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Shadow Codes for Representation of Binary Visual Patterns
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In this paper, a novel approach to the representation of binary visual patterns is proposed,
and the applicability of the method to recognition of handwritten patterns by neural network
and conventional classifiers is investigated. The proposed approach has been named shadow
codes, because it is based on shadow projections of pixels of the thinned input image onto the
bars of a frame surrounding the image. A number of variations of the method can be devised,
and the case in which the region of attention consists of a rectangle with orientation given by
the principal axes of inertia of the input image is considered in detail. A frame composed by
16 bars classified into three categories is superposed on the attention region containing the
thinned input image, and each pixel projects a shadow on the nearest bar of each category.
While the determination of the attention region is inherently a translation-invariant process,
scaling invariance is achieved by normalizing and quantizing the shadow lengths, resulting
in a low-dimensional shadow vector. For a task consisting of the recognition of handwritten
numerical characters using both a neural net, namely, a self-organizing map fine-tuned by
learning vector quantization, and a conventional classifier, high recognition rates were ob-
tained, confirming the effectiveness of the proposed representation method. Also, comparison
with other graphical feature extraction techniques yielding feature vectors of the same dimen-
sion indicates that, although compact, shadow codes succeed in preserving information that
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can be used for recognition.

1. Introduction

Feature extraction and selection are central
issues in any pattern recognition system, and
this statement is particularly true for patterns
of interest in the computer vision field29). In
this field, practical input patterns are invariably
characterized by large amounts of data, usually
expressed in the form of rectangular arrays of
pixel values, which are either binary, gray-scale,
or color vectors. Since the most direct approach
of employing raw pixel vectors for recognition
is not efficient for large images, there have been
many efforts to develop effective, compact data
representations for image patterns 7).

A special case of great practical importance
concerns apparently simple visual patterns such
as alphanumerical characters3). For such pat-
terns, a good representation scheme should re-
sult in a compact data set, rich enough to allow
reliable recognition. It is also desirable that
the representation scheme be as robust as pos-
sible to variations in the pattern with respect
to noise, deformation, thickness, position in the
visual field, scale (size), orientation, and so on,
to facilitate the task of classification, which is
the final stage of the overall recognition sys-

t Faculty of Engineering, The University of Toku-
shima
tt Systems Engineering Group, Fujitsu Limited

480

tem. Furthermore, ideally, the representation
scheme should require only simple and quick
computations, allowing for efficient and cost-
effective real-time implementations on ordinary
hardware.

This paper proposes a novel approach to
the representation of binary visual patterns
in general, and of handwritten characters in
particular, for the purpose of pattern recog-
nition. The technical literature presents a
number of approaches involving the represen-
tation of handwritten characters for either on-
line 3):9):24),25),29) o1 off-line 8)-10),14),19),22),30)
recognition problems. In on-line problems, the
existence of a transducer able to codify the dy-
namical information of the writing as it takes
place, typically a tablet digitizer ), is assumed,
whereas in off-line problems the writing is rep-
resented after it has been completed, and only
static information is available. The problems
considered in this paper pertain to the second
category.

The basic idea introduced here is dubbed
shadow codes (SCs), which are feature vectors
derived from shadow projections of pixels of
the thinned input pattern onto bars of a frame
surrounding the pattern inside a compact at-
tention region. The approach requires neither
computationally-intensive use of transforms de-
rived from the digital signal processing field 2
nor complex segmentation procedures for pos-
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terior structural recognition ®21)-2)  and is to-

tally based on geometrical considerations. It
is shown in detail how a simple rectangular
frame with orientation obtained from the prin-
cipal axes of inertia of the input pattern can be
used to generate a 16-component SC vector for
binary visual patterns. Besides being simple to
implement and fast to execute, the proposed
representation method is inherently invariant
to translation and scaling of the input pattern,
and constrains the uncertainty about the orien-
tation of the original pattern to rotation angles
that are multiples of 90 degrees.

To verify the effectiveness of the proposed
method, experiments in the recognition of
handwritten digits were conducted, using neu-
ral networks and a simple nearest-neighbor
method for the sake of comparison. Results
confirmed that, despite its compactness, a 16-
component SC retains enough information to
allow high recognition rates for simple patterns
such as handwritten digits, and also demon-
strated the superiority of neural networks for
recognizing patterns with great diversity.

