3—438

Group Protocol for Transaction-Oriented Applications *

3G—4

Tomoya Enokido, Takayuki Tachikawa, and Makoto Takizawa !

Tokyo Denki University !
e-mail{eno, tachi, taki}@takilab.k.dendai.ac.ip

1 Introduction

In group communication protocols, larger compu-
tation and communication overheads are consumed
to causally order all the messages transmitted in the
network. Transactions in clients manipulate objects
in servers by sending read and write requests to the
servers. In this paper, we define significant messages
by using the conflicting relation among the transac-
tions. We newly propose an object vector to causally
order only the significant messages. The scheme of the
object vector is invariant in the change of the group
membership. We also show a TBCO (transaction-
based causally ordered) protocol which adopts the ob-
ject vector, by which the number of messages to be
causally ordered are reduced.

We present a system model in section 2. In section
3, we define significant messages. In section 4, we
present the object vecior and the TBCO protocol. In
section 5, we evaluate the TBCO protocol.

2 System Model

A system is composed of processors p;, ..., pn &n
> 1) interconnected by the communication network.
Each object o; is stored in one processor. In the net-
work, messages may be lost and may be delivered out
of order. On receipt of a request message m with an
operation op;, oy computes op;. We assume that each
o; is replicated. Each replica is allocated in a proces-
sor. Let o} denote a replica of o; in p;. A transaction
T; in one client processor p, issues read and write re-
quests to the server processors to manipulate replicas
of an objects o;. p, sends a read request to one pro-
cessor p; which has a replica of o;. p; sends back the
response with the data derived. p, sends write re-
quests to all the replicas of o;. Here, op; —r, op; iff
an operation op, precedes op; in Ti. T; is an atomic
sequence of read and write operations(l]. Let T be
aset { 71, ..., T,n } of transactions in the system.
Let opi(z) denote an operation op of T; on a replica
z in p;. op is r(read) or w(write). A subsequence
of operations of T; on the replicas in a processor p,
is named a subtransaction T};. op; —7,, op; iff op
precedes op; in T;;. The interleaved computation of
subtransactions Ty, ..., Trme in p; is a local history
Hy of pi. op, precedes op; in p, (opy —y, op;) iff
op: is computed before op; in p;. A global history H
of T is a collection of the local histories Hy, ..., H,,.
op, precedes op; in H (opy —x opz) iff opy —x, opa,
op1 —T; Op2, O 0p1 —y ops —y op; for some p,,
T; and op3. H has to be serializable[l] to keep the
replicas consistent. In order to make H serializable,
the conflicting operations on the same object have to
be computed in the same order as some serial history.

ChPIOH T ER LI IV-TRIETO O
e S T BT BRH
THEERAY

3 Significant Messages

A processor p; may not receive messages or may
receive messages out of order. If p; loses a message
m sent by py, p, is required to resend m to p,. After
p¢ receives m, p; has to wait for all messages causally
preceding m.

[Definition] A message m is insignificant iff

(1) if m = ri(z), there is some read r(z) in RQ,
such that r}(z) precedes rj(z) and there is no
write wf(z) between r](z) and ri(z) in RQ,.

(2) f m = wi(z), there is some write wj(z) in RQ,
such that wi(z) precedes w] (=) and there is no
read rf(z) between wi(z) and w](z) in RQ,. O

Insignificant messages can be omitted from RQ,. Sig-

nificant messages which are not insignificant have to
be delivered in causal order.

4 TBCO Protocol

4.1 Object vector

A group is considered to be composed of subtrans-
actions and servers. The membership of the group
changes each time transactions are initiated and ter-
minated. If the vector clock is used, the group has to
be frequently resynchronized. In this paper, we pro-
pose an object vecior to causally order the significant
messages sent by the transactions. Each transaction
T; is given a unique identifier ¢(7;) satisfying the fol-
lowing properties :

(1) If T; starts before T; in a processor, t(T;)<t(T}).
(2) If a processor p, initiates T; after receiving a mes-
sage from Tj, t(T3) > t(T;).
The transaction identifier is given by the linear
clock(2]. p, manipulates a variable tid showing the
linear clock whose initial value is 0 as follows : (1) tid
:= t1d + 1 if a transaction is initiated in p,. (2) On
receipt of a message from T}, tid := max(tid, tid(Tj)).
When T; is initiated in py, ¢t(T;) is given a concatena-
tion of tid and the processor number pno(p;) of p;.
For every pair of 7; and Tj initiated at p, and p,,
td(Ty) > tid(Ty) if (1) t(Ti) > t(T;) or (2) t(T:) =
¢(7;) and pro(p:) > pno(p,). Each event e is given
an event number no(e) as follows :
(1) If e; is the initial event of T}, no(e;) = 0.
(2) If e; is write and e; — e; in T}, no(e;) < no{ez).
(3) If e; is read and there is no write event e3 such
that e; —r, es —7, €2, no(e;) = nole;).
Each event e in T; is given a global event number
tno(e) as the concatenation of ¢(7;) and no(e). Every
replica o}, of o, has the same version number v(0}) =
v(04). v(0}) is updated to be tno(w) each time w(o})
is computed. Here, if tno(op) > v(0)), op can be com-
puted. Otherwise, op aborts because op is obsolete.

