder of this section will describe the defi-
nitions, symbols, and notations.

3.1 Two-dimensional Objects

We use O; to denote the i-th object, and the
set So to denote all objects, that is,

502{003013“'101\/'—1}’ (1)
where N is the total number of objects.

3.2 Boundary Curves

For O; € So (i=0,1,---,N — 1), its bound-
ary curve is denoted by C;, which is a closed
curve. In Cartesian coordinates, the boundary
curve C; is expressed by its coordinate functions
z;(s) and y;(s), where s is a path-length vari-
able along the curve (see Fig. 2). All boundary
curves of objects in Sp are denoted by

SC:{007017"'>CN—1}- (2)

In the following description, the boundary
curve C; is simply called curve C; if this does
not cause confusion.

3.3 Curvature

For the curve C; € S¢ (i =0,1,---,N = 1),
the curvature at any point M is defined as the
instantaneous rate of change of o, which is the
angle subtended by the tangent at point M with
the X -axis, with respect to the arc-length s (see
Fig. 2), given by

K0 = Jim, - R

The curvature function can be defined in

v(s)

> X

Fig.2 Intrinsic definition of curvature.
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terms of the derivative of the coordinate func-
tions z;(s) and y;(s) as
2,
Kz(muyl) = 3/2°
N
(2]
A simple form of the curvature, derived by
Rattarangsi and Chin'®), is cited here. Let us
denote

_ Oz 7
Z; = s’ Y = Bs;’
PO RPN
2 asf k) K3 63? bl
then
Oyi % Oy Tl — Yids
dzr;  @;’ or? &3 ’

Therefore, the curvature can be expressed in
term of &;, ¥;, &;, and §j; as
_ Eili — 9%
Ki(zi,y:) = EEYE (5)
Furthermore, the function z;(s) and y;(s)
must be related by

Oz; 3y;
% cosa, ! =sina (6)
. si. 851 . .
which yields the curvature expression given by
Ki(zi,yi) = i — s (7

K;(x;,y;) is also simply written as K, and all
curvature functions of curves in S¢ are denoted
by
SK:{KOaKla"'7KN—1}'~ (8)
3.4 Dominant Point and the Interior
Angle of the Dominant Point

A dominant point is normally considered as
a point on the curve at which the absolute cur-
vature has a maximum. For C; € S¢, its k-th
dominant point is denoted by PF, and all its
dominant points are denoted by

SP,‘ :{-Pz'orp«ila'“’PiDi_l}a (g)

where D; is the total number of dominant
points of the curve C;. The dominant points
are numbered clockwise.

When the curve is traced clockwise, the an-
gle formed by the three dominant points Pf_l,
PF, and PF*! is called the interior angle of
the dominant point PF, and is denoted by
A-Pik_l-Pik'Pz'k+1-

3.5 Curve Segment

For C; € S¢, the curve is segmented at the
dominant points Sp,. The curve between two

consecutive dominants PF and PF*! is called

Curve C;

clockwise

i counterclockwise

Fig.3 Curve segment and partial curve.

a curve segment, where k = 0,1,---,D;, — 1
(modulo D;). Multiple consecutive curve seg-
ments form a partial curve. A partial curve,
when it is traced from the dominant point P/
to PF clockwise, is denoted by C7 %, and when
it is traced from P¥ to P! counterclockwise, it
is denoted by Cik’, where 5,k =0,1,---,D; — 1
and j # k (see Fig.3). When k = j + 1, the
partial curve becomes a curve segment.

All clockwise and counterclockwise curve seg-
ments of C; are respectively denoted by

Sc; :{C?1>Ci12""’

D;—2,D;—1 ~D;~1,0
Ci 707: }a (10)
SC’; = {01_10,0121,‘.‘,
CPi-hDim2 G0.Dim1y (11)

4. Algorithm Overview

The algorithm for recovering connection re-
lationships among two-dimensional objects can
be formulated in three steps:

Step 1. Express the objects by their bound-
ary curves, and extract the dominant points of
each curve.

Step 2. Separate the curves into sets of
curve segments by taking the dominant points
as the separation points, perform matching be-
tween every two curve segments that belong to
two different objects, and calculate the minimal
matching error between them.

Step 3. Detect the longest consecutive
matched curve segments, and then recover the
connection relationships among objects.

These steps are explained in greater detail be-
low. Their digital implementation is given in
Section 5.

4.1 Dominant Point Detection

There have been many attempts to de-
tect dominant points?1):6):13),15),17),18),20),23)
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Among the proposed methods, dominant point
detection based on multiple-scale curvature is
reliable and robust with respect to noise'®).
Therefore, we employ this method to detect the
dominant points.