The structure of the remainder of this pa-
per is as follows. In Section 2, the concept of
shadow codes is introduced, and it is shown in
detail how to generate 16-component SCs for
binary patterns. Section 3 discusses the invari-
ance properties of SCs, while other character-
istics are presented in Section 4. An experi-
mental study of the recognition of handwritten
digits by means of neural networks is presented
in Section 5, with the results given in Section
6. Finally, Section 7 concludes this paper.

2. Generation of Shadow Codes

Consider an input image pattern represented
by binary pixel values in a rectangular grid.
It is assumed here that the pattern has been
thinned by any of the many methods in the
literature 1231 Tt is also assumed that there
is only one input pattern of interest inside the
visual field, that is, that auxiliary image par-
tition procedures (external segmentation) have
already taken place!8).

The generation of the SCs for any given bi-
nary image basically consists of the following
steps: (1) determination of a compact atten-
tion region of a specified shape containing the
input pattern; (2) superposition of a virtual
frame of thin bars on the attention region; (3)
determination of the nearest bars for each pixel,
and projection of pixel “shadows” on the corre-
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sponding bars; and (4) conversion of the shadow
features in a real-component vector. Each of
these steps is explained below.

2.1 Determination of the Attention

Region

The first step in the generation of SCs con-
sists of determining a compact subregion of the
visual field containing the input pattern to be
represented. The subregion has a shape speci-
fied a priori, and the procedure for determining
it may be thought of as a rudimentary attention
mechanism. For this reason, the subregion is
called the attention region. The simplest shape
for the attention region is a rectangular one,
which seems to be a natural choice when dealing
with simple patterns such as handwritten char-
acters. This assertion is supported by the fact
that ZIP codes, as well as data to be entered
in document forms, are often required to be
written inside rectangular boxes. For the same
reason, manuscript forms for oriental languages
are usually divided into boxes, and LED and
crystal-liquid displays commonly have a rect-
angular matrix for each character.

2.1.1 Euclidean Rectangular Region

For an attention region with a rectangular
shape, the most straightforward choice would
probably be the smallest rectangle involving the
pattern, with the orientation given by the Eu-
clidean axes. To determine such a rectangle,
one needs only to scan the input image for the
highest and lowest coordinates of the black pix-
els.

Despite the simplicity of the approach, choos-
ing the rectangle oriented according to the co-
ordinate axes does not seem to be a good strat-
egy, since it is based on the arbitrary choice of
the orientation of the axes themselves, whereas
the characteristics of the pattern itself, such as
its centroid and pixel distribution, are ignored.
An example of a rectangular frame obtained by
this approach is given in Fig. 1 (a).

2.1.2 Inertial Rectangular Region

A better (less biased) choice for the rectan-
gular attention region is to select the smallest
rectangle surrounding the pattern, with the ori-
entation determined by the pattern’s principal
axes of inertia. Consider a binary image repre-
sented by its pixels f(z,y) € {0,1}. The mo-
ment of order (p + ¢)'® is defined as

Mpq = szpyqf(x,y)' (1)

z

If the coordinates are computed with respect to
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Fig.1 Rectangular attention region surrounding the
input pattern. (a) Euclidean orientation, (b)
rectangle based on the principal axes of inertia.

the centroid of the image, the equation above
results in the central moment of order (p + g),
that is,

My =" (z—2c)"(y — yc)* f(z,9),
z Yy
(2)

where (z¢,yc) are the coordinates of the cen-
troid.

With respect to an axis passing through its
centroid and making an angle # with the z-axis,
the corresponding central moment of inertia is
given by

My = ZZf(m,y)(ycosG — zsin6)?.
(3)

The angle 6 that minimizes {maximizes) the
moment of inertia My gives the orientation of
the principal axes of inertia of the image. From
Egs. (1) and (3), it can be shown that

Mg = My2 COS2 6 + moo Sin2 6 — mi1 sin 26.
(4)
Solving for OMy/06 = 0 results in

0= %tan_l (ﬂi__) + ’I’L_ﬂ' (5)

b
Mo — Mo2 2

where n € Z. After determining the principal
axes of inertia, the coordinates of the vertices
of the rectangular attention region can be eas-
ily found by scanning the image pixels. This
approach is shown in Fig.1(b), and is a more
impartial choice than the rectangle oriented ac-
cording to the Euclidean axes.

