Vol. 39 No. 4

Transactions of Information Processing Society of Japan

Regular Paper

An Information Integration Architecture for Mobile Users
in WWW Environment

WISUT SAE-TUNG," TADASHI OHMORI' and MAMORU HOSHI!

Recent emerging technologies such as the WWW have significantly expanded the number
of the services available to end users. Most of these services are provided through Web
pages that include applications that act as clients of the information sources. We call them
Web-embedded client applications. We propose a new information integration architecture
and a set of tools that allow mobile users to integrate information provided through the
Web-embedded client applications in the remote programming style. In our approach, Web-
embedded client applications are wrapped to describe their services into abstract forms called
interface definitions. The interface definitions can be seen as software components and loaded
into a mobile unit. We provide an integrated building tool called mediator on mobile unit to
explore information in the interface definitions, solve the schematic conflict problem and create
customized applications in the disconnected state. We also present a preliminary experiment
that indicates that our approach can be realized.

Apr. 1998

1. Introduction

1.1 Background and Motivation

Today’s public networks such as the Inter-
net contain a large number of information
sources capable of providing specific services.
These information sources provide their ser-
vices through their Web pages that contain
Web-embedded client applications. Here, a
Web-embedded client application refers to the
application that can be included in a Web page
and acts as a client application to interact with
the server system in an information source. It
can be loaded with the Web page and executed
by a browser. For example, the Web-embedded
client applications may be simple static Web
pages using a form-based CGI program or in-
teractive Web pages using a Java applet 2) or
Visual Basic!) to access information of rela-
tional database server running at the informa-
tion source.

In this environment, users carrying mobile
computers will access information from these
Web-embedded client applications that they
find out within a current location while they are
moving from one place to another. Figure 1
displays the common operation that a mobile
traveler finds out two Web-embedded client ap-
plications providing event and transportation
information within an area he moves in. He
finds out interesting events held in this area

t Graduate School of Information Systems, The Uni-
versity of Electro-Communications

888

from the first source and how to go to that place
from the second source. However, the user must
select the output information of the first page,
manipulate and transform it to the input condi-
tions of the next page. From the point of view
of users, this integration requires human par-
ticipation. Moreover, schematic mismatch be-
tween information from different sources causes
schema transformation required for integrat-
ing. This makes the integration process more
complex. Furthermore, heterogeneity of Web-
embedded client-applications implemented by
different languages provide different interfaces
for accessing information.

To solve these problems, we propose a new
approach for mobile users to integrate the infor-
mation provided through heterogeneous Web-

@m

University DB
L

Se@ne

WWW Server

Web-embedded
Client application

Fig. 1 A Common architecture of the WWW.

Vol. 39 No. 4
)
Information
Source 1

Information
Source 2

l WWW Server I I WWW Server |

A DA part of
Web-embedded

Client Apllication Load through the network

Fig. 2 Our information integration approach.

Interface Definition defined
by the common language

. Common Data Model

A user intergrates two
Web-embedded client
applications by using a
query command

embedded client applications. Figure 2 shows
the concept of information integration of our
approach. Our proposal is to present the het-
erogeneous Web-embedded client applications
in a common data model, integrate them us-
ing a query command in disconnected state
and execute the query in the remote program-
ming style. To realize this requirement, first,
the Web-embedded client applications must be
wrapped into the abstract forms of an object-
relational model called interface definitions®.
In addition, the interface definition also con-
tains some rules that act as executable spec-
ifications to perform the specific tasks of the
client application, such as the input validation,
schematic mismatch resolution, etc. Second,
the user loads and registers these interface def-
initions and their libraries into his mobile unit.
Using the above abilities of the rules in the in-
terface definitions, the user generates a query
command (called OO-SQL command) in the
disconnected state. This OO-SQL command
is, on the mobile unit, converted into a script
program. The script program is a program, ex-
pressed in a script language, that is able to com-
municate with the Web-embedded client appli-
cations and to access and integrate their infor-
mation without schematic mismatch. Because
of the low bandwidth connections through wire-
less communications, sending the script pro-
gram to be executed on a server and receiv-
ing the result later is particularly well suited
to this environment. Therefore, the user spec-
ifies his home server, sends the script program
to a server capable of providing script execu-
tion and disconnects his mobile unit from the
network. After the execution on that server is
complete, the result is sent to be kept at his
specified home server until the user reconnects