To express the curvature shown by Eq. (7) at
varying levels of detail, both boundary coor-
dinates functions z;(s) and y;(s) of the curve
C; € S¢ are convolved with the Gaussian func-
tion g(s,o) defined by

1 T 202
g(S,G') - U\/ﬂe 297, (12)

where o is the standard deviation of the distri-
bution. The Gaussian function has been used
by many others to generate multiple-scale sig-
nal representations. It decreases smoothly with
distance, and is differentiable and integrable.
Let us assume for the time being that o of the
Gaussian function is small in comparison with
the total length of the curve and that the curve
in question is closed. The Gaussian-smoothed
coordinate functions X;(s,0) and Y;(s,0) are
defined by

u=s+3"
X;(s,0) :/ . zi(u)g(s —u,o)du,

:s——z'k
(13)
u=s+73
)/i(sa U) = / 5 yi(u)g(s - u,a)du,
u=s— 3
(14)

where S; is the total length of the curve Cj.
The limit of the integration in Egs.(13) and
(14) is to prevent the wrap-around effect of
the convolving Gaussian function. In other
words, the curvature function of the closed
curve is assumed to be of finite duration, which
avoids aliasing as a result of circular convolu-
tion in the Gaussian smoothing process if a
periodic function is used. This condition is
also essential to the convergence of the scale
space 22)| which guarantees that the number of
zero crossings decreases as ¢ increases. Note
that both X;(s, o) and Y;(s, o) are smooth func-
tions, since any derivative of X;(s, o) is equal to
the convolution of z;(s) with a Gaussian deriva-
tive of the same order (the same thing is also
true for Y;i(s,0)). Hence, the curvature K;(s, o)
of a Gaussian-smoothed curve is readily given
by substituting Xi(s,0), Yi(s,0), Xi(s,0), and
Yi(s,o) for @, 9, &, and §j; in Eq.(7), which
is rewritten as

Recovery of Connection Relationships among Two-Dimensional Objects 749

Ki(s,0) = Xi(s,0)Yi(s,0)

—Yi(s,0)Xi(s,0). (15)

To determine the dominant points of the
curve C; at a given scale o, we solve for all
the locations that have maxima of the abso-
lute curvature, | K;(s,0) |, which are the posi-
tive maxima and negative minima of the curva-
ture. Here, the smoothing Gaussian function
was cut off (set to zero) beyond three stan-
dard deviations to have an extent of six stan-
dard deviations. This limits the scale of o to
the range from 0 to omax = S;/6, where S; is
the total perimeter arc length of the curve C;.
This finite-extent smoothing window satisfacto-
rily represents the Gaussian function.

4.2 Curve Segmentation

The dominant points of C; € S¢ obtained
according to the above method are given by
Eq.(9), that is, Sp, = {P?,P?,---, PP},
where D; is ’che total number of dommant
points. The dominant points are numbered
clockwise. By considering these dominant
points as the separation points, the curve C;
can be separated into curve segments. All
clockwise curve segments and counterclock-
wise curve segments of C; are denoted by sets
Sc, and Sg,, respectively, which are given by
Egs. (10) and (11).

Note here that the notation C™" in Eq. (10)
means a curve segment traced clockwise from
the dominant point P/ to the dominant point
PP along the curve C;, and that the dominant
pomt P™ is the initium, and P the terminus
of the curve segment C™™. The notation cr
in Eq. (11) means a curve segment traced coun-
terclockwise from the dominant point PP to the
dominant point P{ along the curve C The
dominant point Pf is the initium, and P{ the
terminus of the curve segment C??.

4.3 Partial Curve Matching

Usually, a human checks whether two objects
can be connected by rotating one object clock-
wise and the other one counterclockwise, and
then bringing one object next to the other to
see the gap between them. If the gap is small
enough, the two objects are thought to be con-
nectable at this orientation. Otherwise, the
human will continue to rotate and match the
two objects to find an orientation suitable for
connection. A computer can simulate this pro-
cess by using clockwise curve segments and the
counterclockwise curve segments. Details are
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partial curve C/"7""*
Nl rmmmmmmaemm e
P] ke })im+1
rotate S At utn) -
v+1 partial curve C[*"~
SA(FJ’HJ]) P(H]
o P

Sa(q,qﬂ,pﬂ)

Fig.4 Partial curve 71"~ is translated so that
the dominant point P/™ and the dominant
point P" overlap, and 1s then rotated clock-
wise.

given below.

For the curves C;,C; € Sc, the clock-
wise curve segments of C; and the counter-
clockwise curve segments of C; are repre-
sented by Egs.(10) and (1 ) namely, Sg, =
{C1,¢12,--, PPt oPim0Y and S,
= {clo,cn,....C
spectively, where D; and D, are the numbers
of dominants points of the curves C; and C;,
correspondingly. Matching of the curve seg-
ments C;"~ Lm o Sc, and C'J”+1 e Sc is per-
formed through the clockwise consecutive curve
segment pair C[*~"™C™™ 1 (ie. the par-
tial curve C* " erl) and the counterclockwise
consecutive curve segment pair €7 "C" -1

(ie., the partial curve C7T1 "~ 1) where m =

P ~1,D;%2 ,0,D;-1
,C. }, re-

0,1,---,D; — 1 and n = 0,1,- Qj—-l(see
Fig- 4)- First, the partial curve C7 70" ! is

translated so that the dominant point P} in-
cluded in this partial curve overlaps the dom-
inant point P® included in the partial curve
ophmEl The displacements of X-axis and

Y axis are given by
m—1,m+1 An+ln-1
Z(Cz ) Cj )