2.2 The Shadow Bar Frame

Having determined the rectangular attention
region, the next step is to superpose on it a
frame consisting of thin, virtual bars. These
bars are called shadow bars because, as ex-
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Example of generation of the shadow vector of
a binary pattern. (a) 16-bar frame, (b) a bi-
nary pattern and corresponding shadows, (c)
normalized shadow vector.

Fig. 2

plained below, shadows of the pixels are to be
projected onto them, and are classified into a
few categories, here called bar groups. It is as-
sumed that the frame is shaped, sized, and ori-
ented in such a way as to match the attention
region perfectly.

For a rectangular attention region, a shadow
bar frame that has produced encouraging re-
sults is the one illustrated in Fig. 2 (a), in which
there are 16 straight bars classified into three
groups: horizontal, vertical, and diagonal ones.
For the sake of visualization, the bars in the fig-
ure are wide and do not touch, but in fact they
have zero width and do touch in the concurrent
points. That is, for instance, the bars by, bs,
and by intersect at the top-left corner, and so
on. The equations of the segments defining each
bar can be easily obtained from the coordinates
of the attention region.

2.3 Shadow Projections

In the following step, the nearest bar of each
group is first determined for each (black) pixel
of the input pattern in the attention region.
Next, each pixel projects perpendicular shad-
ows on each of the those bars. For the 16-bar
frame described above, each pixel must project
a total of three shadows, on the nearest hori-
zontal, vertical, and diagonal bars.

An example of shadow projection is shown in
Fig.2(b), where the shadows are represented
as the darkened parts of the bars, resulting in a
pattern of dark and white parts for each bar. It
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nearest vertical bar

nearest horizontal bar

Fig.3 The lengths of shadows of a given pixel are
not discrete, but continuous values.

is important to note that although the number
of pixels in the input pixels is a discrete quan-
tity, the lengths of the shadows of each pixel are
continuous values. That is, depending on the
projection angle, the length of a pixel shadow
varies, as illustrated in Fig. 3.

2.4 Conversion into Shadow Codes

In the final stage of SC generation, the
shadow patterns of the bars are converted into
real numbers, resulting in a vector. For this, a
number of approaches could be devised.

A simple coding procedure is to measure the
total length of the shadowed part of each bar,
regardless of whether or not the parts are con-
tiguous, and divide the result by the length of
the corresponding bar. This gives a SC vec-
tor with 16 real-valued components between
0.0 and 1.0, as shown in Fig.2(c), where the
lengths of the bars have been normalized.

3. Invariance Characteristics of Shad-
ow Codes

This section discusses several characteristics
of SCs with rectangular attention regions and
the coding procedure described above, which
make them especially attractive for invariant
pattern recognition.

3.1 Translation and Scaling Invariance

Since it is assumed that the original image
has been segmented in such a way that there is
only one input pattern of interest in the visual
field, the determination of the attention region
containing the pattern is a translation-invariant
procedure. That is, the attention region will
have the same content even if the input pattern
is moved in the visual field.*

The sizes of regions are normalized by divid-
ing the lengths of the shadowed parts by the
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Shadow codes for rotations multiple of 90° can
be easily obtained by simply reordering the
components of the code vector. For simplicity,
only the bar labels are shown.

whole length of each bar. In other words, SCs
are also invariant to the actual size (scale) of
the input pattern.

3.2 Shadow Codes of Rotated Pat-

terns .

Assume that the input pattern is surrounded
by a rectangular attention region with the ori-
entation given by the principal axes of inertia.
Although the basic orientation of the input pat-
tern, that is, its rotation angle with respect to
the coordinate axes, can be determined from
the directions of its principal axes of inertia,
there may be an error that is a multiple of 90
degrees.

The reason for this can be easily understood
by considering handwritten numerals, for in-
stance. The numeral ‘4’ can be written with
its width greater than its height, or vice-versa.
It can also be upside down and, because of the
rectangular symmetry, it would not be possible
to tell which side of the rectangular attention
region is the “correct” bottom.