An Information Integration Architecture for Mobile Users in WWW Environment 889

Web Browser post/get Server Side
Web Form invocation
form data
www -
hitp Serer cal a
result
Mobile Code
move
http, mail
move
JAVA
data
: Server -
tep/ip, http Program “

result

server
D au . program

Fig. 3 A client application model.

the network to get it. As a result, no network
connection is required while the user is gener-
ating the query command and waiting for the
result of execution.

1.2 A Client Application Model

In general, the Web-embedded client appli-
cation can be divided into two parts: a GUI
part (Graphic User Interface) and a DA part
(Data Access). The former part is responsi-
ble for gathering information from a user as
input data while the latter part is responsi-
ble for passing the user’s input as conditions
to access information from information source.
Because the script execution is done in discon-
nected state, the DA part that requires no inter-
action with a user during execution is the part
wrapped into an interface definition. Therefore,
the Web-embedded client applications used in
our approach must have distinct separation be-
tween the GUI part and DA part. In the other
words, any part of code of the DA part must
not be enclosed into the GUI part. Figure 3
shows examples of client types to which our
approach can apply. The standardized CGI
of the Web server can be invoked by wrap-
ping the GET/POST method. Java applets
and mobile code programs written by Aglet®
or telescript® can also be wrapped if they
have a distinct separation between two parts.
In this way, the aim of our work that is dif-
ferent from the various integration projects is
to integrate such various heterogeneous Web-
embedded client applications.

1.3 The Model of the Information In-

tegration Model

Based on the approach shown in Fig. 2, our
model of the information integration can be
shown in Fig.4. This figure describes our

890 Transactions of Information Processing Society of Japan

= &

I WWW Server l WwWWwW Server

(1) The uscr knows the locations ...
of these pages by accessing ™ ... Yellow Page Server
through a yellow page server

(2) The user tries to use the
Web-embedded application
and find to integrate them

Gencrates
query command
B =l user’s host

gets result

Web-embedded [—

client-application RO0-5Q
Interface Defintion defined - Information Integration System
by the common language using the common data model

Fig. 4 An information integration model.

Script Program

model by the following steps: In general, a user
can know the locations of services by accessing
a yellow page server that collects location in-
formation of services of interest (1). The inter-
face definitions of these services are also man-
aged by the yellow page server. After the user
finds the desired Web-embedded client appli-
cations (2), he loads these interface definitions
from the yellow page server (3). Because the in-
terface definition contains the information ade-
quate for generating a query command, the user
can generate the query command and resolve
a schematic conflict problem without connect-
ing his mobile computer to the network. With
the interface definitions, the user generates a
query command, translates it to a script pro-
gram, sends it to the yellow page server and
disconnects his mobile unit from the network
(4). At the yellow page server, it loads the Web-
embedded client application from the network
into its system. It converts the command in
the script to invoke native methods of the Web-
embedded client applications, executes and in-
tegrates the information based on the common
data model (5). It sends the result back to a
server specified by the user (6). The result is
held at that server until the user reconnects to
the network to get the result.

In this integration model, it illustrates many
features and operations as follows:
1. Without disturbing the existing native code
of Web-embedded client applications, the Web-
embedded client applications are wrapped into
interface definitions and provided to mobile
users as components for describing their ser-
vices.
2. Once the user loads the interface defini-

Apr. 1998

tions, he can create his own customized appli-
cations by generating integrated views against
the Web-embedded client applications by him-
self.

3. The user can resolve schematic conflict prob-
lem and integrate information in a disconnected
manner.

This model of integration is suitable for mo-
bile users who move around networks, collect
interface definitions from various places and
combine them to create their new “customized
applications.”

1.4 Comparison with Related Works

Various projects on the integration of hetero-
geneous sources are based on a common data
model and a single query language. The TSIM-
MIS?® project is a well-known pioneer system
that uses this approach. However, it restricts
end users to use only the static view defined in a
middle layer called mediator *), whereas our ap-
proach allows mobile users to define their own
integrated views.