= z(m) - 2;(n), (16)
Dy(CZn—l,m+1’c‘y;1+l,n—l)
= 3i(m) — y;(n), (17)

where (z;(m),y;(m)) are the coordinates of
the dominant point P/ of the curve C;, and
(z;(n),y;(n)) are the coordinates of the domi-

nant point P of the curve C;. Then, the par-
tial curve C]n—i»l =1 is rotated clockwise from 0°
to 360°, in steps of 4°. The matching error is
calculated after ea,ch rotation. When the par-
tial curve C'"Jr1 "™~ is rotated through 6°, the
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matching error is defined by
—1,m An+l,
E(CT™,C7 ™),

=/ da:dy+/ dzdy, (18)
R1

where R; is the region circled by the curve
segments C7™ ! and C?" and the dotted-

line Pjn”lP{nH, and R2 is the region circled
by the curve segments C* “Lm and C’;‘H’"

and the dotted-line P}L‘HPZ"_1 (see Fig.4).

When the partial curve C"t1" ! is rotated
from 0° to 360° in steps of §°, the minimal
value of E(C]*~ 1™ C’n+1 ")g is called the min-

imal matching error between the curve segment
Cb™ and C’"+ ™. The minimal match-

— A 1
ing error is denoted as E(CPh™ »C7 ™) i,

and the correspondlng rotation angle is denoted
as B(C* 1™, CI* ™). In the following, if

there is no confusmn, the parts in parentheses

are omitted, and are simply denoted as Ep;,

and Omin. Emin is given by
Enin = min{E16a Eos,- - 7Et5}’ (19)

where ¢ = 360/9. X

As above, VC;LH’" €S¢; (n=0,1,---,D; —
1) is matched with VC* "™ € S¢, (m = 0,1,

--,D; — 1), and the matching error is calcu-
lated according to Eq.(18). We can obtain
an Emin — Omin error map. By analyzing the

Ernin—0min error map, we can obtain the longest

consecutive matched curve segments (LCMCs),

and then determine the connection relation-
ships. Details are given in the next section.
4.4 LCMC Determination and Con-
nection Relationship Discrimina-
tion
For the curve segment C"""™ € Sc. and

Cn+1" € SC , if the followmg three condi-

tlons are satlsﬁed the curve segment pairs

crbmem™t and CJ"+1 ”C” =1 are said to
be matched”

(1) The minimal matching error between the
curve segment C;*" "™ and C7TM™ s
smaller than the threshold value Eypes;
that is,

-1, A 1,
E(sz m’ C]n+ n)min < Ethres'

(2) The minimal matching error between the
clockwise consecutive curve segment of
C*™ "™ and the counterclockwise con-
secutive curve segment of CT*™ is also
smaller than the threshold value Eyppe;
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that is,
E(C;n’m+17 CA’;‘L’n_l)min < Ethres'
(3) The absolute value of the difference be-

tween the rotation angle of the curve seg-

ment CJ" +17 when it is matched with
C" ™ and the rotation angle of the
curve segment C’" "»~1 when it is matched

with C;™ Ml g smaller than the thresh-
old value Ab¢pres; that is,

B(CTHm, EP T i
,m+l An,n-—1
- e(Cz'm ’ Cj )minl

< Aethres- 1 Amtlin
Two curve segments, C;"~ "™ and ¢y ", form

the initium of an LCMC. Next, the focus is
moved to the curve segments Cm e Se,
and C’Jn "1 ¢ 8¢, and the above process is
repeated. This continues until all consecu-
tive curve segment pairs that satisfy the above
three conditions are found. These consecu-
tive matched curve segment pairs make up an
LCMC. The curve segment pairs at which the
repetition processing stops form the terminus
of the LCMC. The number of the matched
curve segment pairs in an LCMC is called the
“length”.

In this way, all possible LCMCs among the
curve segments in S¢; and S¢; can be obtained.
Let us denote these LCMCs as

Sreme = {(C;n—l’m“laéfﬂ’nkh),

(Cy—l,u+Lz Cﬂ{*l-l,v—Lz) .
i ’ ] b
(Cf_I’ZH_LQ , CAi;‘I‘*'l’q_‘LQ)}

(20)
where () represents the total number of
LCMCs, and Ly,Lp,---,Lg the lengths of
LCMU s, correspondingly, and (-, .) denotes an
LCMC that has two partial curves formed by
curve segments in S¢, and Sc , respectively.
These LCMCs are used to determine the con-
nection relationship between the objects O; and
O; below.

The partial curves

ép+1,n—L1 CVP+1,U—L2
J 17
C“«q+1,q*lzc

bl ’
are rotated to the same inclination
as the partial curves C[*~ bt gu-lutle

0P Letle respectively, and translated

SO that the centers of the partial curves
cpthne I C"“” L2 C’qH’q Lo are over-

lapped with those of Cm Cm+Ly ,Cubutle
., CP7EPYEe and the matchmg errors of
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these LCMCs are then calculated according to
Eq. (18). The rotation angle is defined by

9 (C;s—l,s+R’ C;-H,t—R)

— arctan (M)
Tt—R — Tt41
_ arctan (Esili_—_y_s_—i) , (21)
Ts+R — Ts—1
where s = m,u,---,p, t = n,v,---,q, B =

Li,Lo, -+, Lq, (Ts—1,Ys-1) and (TsyR,¥st+R)
are the coordinates of the initium and terminus
of the partial curve C:™ 1" " and (zy41,y:41)
and (z;—g, y:Rr) are the coordinates of the par-
tial curve (;"t-“’t"R, respectively.