However, the SC vector proposed above takes
advantage of the symmetries of the attention re-
gion. Since the proposed shadow bar frame is
symmetric with respect to rotation by multi-
ples of 90 degrees, it is simple to obtain the SC
vector of rotated input patterns simply by re-
labeling the components of the vector, that is,
by permutating its-components. This is illus-
trated in Fig. 4, which shows how the SCs of a

* It may be argued that translation-invariance is a di-
rect consequence of the proposed method for extrac-
tion of the rectangular extraction region, and not of
the shadow projections themselves. Here, however,
the determination of the attention region is seen as
part of the representation process, and not as an
independent, pre-processing procedure.
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pattern rotated by 90, 180, or 270 degrees in a
counterclockwise direction can be obtained by
relabeling the components of the SC vector of
the original pattern.

This property may be exploited for extend-
ing the concept of SCs to allow for rotation-
invariance. In fact, experiments on the recog-
nition of randomly rotated handwritten digits
have been performed by using a scrambler net-
work conceptually based on Widrow’s ideas 28,
with encouraging results 23).

4. Other Characteristics

4.1 Data Compression

From the description above, it is clear that
the proposed SCs are capable of greatly com-
pressing data. For instance, no matter how
many pixels the original image contains, the
SC vector described in the previous section al-
ways consists of a 16-component real vector. Of
course, it remains to be demonstrated whether
the compressed data retains enough informa-
tion to allow reliable recognition, but this will
be left for the next two sections of this paper.

As a concrete example, consider the exper-
iments described in Sections 5 and 6, where
each input image consisted of 2,500 bits (50 x 50
grid). In this situation, instead of memoriz-
ing the 16 real values that make up the shadow
codes, a more parsimonious approach is to save
the integer shadow lengths before normaliza-
tion. This results in a total of 19 bytes of infor-
mation (16 for the shadow lengths and 3 for the
bar lengths), or 152 bits, representing a com-
pression rate of 93.9%.

4.2 Generalized Shadow Codes

The central idea behind SCs is the quantiza-
tion of shadow projections of pixels of the input
image on bars of a frame matching the atten-
tion region. This is a very general idea, since it
is possible to devise many different shapes and
orientations for the attention region, other bar
frames that differ not only in the shape but also
on the number and categories of their bars, as
well as other shadow quantization procedures.

In fact, the concept of SCs may be consid-
ered as an extension of the idea proposed by
Burr Y, originally based on the shapes of lumi-
nous bars in LED displays for pocket calcula-
tors. However, Burr was not concerned with
pattern representation, but only with practi-
cal experiments involving pattern recognition
by neural nets, and did not consider symmetry
and normalization in his frame. Furthermore,
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although a rectangular frame was used, only
the rectangle with the orientation given by the
Euclidean axes was considered by Burr, which
proved enough for his small-scale experiments.

In the proposed SCs, symmetry plays an im-
portant role, as does normalization and the de-
termination of an orientation for the region of
attention that is independent of the coordinate
system employed by the user. With such fea-
tures in mind, the authors are studying a few
other variations and extensions of SCs, and the
results will be reported elsewhere. Variations
include the use of a circular region of attention
with polar coordinates, and extensions for deal-
ing with gray-scale images.

4.3 Fast Computation

SCs can be computed easily and fast by the
proposed method, particularly when the shape
of the attention region and the subregions de-
fined by the shadow bars are simple, as in the
case of the rectangular attention region with a
16-bar frame. In this case, instead of comput-
ing the distance from each pixel to each bar in
order to determine the closest bar of each of the
three groups, the rectangle may be divided into
several bar domain regions determined by the
shadow bars, as indicated by the dashed lines
in Fig. 5, in such a way that the nearest bars
can be found by simply determining in which
domains a given pixel falls.

For instance, in Fig.5(a) there are three
dashed lines dividing the rectangle into six hor-
izontal bar domains. A pixel falling within
the domain marked “1” projects its horizontal
shadow onto the bar b;; the vertical shadow of
the pixel will be projected onto bz or bs, de-

@ ®) ©

Fig.5 Bar domains for the (a) horizontal, (b) vertical,
and (c) diagonal bars. The horizontal, vertical,
and diagonal bars that receive the shadows of a
given pixel can be promptly determined by ver-
ifying in which bar domains the pixel falls. The

numbers indicate corresponding bar labels.
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pending on whether the pixel falls in domain
“3” or “5”; finally, as the pixel necessarily falls
in domain “4”, its diagonal shadow is projected
onto bar by. Since the equations describing the
six dashed lines can be easily determined from
the coordinates of the vertices of the attention
region, it is straightforward to obtain the sets
of equations defining each bar domain.