The distributed object-oriented frameworks
such as CORBA 'Y and DCOM Y provide core
object models, location transparency and pro-
gramming language independence. In addition,
Java Beans? and Active-X' are potential tools
for “developers” to construct general client ap-
plications for the above distributed frameworks.
These frameworks further need developers’ ef-
fort to solve the schematic conflict problem.
In contrast, our approach operates at a dif-
ferent level from their frameworks. We pro-
pose a new architecture for “mobile users” to
create ad-hoc integration in the open environ-
ment by themselves. In the other words, those
related works provide distributed environment
and tools for developers to generate general ap-
plications while our uniqueness is to provide
an much easier environment and tools for mo-
bile users to generate customized applications
from heterogeneous Web-embedded client ap-
plications in the open WWW environment.

This paper is organized as follows. Section
2 describes the system architecture of our ap-
proach. Section 3 describes the interface defini-
tion and a script generation. Section 4 describes
a wrapper and its query execution. Section 5
describes preliminary experiment. Finally, we
summarize the paper.

2. System Architecture

In this section, we describe major compo-
nents in our model and the schematic conflict

Vol. 39 No. 4

Se@ne Unt CogeQDB [Event DB T@e

I Web Server | LWeb Server | [Web Server I [Web Server | I Web Server l

wrapper

MIR2

l 3 l %
3
. The user receives interface

> Interpét

definitions from MiRs

. The user registers the interface wrapper
definitions into his data dictionary.,
Then, he uses this information to
make a query, sends it to MIR tor
execution and disconnects his
mobile unit from the network.

. At each site, the wrapper executes
the incoming script, sends to another

Web Server

N

Interface

©

user's server

MiRs until it pli all tasks.
A result will be sent to a server E

0
get the result

specified by the user and held untit
he reconnects the netowrk to get it.

Fig. 5 A system architecture.

problems of integration.

2.1 Components in System Architec-

ture

We now proceed to examine the informa-
tion integration model in more detail. Fig-
ure 5 shows the system architecture that imple-
ments the information integration model shown
in Fig. 4. It consists of the components as fol-
lows:

Information Sources: Existing informa-
tion sources shown as disk-shaped in Fig.5
provide their information through their Web-
embedded client applications.

To inform users about their service informa-
tion, the client application and some necessary
information for information integration must be
wrapped in interface definition. We will de-
scribe the interface definition in detail later.

Mediator and User Interface: These two
components are installed in a user’s mobile
computer and work together as a front-end sys-
tem to generate script programs and present
their result. We use object-oriented SQL (OO-
SQL) and Persistent Perl®) as a query language
and a common language in our system respec-
tively. The mediator communicates with the
user through the user interface to help the user
generate a query command. The mediator fi-
nally adds additional information written in the
Persistent Perl into the user’s OO-SQL com-
mand to form a script program and registers
into the system for future use. With the user in-
terface, the mediator sends the script program
to remote servers for execution.

Wrapper: This module consists of a basic
and application-specific integrated information
service modules. With the interface definition,
the wrapper converts the queries and additional

An Information Integration Architecture for Mobile Users in WWW Environment 891

information sent from the users into native com-
mands of the client application, executes and
converts the result represented in a common
data model. The wrapper module does not nec-
essarily reside in the same server as the infor-
mation source. Most of the wrappers reside in
a yellow page server. The wrapper in the yellow
page server loads the Web-embedded client ap-
plications from original sites and communicates
with them through its application-specific mod-
ule for execution.

So far, there are important points we should
note. From the point of view of users, integra-
tion is performed through the OO-SQL com-
mand. Because no global data schema is pro-
vided in our architecture, the process must ac-
cumulate knowledge useful for integration while
it migrates between remote servers. There-
fore, the mediator will include some additional
knowledge written in the Persistent Perl to-
gether with the OO-SQL command to form a
structured script program. This script program
is used as a format transferred between the me-
diator and the wrapper, and also used between
the wrapper and the wrapper. At each wrap-
per, the OO-SQL and information written in
the Persistent Perl will be converted into na-
tive commands for execution.