In Srcme, LCMCs whose lengths are smaller
than the threshold value Ly, are discarded.
After this filtering processing, if there is more
than one LCMC left in Spcomc, the LCMC
whose matching error is the smallest is assumed
to be the part where the objects O; and O; can
be connected optimally. If there is no LCMC
whose length is greater than Ly, there is no
connection relationship between the objects O;
and O]'.

Note here that the value of Afes is fixed,
and is determined experimentally. However,
the value of Eyu.s depends on the lengths of
the curve segments in comparison, and cannot
be fixed. Fypres is dynamically determined by

Eihres = Wi x max{A?, A}, .-, AP:—1
A(}aA;f"a J[‘)] l}a (22)
where A7 is the area of the triangle formed by
the dominant points P!, P/, and Pt}
A? is the area of the triangle formed by the
dominant points P;’_l, P}, and PJM'1 (m =

0,1, --,D;—1, modulo D;,n =0,1,---,D;—1,
modulo D;); and Wg is the weighting coeffi-
cient, which will be determined experimentally.

4.5 Recovery of Connection Relation-

ships

In the above method, the curve segments
of VO;,0; € Sp (i # j) are matched with
each other to obtain the LCMC between them.
There are probably cases in which there is an
LCMC between every two different objects. It
is clear that not all LCMCs represent the cor-
rect connection relationships among objects.
These LCMCs are filtered according to the fol-
lowing two rules:
[Rule 1] If the partial curve C”J of object Oy
matches the partial curves Cm" C’}?q,~ ,C;j‘,”
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of the objects O,, 0., - -, Oy, at the same time,
where 0 # 7 --- # w, all these LCMCs are con-
tradictory (according to hypothesis 1), and are
discarded.

[Rule 2] If the partial curves C,ij and C*™ of ob- -

ject Oy match the partial curves C7* and C¥¥ of
objects O; and O,,, respectively, and the partial
curve Cf? of the object O; matches the partial
curve C2Y of object Oy, where t # w, there
exists a contradictory matched partial curve
among the objects Ok, O¢, and O,, (according
to hypothesis 2). The LCMC with the biggest
matching error is discarded.

Since we are discussing connection relation-
ships among 2-D objects, Rule 1 is given a
higher priority (refer to hypothesis 1). After
this filtering operation, the remaining LCMCs
are used to recover the connection relationship.
First, the number of matched curves of each ob-
ject is calculated. The object with the maximal
matched curve number is selected as the base
object for which the recovery of the connection
relationship is performed. The base object is
not rotated or translated in the recovery oper-
ation. The recovery procedure has two steps.

In the first step, objects that can be con-
nected to the base object directly are processed.
The translation along the X-axis is the differ-
ence between the z-coordinates of the center
points of the two matched partial curves, and
that along the Y-axis the difference between the
y-coordinates. The rotation angle to the base
object is calculated as shown in Eq. (21). It is
worth noting that the coordinates of the object
will be changed correspondingly if it is trans-
lated or rotated.

In the second step, objects that can be con-
nected to the base object indirectly are pro-
cessed. For example, if object O; can be con-
nected to the base object directly, and object
O; can be connected to object O;, we say that
object O; can be connected to the base ob-
ject indirectly. The displacements of object O,
along the X-axis and Y-axis can be obtained in
the same way as above, because the coordinates
of object O; are changed in the first step. The
rotation angle of object O; is the sum of the
rotation angle of object O; to the base object
and that of O; to O;. Generally, if object Oy,
can be connected to the base object via objects
Ok, Op, - -+, Oy, Oy, the rotation angle of object
O, is the sum of the rotation angle of Oy to
the base object, that of O, to O, ..., and that
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of O, to O,. The experimental results will be
given in Section 6.

5. Digital Implementation

5.1 Digital Dominant Point Detection

For a digital implementation, it is necessary
to define the digital boundary curve, the dig-
ital curvature, and the digital matching error.
Let us represent the coordinate functions z;(s)
and y;(s) of the curve C; digitally by a set of
equally spaced Cartesian grid samples {z¥,y*}
fork=0,1,---,5;—1 (modulo S;). The digital
curvature at point k on the curve C; is com-
puted by

KE= Adbant - Agfatet, @)

where A denotes the difference operator and A2
is the second-order difference operator 1%).