5. Application of SCs to Handwritten
Digit Recognition by Neural Net-
works

In order to investigate their effectiveness, the
proposed SCs were applied to the task of rec-
ognizing handwritten digits given as thinned
black-and-white images.

5.1 Recognition System

The overall dataflow of a general recognition
system using SCs is shown in Fig. 6, where the
data processing is illustrated in a pipeline fash-
ion, with the objectives, input, and output of
each stage clearly shown.

5.2 Training and Test Data

To generate data for training and test, about
a dozen people were asked to write single digits
from ‘0’ to ‘8’ of any size inside a 50 x 50 rect-
angular grid, using a computer mouse. Since
one of the ultimate goals of the current re-
search is to generate a rotation-invariant recog-

————— binary raw image

"Il‘)}?i[;f\rirr‘ng ———{. primary noise filtering
+ ————— thinned image
Determination local attention
of Qg;n;;on L translation invariance
vy T framed image

Shadow Codes
Generation &
Normalization

. data compression
[. scale invariance

+ ————— normalized shadow vector
Neural . robustness
Classification . learning ability

————— classification results
End :

Fig.6 Dataflow diagram for the overall recognition
system.
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nition system, the numeral ‘9’ was not consid-
ered in the experiments described here. ' To
distinguish a handwritten ‘6’ from a ‘9’ in a
rotation-invariant system, it would be neces-
sary to implement a top-down contextual level
in the recognition system, and this is beyond
the scope of this paper.

In the experiments described here, 140 pat-
terns for each digit were used for training (to-
tal of 1,260 training patterns) while testing was
carried out with 100 patterns for each digit.
Samples of the training and testing sets of pat-
terns are shown in Fig.7. As the figure sug-
gests, a wide range of possible handwritten dig-
its have been included in both the training and
testing pattern sets.

At first, SC vectors as described in Section 2
were generated by using a rectangular attention
region with the orientation given by the prin-
cipal axes of inertia. Preliminary recognition
results were good for all patterns, except for
those corresponding to the digit ‘1’. Analysis
of the SC values indicated the following prob-
lem: since the digit ‘1’ is usually written in such
a way that it resembles a single vertical bar, the
thinned image of the digit often practically cor-
responds to one of its principal axes of inertia,
as computed through Eq.(5). In consequence,
the region of attention shrinks, and almost all
the bars become completely shadowed, result-
ing in shadow values that are very close to each
other and to 1.0.

To correct such a problem, a heuristic modifi-
cation was adopted. Instead of using the “true”
principal axes of inertia of the input pattern,

olololololo] [¢]0ol0]0]0
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51515055 |5 51515151516
6leielelsle] [616]¢]b 616
it r 2V 17177171717
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(a) (b)
Fig.7 Samples of training (a) and testing (b) patterns

used in the experiments. In the recognition
experiments, the test patterns were translated
and scaled (amplified or reduced) randomly.
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the axes were rotated artificially by 45 degrees,
and only then were the SCs generated. It is
clear that, even with this modification, the ori-
entation of the region of attention is indepen-
dent of the user’s coordinate system, and does
not imply any change to the rest of the SCs
computation procedure.

5.3 Neural Network and Conventional

Classifiers

Because of their learning capability and ro-
bustness, neural networks were chosen for the
classification stage of the recognition system.
Since the proposed SCs are very compact,
small-scale neural networks can be used for the
classifier, in contrast to the usual approach,
where pixel values are fed directly to the in-
put neurons, which results in large, slow, and
difficult-to-train neural networks even for small
input patterns1)6)28). When the proposed 16-
component SC vecto is used, the number of in-
put nodes of the classifier is also 16. Further-
more, only simple computations are required,
and the system is not limited by computational
resources, as in Perantonis and Lisboa 1%).

In this paper, the self-organizing map (SOM)
proposed by Kohonen !V was used for classi-
fication, as illustrated in Fig.8. Besides its
self-organizing capability, a characteristic of
this neural net is that the resulting clusters
can be seen topologically. A disadvantage is
that, because it is an unsupervised learning
paradigm, the results are usually worse than
those obtained by supervised models, such as
the multilayer perceptron trained by backprop-

Shadow Code Vector

Fig.8 Self-Organizing Map used as a classifier for the
SC vectors. The number of inputs is deter-
mined by the dimension of the SC vector, while
the number of units and organization of the
topological layer must be determined experi-

mentally.
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agation 7). However, this problem can be rec-
tified by using the Learning Vector Quantiza-
tion (LVQ) paradigm, a supervised method also
developed by Kohonen ') to refine the results
obtained by SOM. The LVQ paradigm was not
employed directly from the beginning, for two
reasons: (a) observation of the clusters result-
ing from applying the shadow codes to an un-
supervised neural network offers hints on how
much discriminatory information the codes pre-
serve, and (b) the topological map provided by
SOM shows graphically the relationships be-
tween clusters, indicating the ones most likely
to produce fuzzy results.