MIR (Main Information Resource): A
MIR acts as a yellow page server to assist mo-
bile users in finding and integrating services of
the information sources. It contains the wrap-
pers and the interface definitions of all services
of interest. It also provides links to the Web
pages of each information source and their in-
terface definitions.

2.2 Cell Design for Schematic Conflict

Solution

Various projects on the integration of hetero-
geneous sources such as TSIMMIS and HER-
MES ") focus on resolving the schematic con-
flict problem within the well-known underly-
ing sources and leave the programming task for
solving this problem to developers. This ap-
proach will work well on the static environment
of centralized or distributed organization that is
equivalent of a MIR in our approach. From the
point of view of mobile computing, we can see
that MIR is a logical cell that there is no con-
flict problem with its support range. However,
our approach allows mobile users to decide by
themselves to create views for integrating infor-
mation from several Web-embedded client ap-
plications. We provide no global external view

892 Transactions of Information Processing Society of Japan

at all, but rather provide interface rules in an
interface definition to solve the schematic con-
flict problem while mobile users generate inte-
gration.

How can mobile users integrate information
without the schematic conflict problem even
though the range of integration covers differ-
ent cells? Our solution is built on the variation
the two projects described above. We use the
following list of methods for designing a logical
cell:

1. In general, even in different cells, a domain
of each information has its standard formats for
representation. Therefore, a cell designer set
the standard format used in the cell and pre-
pare the interface rule for handling the other
standard formats to alleviate the conflict prob-
lems of the integration covers different cells. For
example, the cell designer decides to use Amer-
ican format as the standard Date format and
writes the interface rule for handling three for-
mats; American, European and Japanese. This
rule can be applied in a wide area made of dif-
ferent cells. This approach is adopted from that
of the HERMES project.

2. In case that the first method can not solve
the conflict problem, the interface rule for direct
conversion between different domains of differ-
ent cells should be prepared. This approach is
adopted from that of the TSIMMIS project.

3. In case that the first and second methods can
not solve the problem, the interface rule must
provide users with “extract” functions, which
are used to extract sub-components of informa-
tion for making decision in integration. Such a
sub-component can be used to perform partial
matching integration.

We assume that a scale of MIR is not so large
but the first and second methods listed above
can hold in a much wider area made of different
cells. The third method is an exceptional way
we can use in case that the first and second ways
can not be applied to solve the schematic con-
flict problem. Figure 6 summarizes our strate-
gies described above.

3. Interface Definitions
Generation

and Script

In this section we describe components in our
system architecture in greater detail, provide an
example of how Web-embedded client applica-
tion is wrapped into an interface definition and
how to integrate information by using interface
definitions based on a query language.

Apr. 1998

A cell in our approach is a logical
Cell2 area that there is one MIR controlling
% % all schematic conflict problems

between a group of information sources

Schematlc conflict between
Informatlon within the same
cell can be solved by using

a standard exchange format
or conversion functions
described in interface,
definitions

Extract functions described in the
interface rules will be used to solve
the schematic conflict problems

between Information from different \
cells in case that the conversion
methods used in the single cell can

not be applied

Fig. 6 A schematic conflict problem.

3.1 The Interface Definition
In this subsection, we will describe how to

wrap Web-embedded client applications defined
in Section 1.2. To wrap properties and behavior
of these applications, We propose the Persistent
Perl as a common language in our system. We
also propose an interface definition to map the
object-relational model into native information
and tell a user what operations are available
and how to invoke them. The general syntax of
the interface definition is as follows:
database DatabaseName
address EMailAddress
class ClassName inherit SuperClass
body

attribute Domain [,attribute Domain]
method
public:

MethodSignature [,MethodSignature]
private:

MethodSignature [,MethodSignature]
implement

MethodImplementation
interface

RuleDefinition [RuleDefinition] -

endclass

where the above “RuleDefinition” takes the
form:
Rule:
Rule-Predicate
External:
Function-Description
Default:
Default-Value
Comment:
Comment-String
Extract:
Function-Description

To understand the syntax of the interface def-
inition more clearly, consider a Web-embedded
client application shown in Fig.7. It is a Java

Vol. 39 No. 4

ate om_time

@7-28-1997 |16:00@
07-28-1997 [16:08

lassification Methods (WS
lassification Methods |WS
pening Session Wus 27-28-1997

Fig. T A java applet client application.

applet that acts as a Web-embedded client ap-
plication accessing the conference information
from a relational database server. Users can
load this application from its WWW server
and access conference information held in each

building by clicking at the building area in the

map. Then, the Java applet sends the building
code to access the conference information and
shows it in the text area.