The digital Gaussian function in Burt’s
work® with a window size of K = 3 is used
here to generate smoothing functions at vari-
ous values of ¢, and is given by

h[0] = 0.2261, h[1] = 0.5478,
h[2] = 0.2261, (24)

where h[l] is the center value and Y hlk] =1
(k = 0,1,2). This digital function has been
mentioned as the best approximation of the
Gaussian distribution®19).  For the digital
smoothing function with higher values of o, the
above K = 3 function is used in a repeating
convolution process. For example, a K = §
smoothing function is obtained by convolving
Eq. (24) with itself once, and a 2(5 +1) +1 dig-
ital smoothing function is created by repeating
the self-convolution process j times.

For the curve C; digitally represented by
{z¥,yF} for k = 0,1,---,5; — 1 (modulo S;),
which has a perimeter arc length of length S,
the digital Gaussian smoothing function with a
largest o for the coarsest boundary representa-
tion must have a window size no larger than S;
in order to avoid aliasing.

A digital multiscale representation of the
curve C; from ¢ = 0 t0 Omax (= 9:/6) is
constructed by the digital Gaussian function
defined above. The multiscale digital curva-
ture of the curve C; can be obtained accord-
ing to Egs.(23) and (24). The next step is
to determine the dominant points for a given
0(0 ~ Omax). Details are as follows: For each
point k of the curve C;, a searching procedure
is applied to detect the local maximum of the
absolute curvature within the region of support
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given by the sequence {| Kt |,---,| KF1 ],
| K¥ || KFtY .- | KT |}, where KF is the
curvature of the point in question, and K and
KT are the leftmost and rightmost points of the

local region of support, respectively. The region -

of support for each point % is the largest possi-
ble window containing & in which | K; | to both
the left and right of k is strictly decreasing. A
boundary point is not an absolute maximum if
such a region of support cannot be determined
for that point.

It is reasonable to believe that some of the
detected maxima of absolute curvature do not
correspond to the true dominant points of the
boundary curve. Although such a point is de-
tected numerically as the local absolute maxi-
mum, the measurable digital differences in cur-
vature between the point and its neighbors in
the region of support are very small, sometimes
approaching machine precision; that is, both
| KF| — | K! | and | KF | — | K] | are positive
but approaching zero. An example of numerical
absolute maxima is boundary noise on straight
lines. A one-pixel boundary noise on a hori-
zontal straight line will generate three numer-
ical maxima of absolute curvature that persist
through all scales. The difference in curvature
between such an absolute maximum and other
points in its region of support is very small, es-
pecially for large 0. Although these absolute
maxima exist theoretically when the boundary
curve is treated as a continuous function, they
should not be treated as valid absolute curva-
ture maxima in the digital implementation.

To detect a false absolute maximum, say at
k, the region of support based on the cur-
vature is first determined, as previously de-
scribed. Then, the perpendicular distance from
the absolute maximum at k to the line passing
through the two end points at ! and r of the
region of support is measured. The maximum
at k is considered to be a false absolute max-
imum if the measured distance is smaller than
one pixel. This threshold is determined on basis
of the fact that a slanted straight line is quan-
tized into a set of either horizontal or vertical
line segments separated by one-pixel steps. In
addition, it is assumed that boundary noise is
no more than one pixel, and if the noise level is
known a priori, this threshold can be adjusted
accordingly.

Moreover, if the interior angle of the dom-
inant point P, that is, the angle formed by
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the dominant points P!, P¥, and P¥*, is
greater than 170°, these three dominant points
are considered to lie on the same straight line,
and the dominant point P}” is discarded.
After the above filtering, the remaining domi-
nant points are thought of as separation points.
The curve C; is separated into curve segments
at these points. This is done to all curves in
Sc.
5.2 Digital Matching Error
The matchlng error between the curve seg-
ments C7"""™ € Sg, and C7T1" € 8¢, dis-
cussed in Section 4.3 is computed digitally as
follows:
E(Cim—l,m, Cﬁ;t+1,n)9
max{P,Q}
= z (Sap+1a) + Sagatipot)
p=0,q=0
max{U,V}
+ Z (SA(u,u+1,v) + SA(v,v+1,u+l))a
©u=0,v=0
(25)
where P, @, U, and V are the lengths of
the curve segments CA’?H’n, ot C’;L’"_l,
and C™™*! respectively, and Sa(pp+1.q)s
SA(q,q—H p+1)y SA(uutiw)s a4 SA@wu+1,u+1)
are the areas of the triangles formed by the
boundary points p, p+ 1, and ¢; ¢, ¢+ 1, and
p+1; u, u+1, and v; and v,v+1,and u + 1,
correspondingly, as shown in Fig.4. The areas
of the triangles are computed as follows:

SA(pp+1,9)
= () -y )zl — (af — 28 )y!
+ (28 — 2P )yl — (9 — o),
(26)
SA(q,q+1,p+1)
1 1
— (yl yf+ ) P+ ($;z xq+1)y§>+1
+ (2] - q“)y@ (9f — ™)zt
(27)
SA(u u+1,v)
= (y¥ -yt ey — (@ — 2 )yd
+ (o = 2 - -y el,
(28)

SA(v,p+1,u+1)

= (v —y/ )zt — (o) — 2yt
i i j
+ (mz - ,1ll)+1)yz (yz v+1)x1'
(29)