Another advantage of the adopted neural net-
works is their short training time, which is usu-
ally only a few seconds on a workstation. With
large databases for training, using more popular
neural nets such as the multilayer perceptron
can be a frustratingly slow experience. Experi-
ments with a simple nearest-neighbor classifier,
here referred to as the conventional classifier,
were also carried out to allow comparison of re-
sults.

First, in order to test the hypothesis that the
selection of the orientation of the rectangular
region should be independent of the user’s sys-
tem of coordinates, as well as to verify whether
the proposed SCs retained enough information
for recognition, experiments using subsets of
both the training and test patterns were con-
ducted. The training patterns were used to
train a 9 x 10-node SOM with a learning rate
of 0.3 for 5,000 iterations, and the resulting
SOM was then fine-tuned by using the LVQ al-
gorithm.

The results are shown in Table 1, where
Set 1 and Set 2 refer to the training and test-
ing pattern sets, respectively. Furthermore, the
columns marked “Fuclidean axes” indicate that
rectangular attention regions with FEuclidean
orientation were used, while rectangles with
their orientation given by the principal axes
of inertia were used in the remaining columns.
Overall, high recognition rates were obtained,
indicating that SCs compress data greatly while
preserving enough information to allow recogni-
tion. From Table 1, it is clear that the best re-
sults were obtained by using the principal axes
of inertia to determine the orientation of the
rectangular region, confirming the expectations
that the best representation is achieved when
only the inherent characteristics of each pat-
tern are considered, independently of the coor-
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Table 1 Recognition results for training (Set 1, 1,260
patterns) and testing (Set 2, 900 patterns)
patterns. High recognition rates confirm
that SCs preserve enough information to al-
low reliable pattern classification. The ad-
vantage of choosing the rectangular atten-
tion region with the orientation given by
the pattern’s principal axes of inertia is also
clear.

Recognition Rate %
Euclidean Axes | Principal Axes
Set 1 Set 2 | Set 1 Set 2

96.7 100.0 | 100.0 100.0
72.4 42.9 | 100.0 100.0
96.7 85.7 | 100.0 100.0
96.7 85.7 | 100.0 100.0
100.0 100.0 93.3 100.0
93.3 100.0 | 100.0 100.0
96.7 100.0 | 100.0 100.0
97.7 100.0 | 100.0 100.0
100.0 100.0 | 100.0 100.0

Numeral
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Fig.9 Training results obtained by a SOM with 150

units. The clusters are well organized, suggest-
ing that SCs preserve enough information for
recognition. White units did not “fire” for any
training pattern.

eBgc

dinate axes. Accordingly, all the other results
presented hereafter are for only the rectangular
attention region with the orientation given by
the principal axes of inertia.

Experiments with several sizes and topologies
of SOMs were carried out, using the SCs of all
the 1,260 training patterns (140 for each nu-
meral). The best results were achieved with
a topological layer containing 15 x 10 units in
a rectangular array, a learning rate of 0.5 and
a final neighborhood radius of 5 units. The
clusters obtained with this 150-unit SOM after
7,000 learning iterations are shown in Fig.9.
It can be seen that the clusters are well orga-
nized, suggesting that, although SCs are very
compact, they preserve enough information to
allow reliable recognition. In the figure, white
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Table 2 Average and standard deviation of the bar
shadow values for all the training patterns.
For convenience, all the values in the table
have been multiplied by 100. High values of
the standard deviation with respect to the
average values indicate diversity of data.