The interface definition of this Web-embedded
client application is shown in Fig. 8. This in-
terface definition defines a new class named Ses-
sionTitle. It is managed in database confDB-
Web at the MIR whose e-mail address is
ACC1@MIR1.is.uec.ac.jp. This interface con-
tains a body clause that specifies a fixed num-
ber of arbitrary attributes. In this example,
it has 7 attributes corresponding to the out-
put displayed in the text area: session, place,
s_date, from_time, to_time, title and pre-
senter.

In contrast to the class definition of object-
oriented programming that declared data type
for each attribute, our interface definition de-
clares a domain of data type for each attribute.
In this example, a domain of session, title and
presenter are string. The domain of place is
buildingCode. The domain of s.date is Date
and the domain of from_time and to_time are

An Information Integration Architecture for Mobile Users in WWW Environment 893

‘database confDBWeb
address ACC1@MIR1.is.uec.ac.j
class SessionTitle inherit wdbST

body

session string,

place buildingCode,
s_date Date,
from_time Time,

to_time Time,

title string,
presenter string,
method
public:

static string getByPlace(buildingCode $place);
boolean morningSession();
private:
0ID new(string $session,buildingCode $place,
Date %date,Time $from_time,
Time $to_time);
implement
sub new {
my $package = shift;
my $this;
$this->{session} = shift;
$this->{place} = shift;
$this->{s_date} = shift;
$this~>{from_time} = shift;
$this->{to_time} = shift;
$this->{title} = shift;
$this->{presenter} = shift;
bless $this;
return $this;

}

sub getByPlace{
my $package = shift;
my $place = shift;
return ‘‘Place=$place’’;

sub morningSession{

}
interface
Rule:
buildingCode ($X)
:— checkCode($X,$Y) ,output ($Y).
checkCode ($X,$Y)
If format of $X == XXXYYY set $Y = $X
XXXX is string and YYY is number,
:- pattern($X,(%w+)(\d+)),set($Y,$X).
checkCode ($X,$Y)
if ($X == XXX~-YYY) set $Y = &chCode($X)
1= pattern($X, (\w+)-(\d+)),
set($Y, ’&chCode(’.$X.%)).
External:
. chCode(input),chCode.pl,W-5,W5
Default: W5
Comment :
Please Enter Building Code as follows:
WX(X is number from 1 to 9)
Extract: .
function name,program name,input,output
bldName (input) ,bldName.pl,W5,W
bldNo(input),bldNo.pl,W5,5

éﬁéclass
Fig. 8 An interface definition of the Java applet
client application.

Time. FEach domain has a rule that can be
invoked for validating input data to solve the
schematic mismatch problems. We will describe
it in detail later.

In a method part of the interface definition,
we have to provide the signature of all opera-
tions which represent associated methods avail-
able by this client. The implementation of each
method is coded in an implementation part in
Perl language syntax. The associated methods

894 Transactions of Information Processing Society of Japan

of the method part are divided into 2 types; a
public and private types. Users can directly
invoke only the methods of the public type.
In this example, getByPlace() method requires
one argument and its data must agree with
buildingCode rule.

The new() method is a constructor method.
It is used to instantiate a Persistent Perl object
of an interface definition.

The static keyword in the method signature
means that this method will be used as a class
method for generating the native command of
the Web-embedded client application.

In case of using the global standard data for-
mat in cell design, the conversion between the
standard format used in the cell and the native
format used in client applications is processed
in a wrapper component. The wrapper per-
forms this conversion when invoking the new
constructor or the native command.

The method that is not static method and
returns boolean is a filtering method manipu-
lating the object of Persistent Perl. We call this
type of method a boolean method.