Note that if a curve segment has fewer points
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than the one it is being compared with, its ini-
tium or terminus will be used to correspond to
the left point of the curve segment it is be-
ing compared with, in order to continue the
calculation in Egs. (25)-(29). Which one will
be used is determined by the tracing direction
along the curve segment. For example, in the
region R, in Fig. 4, the calculation starts from
the overlapping dominant point P! (that is,
PP'). The matching error is calculated by taking
one point from each curve segment C;* "™ and
C?Jrl’n, and substituting it into the first item
of Eq. (25). Because the curve segment C}* ™"
has fewer points than CA’;LH’", the initium of

the curve segment C;* "™ that is, the domi-
nant point P, is used to correspond to the left
points of the curve segment Cf““’", in order

to continue the calculation in the first item of
Eq. (25) until the initium of the curve segment
C7t1™ ) that is, the dominant point Pf“, is
reached. A similar calculation is performed in
the region R;.

The digital matching error shown in Eqgs. (25)
—(29) is performed when the partial curve
CA’;?H’”"l is rotated from 0° to 360° in steps

of §°. The minimal matching error between the
curve segments C;" "™ and C™*" can be ob-
tained according to Eq.(19). Section 6 gives
the experimental results obtained by using this
algorithm.

6. Experiment Results

In this section, we present experimental re-
sults for the recovery of connection relation-
ships among two-dimensional objects.

The first experiment employs the image in
Fig. 5, which includes two objects. The left
bottom corner of the input image is the ori-
gin of the coordinates. After being binarized,
the objects are numbered Oy and O; in order
of searching when the boundary-tracing algo-

Fig.5 Input image including two objects.

Apr. 1997

rithm is applied, and the two closed bound-
ary curves are numbered Cy and C,, corre-
spondingly, as shown in Fig.6. The lengths
of Cp and C) are 490 and 504 dots, respec-
tively. Therefore, the scale o ranges from 0
t0 omax = min{490,504}/6. The Gaussian-
smoothed boundary curves are given in Fig. 7,
when ¢ = 82. The separation points ob-
tained are Sp, = {F),Py,---,P3°} and Sp, =
{PY,P},---, P®}, which are numbered clock-
wise and are plotted on the corresponding
curve, as shown in Fig. 8. LCMCs between the
objects Oy and O;, whose lengths are greater
than Lipres (= 3), are shown in Table 1, in
which LCMCs are listed in such a way that
the matching errors are ordered from small to
large. The first column shows the number of
LCMCs. The second and third columns show
the initiums and termini of the partial curves of
the object Op, and the fourth and fifth columns
those of the object Oy, respectively. The sixth
column shows the lengths of LCMCs, that is,
the number of the matched curve segment pairs

3 B

Fig.6 Closed boundary curves obtained.

23 &

Fig.7 Gaussian-smoothed boundary curves
(o0 = 82).

Fig.8 Separation points marked by small “o” on the
original curves.
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Table 1 LCMCs between the objects Og and O1 whose lengths are greater than Lyp,e-
LCMC | Partial curve of O, | Partial curve of O; | LCMC Rotation Matching
No. Initium |Terminus| Initium |Terminus| length angle of O, error
1 1)017 ])00 [)15 [,]2 4 -267° 193.47
2 P P P P 4 91° 260.53
3 [)07 ])0'0 [)]]5 ‘Dll2 4 96° 352.15
7 o
4 P P, P’ p? 4 -183 491,86
5 P2 P? p’ p? 5 -13° 498.11
6 P, Py Pt PP 5 -177° 616.20

Fig.9 Connection relationship between the two
objects Og and Oj, shown by thick curves.

included in LCMCs. The seventh column shows
the rotation angle of the partial curves of the
object O;. A negative rotation angle indicates
counterclockwise movement, and a positive one
clockwise movement. The eighth column show
the matching errors of LCMCs, that is, the
matching error between the partial curves of
the objects Oy and O;. Because the first LOCMC
has the smallest matching error, it is considered
that the connection relationship between object
Oy and O; exists at this LCMC. As related in
Section 4.3, when we say that the curve segment
CT ™ matches C;-L’n"'l, we mean that the

: - 1
curve segment pair C;*~“™C7™*' matches
the curve segment pair C;L“’"C’;”"_l. In this

example, the curve segment 037’18 matches the
curve segment C17 % that is to say, the curve seg-

Al 1
ment pair Cy *8Ca®" matches the curve seg-

ment pair C7°C>°. Therefore, the LCMC with
the smallest matching error comprises the par-
tial curves Cy % and C7?, which are shown by
thick curves in Fig.9. The connection rela-
tionship recovered on the basis of this LCMC is
shown in Fig. 10 after the object O; is trans-
lated 136dots along the X-axis and —73dots
along the Y-axis, and is rotated through 267°

counterclockwise.

K#z 0,
Fig. 10 Recovered relationship between the two
objects.

Fig. 11

Input image including four objects.