RO L PR CERIVERNS) 2EA=

3—439

4.2 Message transmission and receipt

If m.op = read, m.dst denotes one processor which
has a replica o}, of 0,. If m.op = write, m.dst shows
all the processors which have the replicas of o;. If
m' is a response message of m, m'.tno = m.tno. A
processor p, constructs a request message m with opy,
from T}, as follows : (1) m.tno = { m.t, m.no) := {
t(T3), no{ops)) (2) m.op := ops (3) m.0 = 0. (4)
m.svc 1= P, m.dst := set of destination proces-
sors () mV, =V, (e =1,..., u)é?) m.d := data
(8) sg: := sq: + 1 for every p; in m.ast (9) m.sq; :=
sg; (=1, .., n) Each time p, sends a message
to p;, sq: is incremented by one. Then, p, sends m
to every destination p, in m.dst. p; can detect a gap
between messages received from p, by checking the
sequence number sgq;, i.e. messages lost or unexpect-
edly delayed. p; manipulates variables rsq1, ..., rsqn
to receive messages. On receipt of a message m from
p., there is no gap if m.sq: = rsq,. If m.sg; > rsq,,
there is a gap m’ where m.sg; > m’.sq, > rsq,. mis
correctly received by p. if p: receives every message
m’ where m’.sq; < m.sq,. p; manipulates the object
vector V as V, = max(V,, m.V,) fora =1, ... u If
m.op completes to manipulate a replica o', p: sends
back a response m' of m to p,. If mop = read, m’
carries data derived from o, in m'.d and m’.V, the
version number v{o,) of o4. 7T, has a vector V = (
Vi, ..., Vo) where each variable V, is initially 0. On
receipt of the response m’ from p:, T manipulates V,
e V= m'.V, (= v(0})) if Vo < m'.V,. Otherwise,
T, aborts.

4.8 Message delivery

Every pair of messages m; and mz in RQ, is or-
dered according to the following ordering rule.
[Ordering rule] m; = m; if one of the following
conditions holds :

(l) m:.V _<-m3.V.)
(2) m.V = m3.V and my.t < ma.t and my.op con-
flicts with mj.op.
(3) m:1.V and m;.V are not compared and m;.0 =
mg3.0(= 04) and
(3.1). m1.V, < m3.V,, or
(3.2) m.Vo,=my.Vand my it < m4.t and my.op
conflicts with my.op. O
Messages m; and m; are concurrent {my || ma) if the
ordering rule is not satisfied. Concurrent messages are
stored in RQ, in the receipt order. .
[Theorem] m, causally precedes my (m; — my) if
m; precedes m; in the ordering rule (m; = my). O
We discuss what messages in RQ, can be delivered.
[Delivery procedure] While each top message in
RQ, is stable and ready to deliver, m is dequeued
from RQ, and m is delivered if m is significant, oth-
erwise m is neglected. O
[Definition] m is stable in RQ, iff
(1) there is a message m; from p, in RQ: where
my.8qs = m.sq + 1 and
(2) pe correctly receives a message my in RQ, from
every p, where m —m;. O
[Definition] A top message m in RQ, is ready in p;
if p; computes no operation conflicting with m.op in
a replica m.o. O
If some p, sends no message to p, the messages in
RQ, cannot be stable. In order to resolve this prob-

lem, each p, sends a message without data to p; if
p. had not sent any message to p: for some predeter-
mined time units.
5 Evaluation

The TBCO protocol is realized in threads of a Su-
per Server 6400 with 10 Ultra Sparcs. Each processor
p; is bound to one Ultra Sparc (¢=1,..,n). TCP
is used to exchange messages among the processors.
There are three objects which are fully replicated in
all the processors. Each processor randomly initiates
totally twenty transactions where each of which issues
ten arbitrary kinds of operations on arbitrary objects.

——r— T At onal

100 ; wir=9:1 —-———= TBCO

N

e.20 -7

r/' H 1
p
o.10 l’

Ratio of delivered messages
\\
\
N

B.00 i

4y 2 3 4 s 8 7 8 9 10
Number of processors {n}

Figure 1: Ratio of messages.

In Figures 1, the vertical axis indicates the ratio
of the number of messages delivered to the number
of messages transmitted in case of ten processors {n
= 10) in the traditional message-based protocol. The
dotted line shows TBCO and the solid line indicates
the traditional message-based protocol. The Figure 1
shows case that 90% of the operations issued by-each
transaction are writes. The figure 1 show the number
of messages delivered can be reduced by the TBCO
protocol. About 30% of messages transmitted in the
network are reduced for the write ratio 90%.

8 Concluding Remarks

This paper has discussed what messages have to be
causally ordered in replicated objects with read and
write from the application point of view. We have
proposed the novel object vector for causally preceding
messages based on the transaction concept. In the
TBCO protocol, only the messages to be meaningfully
preceded for the applications can be causally ordered.
We have also discussed a way for omitiing messages
which are not significant for the applications. We have
shown the TBCO protocol implies fewer operations
computed than the protocols which causally order all
the messages transmitted in the network.

References _ _

(1} Bernstein, P. A., Hadsilacos, V. and Good-
man, N., “Concurrency Control and Recovery in
Database Systems,” Addison Wesley, pp.25—45,
-1987..

[2] Lamport, L., “Time, Clocks, and the Ordering of
Events in a Distributed System,” Comm. ACM,
Vol.21, No.7, pp.558-565, 1978.

(3] Raynal, M. and Ahamad, M., “Exploiting Write
Semantics in Implementing Partially Replicated
Causal Objects,” IRISA Research Report, PI-
1080, 1997.