Numeral

bar # 0 1 2 3 4 5 6 7 8
avg | 75 50 78 76 42 T4 41 64 T4
std{10 10 9 10 16 16 22 17 11
avg (|50 0 10 20 4 9 4 26 9
std |13 0 100 14 8 13 13 20 15
avg |73 51 69 58 75 66 T3 57 76
std 10 9 14 15 18 15 14 16 16
avg |36 89 56 46 73 54 54 35 67
std| 9 6 15 16 18 15 14 16 16
avg (42 46 82 85 64 51 26 77 82
std |13 12 8 8 24 16 21 17 11
avg |19 3 26 41 34 35 23 32 31
stdiy 6 4 15 9 19 15 16 12 15
avg |55 0 7 27 17 20 16 13 17
std | 14 0 10 12 14 13 15 23 16
avg |40 49 26 36 77 82 81 41 81
std |12 11 14 14 17 12 19 14 11
avg |41 47 62 83 89 84 82 48 81
std| 12 10 19 13 11 9 10 12 10
10 avg |56 0 4 2 47 14 52 13 11
10 std {12 1 7 4 18 13 20 14 16
11 avg |19 4 17 13 50 27 46 8 37
11 std| 6 4 18 11 14 15 11 8 12
12 avg [39 50 82 29 T0 41 66 13 82
12 std |11 10 8 16 20 17 24 14 11
13 avg |37 89 43 36 77 45 52 71 51
13 std| 8 8 12 11 13 13 13 10 18
14 avg | 74 48 43 73 42 72 75 73 77
14 std|] 9 9 15 11 24 10 9 14 10
15 avg|bh4 0 10 5 32 6 50 0O 23
15 std|12 0 12 7 29 9 15 2 16
16 avg | 75 51 42 66 39 71 78 31 77
16 std| 9 9 16 13 17 14 10 10 10

O WO =-=-JO0HO ULU b i WWR N

units did not “fire” for any of the training pat-
terns.

To allow comparison, a simple nearest neigh-
bor classifier was devised. For this purpose,
first the average and the standard deviation of
the shadow values for each bar and for each pat-
tern category, that is, for each numeral, were
determined, as shown in Table 2. In Table 2,
all values have been multiplied by 100, and the
bars have been labeled according to Fig. 2 (a).
As expected, the values of the standard devia-
tion were significantly high with respect to the
average values, indicating the diversity of the
data used for training.

Basically, the operation of the conventional
classifier is as follows. For a given input pat-
tern, first compute its shadow bar values s;,
¢t =1,2,...,16 and then, for each category or
class ¢, calculate the distance
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Table 3 Recognition results for a nearest-neighbor
(conventional) and a SOM-LVQ (neural)
classifier. A total of 1,260 and 900 hand-
written digits were used for training (Set 1)
and test (Set 2), respectively. As expected,
the neural classifier was able to cope better
with the high diversity of the data used in
the experiments.

Recognition Rate %

Numeral | Conventional Neural
Set1 Set2 | Setl Set2
0 98.6 96.0 98.6 99.0
1 100.0 98.0 | 100.0 99.0
2 96.4 89.0 | 100.0 97.0
3 96.4 84.0 97.9 94.0
4 87.1 87.0 98.6 97.0
5 92.1 84.0 98.6 92.0
6 914 90.0 | 100.0 97.0
7 94.3 97.0 | 100.0 95.0
8 92.9 99.0 97.1 98.0
Average 94.4 89.3 99.0 96.4

where 57 stands for the average shadow value
of the ¢-th bar for the c-th category, as given in
Table 2.

For the problem considered here, it is clear
that there are nine categories of interest. After
computation of the distances 0 < d, < 1 for all
the nine categories, the input pattern is simply
attributed to the category with the smallest d,
value. When this procedure does not permit a
sharp conclusion, that is, when the smallest d,
value is too close to or equal to another one,
classification is done on the basis of the stan-
dard deviation for the shadow values, as shown
in Table 2.

The recognition results for both the neural
and conventional classifiers, using all the 1,260
training and 900 testing patterns, are shown
in Table 3, where Set 1 and Set 2 denote
the training and test pattern sets, respectively.
From the results, it can be seen that the neu-
ral classifier obtained by combining SOM and
LVQ models performed better than the conven-
tional one. This was expected, because of the
large variance of the data used for both training
and testing. Once again, high recognition rates
confirm the ability of the proposed SC vectors
to represent simple binary patterns in a com-
pact way, while retaining essential information
to allow reliable recognition.

The mistaken recognition results given by the
neural network are shown in Table 4. All
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Table 4 Misrecognition results (confusion matrix) for
the neural network with respect to a set of
100 patterns per numeral. All the errors
ocurred in neighboring classes of the SOM
shown in Fig. 9.