Another experiment employs the image in
Fig. 11, which includes four objects. After be-
ing binarized, the objects are numbered Oy,
01,04, and O3, in the order of searching when
the boundary-tracing algorithm is applied, as
shown in Fig.12. Thus, the object set and
boundary set are So = {Og,01,02,03} and
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Sc = {Cy,C1,C2,C3}. The separation points
obtained are plotted on the corresponding
boundary curve and numbered clockwise (see
Fig. 13). The separation point sets are S P, =
P()lg}’ SPl = {Ploapll""’

{P(?,Pol’...’ Pllg}a

Fig.13 Separatin points marked by small “o” on the
original curves.

Apr. 1997

Sp, = {P207P217"'vp219}) and Sp, = {P307
P},---,P3°}. The four curves in S¢ are, re-
spectively, broken into four sets of curve seg-
ments at these four sets of separation points,
which are S¢, = {Co*,Cy2, - -, &1 190}
Se, = {Cf’l’ 011’2’ ) 0118’19’ 0119’0}’ Sc, =
{Ch,Cy%, -, 0%, 0%, and So, =
{c* i, -, 055" 03%%) ) when  traced
clockwise. The curve segments in these four
sets are matched with each other. The LCMCs
with the smallest matching error between ev-
ery two different objects are listed in Table 2,
and are shown by thick corresponding curves in
Fig. 14. The first column of Table 2 shows the
two objects being matched. The second and
third columns show the initium and terminus
of the partial curve of the first object, and the
fourth and fifth columns those of the second.
The sixth and eighth columns give the lengths
and matching errors of the LCMCs, while sev-

Fig.14 LCMCs between every two objects.

Table 2 LCMCs with the smallest matching errors between every two objects.

0;-0; | Partial curve of O; | Partial curve of O; | LCMC Rotation Matching
Initium |Terminus| Initium |Terminus| length angle of O; error
00-0;1 | pY P P’ 4 -272° 131.15
0y-0; P2 s J 4 268° 178.62
00-0s | p)7 N P 4 -93° 211.55
0,-0; pll2 pll5 p25 4 0° 211.00
0,-0; Pl P Pe 4 2° 161.93
0,-0; P}’ P P31 5 4 -89° 283.78
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enth shows the rotation angle of the second ob-
ject.

It is worth noting that not all LCMCs for
which connection relationships exist are correct.
For example, the LCMCs in the second and
fourth row are contradictory, because a partial
curve of an object cannot be connected with two
partial curves of two different objects. To re-
cover the connection relationships among these
objects, the contradictory LCMCs that should
not be used in connection relationship recovery
must be detected beforehand. The contradic-
tory LCMCs are determined according to the
two rules given in Section 4.5. Since Rule 1
has higher priority, it is used first. Through
application of Rule 1, the LCMGCs in the sec-
ond and fourth rows of Table 2 are considered
to be contradictory, and are discarded. Then,
through application of Rule 2 to the remaining
LCMCs in Table 2, the LCMC in the seventh
Tow is considered to be contradictory and is dis-
carded. It is worth noting that LCMCs remain
in rows 3, 5 and 6 of Table 2 at this point. The
numbers of matched partial curves of objects 1
and 2 are both two, but the sum of the match-
ing errors between object 1 and 2 and objects
1 and 3, is smaller than that of matching errors
between objects 2 and 0 and objects 2 and 1,
and therefore object O; is selected as the base
object from which the recovery of the connec-
tion relationship is started.

In the first step, the connection relationship
between objects O; and O, and objects Oy and
O3, are recovered, because objects Oz and Os
can be connected to the base object O; directly.
The translations of object Oy along the X-axis
and Y-axis are 79dots and —150dots, and the
rotation angle is 0 degrees. These three param-
eters of object O3 are —141 dots, —83 dots, and
—2 degrees, correspondingly.

In the second step, the connection relation-
ship between object Oy and the composite ob-
ject obtained above is recovered. The trans-
lations along the X-axis and Y-axis of object
Qg are —63 dots and 70 dots, and the rotation
angle is —268 degrees, which is the sum of the
rotation angles of object Op to the object Oq
(—268°) and object O3 to 01 (+0°). Note that
the rotation angle in row 3 and column 7 of Ta-
ble 2 is the rotation angle of object 2 to object
0. The final recovery result of this experiment
is shown in Fig. 15.
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Fig.15 Recovered relationship among the objects.

7. Conclusions and Discussions

This paper has discussed the recovery of con-
nection relationships among two-dimensional
objects. The results of experiments performed
with real-world images showed the validity of
our method for recovering such relationships.
The method can be applied to intelligent robot
assembly systems.

In the method, a closed boundary curve is
first broken into a set of curve segments at the
separation points at which the absolute curva-
ture has local maxima. Then, the curve seg-
ments are matched with those in another set
belonging to another object, and LCMCs are
detected. The connection relationship is deter-
mined on the basis of these LCMCs. One im-
portant consideration in this method is whether
the segmentation of the boundary curve can be
performed stably; that is to say, whether the
separation points can be detected stably. For-
tunately, many methods for detecting dominant
points have been proposed. Among these meth-
ods, multiscale-based dominant point detection
is known to be the most stable, most reliable,
and most resistant to the effects of noise!?).
Therefore, we employed this method to detect
the dominant points. The scale o ranges from
0 to omax = 5/6. By changing the scale level o,
we can obtain the desirable dominant points.