Let us now complete an example object in
our common data model. Turn our attention to
object presentation in the Persistent Perl. Sup-
pose the following information that is exported
from the above client application:

[Open Session, W5, 07-28-1997, 7:30, 8:00,
Keynote Address, Gorge Miller].

An object in the Persistent Perl can be in-
stantiated by passing this information to the
constructor method as follows:
new SessionTitle ("Open Session’, "W5’, *07-28-
1997°, ’7:30°, ’8:00°, ’Keynote Address’, 'Gorge
Miller’).

We can represent the above value in an object
as follows:

SessionTitle_1->session=’0Open Session’

SessionTitle_1->place = ’W5’
SessionTitle_1->s_date = ’07-28-1997’
SessionTitle_1->from time = ’7:30°
SessionTitle_1->to_time = ’8:00’
SessionTitle_1->title = ’Keynote Address’
SessionTitle_i->presenter = ’Gorge Miller’

SessionTitle_1 is Perl’s associated variable
reference. From the point of view of object,
it acts as object identifier (OID). The Perl ob-
ject that we use as object-relational model also
supports many object-oriented abilities such as
nested collection and so on. The detail can be
found in Perl reference manual®.

Now, we will describe to how methods
are invoked in the Persistent Perl. As

Apr. 1998

shown above, we have two types of method
that have different syntax forms for invok-
ing. The syntax form of a static method
invocation is ClassName— METHOD (ARGU-
MENTS) while the syntax form of an instance
method invocation is OID—METHOD (AR-
GUMENTS). Here is an example of two uses
of such a method:
SessionTitle->getByPlace(’W5’)
SessionTitle_1->morningSession()

In this example, the getByPlace("W5’) is used
to access information from the Java applet by
invoking the getConferenceData (” W5”) that
is a method in the DA part of the Java ap-
plet shown in Fig. 7, while the morningSession()
method is defined as a filtering method for eval-
uating whether the value of from_time attribute
of the SessionTitle.1 object is less than 12:00
AM.

In an interface part of the interface definition,
code of a rule for each domain is implemented
in this part. Each rule can be divided into the
following parts:

Rule: This part declares the rule for a do-
main used by the element such as an attribute
or argument of methods in the interface defi-
nition. A rule is described as a series of Horn
clauses and its flow control is the same as that
of Prolog. It also provides predefined predicates
performing matching capability of Perl. In this
example, This rule is for the buildingCode do-
main. It supports two patterns of data pre-
sentation; W-X and WX where W is a string
and X is a number. The WX is the default
pattern for this client while the W-X pattern
can be converted to this default pattern by us-
ing chCode() external function. In this case,
there are only these two patterns used for rep-
resenting the code of building. Therefore, for
this example, we use direct conversion, which
is the second method of cell design described in
Section 2.2.

External: This part declares a group of
functions that are provided by the information
resource for converting the other data-pattern
supported by this rule to the default pattern.
In this example, chCode() function is defined
in chCode.pl file. It changes data pattern from
W-X to WX. The last two items are shown the
example of input argument data (W-5) and re-
turned data (W5).

Comment: This part declares the message
shown to user when he is going to enter data for
the argument of this interface rule. It is useful

Vol. 39 No. 4

for explaining some information for user during
query-command generating process.

Default: This part declares a sample of data
of its domain. The mediator passes this data to
the other interface rule for execution to figure
the schematic conflict out and inserts a conver-
sion function to solve that schematic conflict for
making the integration.

Extract: This part declares a group of func-
tions that extract the sub-component of the de-
fault pattern. In this example, this part pro-
vides two functions: bldName and bldNo. They
are used to extract a building name and a build-
ing number from a building code respectively.
The method description is the same as that of
description shown in the external part.

It is important to note that the interface def-
inition shows that the output information and
access methods of the client application are
wrapped into the body part and the method
part of the interface definition respectively. In
case that developers want to enhance some ca-
pabilities of object filtering, they can code the
boolean method part of the interface defini-
tion. Moreover, the data validation for solv-
ing the schematic conflict problem can also be
described in the interface part.

3.2 Mediator on Mobile Side

In this subsection, we describe the OO-SQL
syntax, the structure of the script program and
a 00-SQL generator of the mediator compo-
nent on a user’s mobile unit.