Input Misrecognized as
Numeral |0 1 2 3 4 5 6 7 8| Subtotal
0 - 1 1
1 - 1 1
2 - 2 1 3
3 2 - 3 1 6
4 1 - 2 3
5 2 1 3 - 2 8
6 2 1 - 3
7 2 3 - 5
8 2 - 2

errors occurred in neighboring clusters of the
SOM shown in Fig. 9. Furthermore, it was ob-
served that in all cases in which the network
misrecognized an input pattern, the correct an-
swer was the second candidate, that is, the class
with the second-smallest recognition error.

Finally, having verified that SCs do pre-
serve information for recognition, it remains to
compare them with other character extraction
methods. To make such a comparison fair, the
other methods should be graphically based and
should result in 16-dimensional vectors, as in
the case of SCs. Two methods were considered
here, namely, the stroke density function (SDF)
and the the gross mesh pattern (M feature) 19).

For the SDF method, the rectangular atten-
tion region is first divided into eight approx-
imately equal horizontal bands, and for each
band the average density of black pixels is taken
as a feature. The same procedure is then re-
peated in the vertical direction. For the M fea-
ture, the rectangular region is divided in 16 ap-
proximately equal subregions, and for each sub-
region the ratio between the number of black
pixels in the subregion and the total number of
black pixels in the whole image is computed.
Both procedures result in 16-dimensional, real-
valued vectors.

The results for Sets 1 and 2 obtained by using
the same SOM-LVQ procedure with a 15 x 10
grid are shown in Table 5. It is clear that
the proposed SCs yielded a superior recogni-
tion rate for both Sets 1 and 2, indicating that
SCs are more successful in preserving feature
information. It should also be noted that the
results in Table 5 were obtained by beginning
from the framed images (see Fig. 6).
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Table 5 Comparison of results with those given by
two other feature extraction methods using
a SOM-LVQ classifier. In all cases, the net-
work input consisted of 16-dimensional vec-
tors. It is clear that SCs yielded a superior
recognition rate.

Recognition Rate (%)
Numeral SCs SDF M feature
Set 1 Set2|Set1 Set2|Set1l Set2
98.6 99.0(100.0 94.0| 98.6 79.0
1000 99.0f 979 91.0| 979 89.0
100.0 97.0| 957 93.0] 964 81.0
979 940 98.6 89.0( 95.7 88.0
986 97.0| 97.1 87.0| 95.0 76.0
98.6 92.0| 98.6 91.0| 979 91.0
100.0 97.0| 99.3 89.0] 93.6 86.0
100.0 95.0| 98.6 91.0) 92.1 85.0
97.1 98.0{100.0 90.0{ 95.7 82.0
Average | 99.0 96.4| 98.4 90.6| 959 84.1

00 =1 O T WN - O

6. Conclusion

This paper has introduced a compact and
simple coding method for binary visual pat-
terns. The method is based on projections of
pixel shadows onto bars of a frame surrounding
the pattern to be represented, generating codes
that were dubbed shadow codes. For a binary
image of any size, the proposed approach eas-
ily generates a fixed-length real-valued feature
vector, achieving a high degree of data compres-
sion.

The proposed SC representation method was
applied to the problem of recognizing hand-
written numerical characters, using both a neu-
ral network and a conventional classifier. High
recognition rates were obtained, confirming the
effectiveness of the method. Comparison with
other graphical feature extraction techniques
yielding feature vectors of the same dimension
indicates that, although compact, shadow codes
succeed in preserving information that can be
used for recognition. Furthermore, all the pro-
cessing steps for computing SCs are fast, and
because of the compactness of the code, the
proposed approach seems to be suitable for real-
time implementation.

In order to attain higher recognition rates,
several improvements are being considered, in-
cluding the construction of a larger training set,
use of different shadow bar frames, and the in-
clusion of a few more components in the code
vector, such as information about the ratio be-
tween height and width, pixel density for each
bar domain, and so on, and hybrid methods
combining the SC method with other feature
extraction methods. In addition, current re-
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search is focusing on exploiting the symmetries
of the SCs to design a neural net recognition
system that is not only invariant to translation
and scaling, but also to rotation of the input
patterns in the visual field. Several approaches
are being tested, and results will be reported
elsewhere.
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