We set three conditions for detecting LCMCs.
Because the threshold E.., depends on the
lengths of the curve segments, it is decided dy-
namically. The weighting coefficient Wg is de-
termined experimentally, and was set at 0.238
in our two experiments. Since the slants of
the two continuous curve segments C;-LH’” and

A -1 . . .
C7°"7, in which the matching errors between
—1 2
the curve segments C;"” ™ and Cf“’n, and
1 A —_ . . .
™™ and C7"! are minimal, are not iden-
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tical, the tolerance of the rotation angle of
the curve segment C;f’n_l to that of the curve

segment CT™T1" was set at +£22.5°, that is,
AbBipres = 45°. The threshold Lipres was set
at 3. From the experimental results, we can
say that the values of these parameters were
appropriate.

The execution times of the two experiments
on a DOS/V machine with a 133-Mhz Pentium
Over Drive Processor are listed in Table 3. We
can see that step 2 takes the most of execu-
tion time, and that the time for curve segmen-
tation is negligible in comparison with that of
curve segment matching. Therefore the execu-
tion time for step 2 can be given by

Tstepe = crO((N — 1) X Diyax1 X Dimax2),

(30)
Table 3 Execution time of every step (unit: ms).
Contents of processing Ex. 1 Ex. 2
Boundary curve tracing 165 220
Step 1 Convolption with Gaussian|
smoothing function 879 1922
Curvature calculation and 165 275
dominant points detection
Step 2 Curve segmentation gnd 894069 | 5528256
curve segment matching
Determination the 5767 15599
Step 3 . . .
connection relationship
Recovery of the connection 55 55
relationship
Total 901100 | 5546327

Apr. 1997

where N is the total number of the objects
in the input image, Dmax1 and Dpaxo are
the largest and second largest numbers of sep-
aration points, that is, Dpax1 = max{Dp,
Dl;"'aDN—&}, Diyax2 = max{Do,Dl,'--,
Dn_1} — {Dmax1}- The coeflicient r is the
time needed for matching between the longest
and the second longest partial curves in {S¢,,
Scyy - sScn_, - The coeflicient ¢ is the num-
ber of rotation times in the range 0°-360°, and
is determined by 360/d. The execution time
Tsiep2 is heavily influenced by the value of 4,
which is the amount by which the rotation an-
gle is incremented during one rotation opera-
tion. In these two experiments, ¢ is set at 1°.

The minimal matching errors between the
curve segments 037’18,008"9,03910,0871, and
Cé 2 (shown by A-E) of object Oy and all curve
segments of object O; in the first experiment
are shown in Fig.16. Their rotation angles
corresponding to these minimal matching errors
are given in Fig.17. The horizontal double-
dotted-and-dashed line in Fig. 16 shows the po-
sition of Fipres, while the vertical dotted lines
in Fig.16 and Fig.17 indicate the position of
the LCMC with the minimal matching error.
The range of tolerance of the rotation angles of
the curve segments of this LCMC is shown by
two horizontal double-dotted-and-dashed lines
in Fig.17. From these results, we can say that
the method for determining the threshold Eyjes
and the three conditions for detecting LCMCs
are appropriate.

Matching error
(Unit: degree)

@AEBOCODME|

500
450
400 |
350
300
[ 250
200
150
100
50

0

10 11 12 13 14

15 16 17 18 19

Curve segment number of the curve Cj

Fig.16 Matching errors between the curve segments 17-19, 0-1 (shown by
A-E) of the object on the right and all curve segments of the object on the
left in Fig. 5.
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Rotation angle

ABBOCODM®E|

(Unit: degree)
400

350
300
250
200
150
100
|50
0

4 5 6 7 8

Il 12 13 14 15 18

Curve segment number of the curve Cj

19

Fig. 17 Rotation angles of all curve segments of the object on left when it
is matched with curve segments 17-19, 0-1 (shown by A-E) of the

object on the right in Fig. 5.

The gaps in Fig. 10 (represented by AE) and
in Fig.15 (shown by AE;, AE,, AFE;, and
AEy) are errors in the recovery of the connec-
tion relationship. There are two factors caus-
ing these errors. First, because the image is
scanned from top to bottom, the brightness of
the edges on the top and bottom sides are dif-
ferent, and there are shadows on the bottom
side (see Fig.5 and Fig.11). This gives rise to
the deformation of boundary curves. Second,
the amount by which the rotation angle is in-
cremented in partial curve matching (refer to
Section 4.3) is §. One way of reducing these er-
rors is to select a smaller 4, and the other is to
improve the image input environment and the
algorithms for binarization and boundary curve
detection.

This experiment used the images of objects
without any texture. If the objects have tex-
tures, boundary curve detection will become
more difficult. Moreover, partial curve match-
ing will have to be performed between every two
pairs of curve segments belonging to two differ-
ent objects, which will be very time-consuming,.
In our experiment, if a partial curve of an object
matches the partial curves of multiple objects,
these matched curves are discarded. In fact, it
is necessary, in this case, to employ the image
values near the matched curves to find the op-
timally matched partial curve. These problems
are left to be solved in the future.
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