3.2.1 0O0O-SQL Query Language

To help mobile users describing their task
of integration using declarative expression, we
modify the SQL query language to create our
query language. We call our query language
00-SQL. The OO-SQL is not a new query
language. Indeed, OO-SQL can be seen a
query language that is targeted to our object-
relational model. OO-SQL is similar to SQL 1)
query language but we just change the data
representation to correspond with Perl’s object
and add support for method invocations in a
condition clause. A query in OO-SQL has the
following syntactical structure:

select target-attributes

from [object-variable] in [class-name)]

source [class-name] of [database-name]
on [address]

where [object-condition or method-call]

Target-attributes is a list of required at-

An Information Integration Architecture for Mobile Users in WWW Environment 895

Object
Header TOC al!\d Query
Service Command

Fig. 9 The structure of filtering script.

tributes. From clause contains a list of object-
variables of classes. Object-variable is bound to
object collection in class-name. Source clause
contains the address and database of the class
specified in from clause. Where clause con-
tains query conditions. The method call syn-
tax used in where clause is shown in method
invocation of the Section 3.1.

The OO-SQL as well as knowledge written in
Persistent Perl is converted into a script pro-
gram that has a structure shown in Fig.9 as
follows:

The script header: The part is used to ini-
tialize the environment for starting execution.

The table of contents (TOC): It consists
of indexes of resources required to accomplish
a specific task. With the TOC, the wrapper
can provide the abilities to collect/apply the
services between each information source/MIR
when it migrates from place to place.

The data objects and additional func-
tions: The data object and additional func-
tions that are accumulated from each informa-
tion source/MIR. will be saved into this part.

The query command: This part is query
command that was generated by the user.

3.2.2 Mediator

The goal of the mediator on a mobile com-
puter is to help a mobile user generate an OO-
SQL command. The mediator explores infor-
mation included in interface definitions, inter-
acts with the user and provides this informa-
tion for generating the OO-SQL command in
disconnected state. To explain the behavior of
the mediator running behind its user interface,
we use the following example.

Consider a situation that our university holds
a conference and wants to provide participants
with information about the university. Assume
that laboratories in our university are opened
for visiting during the conference being held
and a user wants to visit the laboratories in
the same building where a session is held when
he has free time.

This example requires two client applications.
The first one is the java applet that its interface
definition of session information is described
in detail at the previous subsection. The sec-

896 Transactions of Information Processing Society of Japan

ond is a Web-embedded client application that
accesses laboratory information in a RDBMS
through a CGI program. Let us show the in-
terface definition of this laboratory information
briefly as follows:

class LabBuilding

body:
building BdDomain,
floor int,
lab string
method
public:
static string getByBuilding(BdDomain
$building);
private:
inplement
interface
Rule:
BdDomain ($X)
:~ checkCode ($X,$Y) ,output ($Y) .
checkCode ($X,$Y)

if XXX-YYY set $Y = $X

:- pattern($X, (\w+)-(\d+)) ,set ($Y,$X).
checkCode ($X,$Y)

if XXXYYY set $Y = &changeCode($X)
:- pattern($X, (\w+) (\d+)),
set ($Y, *&changeCode (° . $X.7)).

External:
changeCode (input) , changeCode.pl,W5,W-5
Default: W-5
Comment :

Please Enter Building Code as follows:

WX or W-X(X is number from 1 to 9)

Extract:

function name,program name,input,output
buildingName (input) ,buildName.pl,W-5,W
buildingNo (input) ,buildNo.pl,W-5,5

The rule part of this interface definition han-
dles the building code in the W-X format. This
rule can convert the building code from the
WX to the W-X format using a changeCode
subroutine. This rule uses the direct conver-
sion for resolving the schematic conflict prob-
lem. Now, consider an OO-SQL command that
selects morning sessions held at a W5 building
and the laboratories that are in the same build-
ing of the sessions. It can be written as follows:

select S->{session},S->{place},S->{s_date},
L->{building},L->{floor},L->{lab},
from S in SessionTitle, L in LabBuilding,
source SessionTitle of confDBWeb
on Accl@MIR1l.is.uec.ac.jp,
LabBuilding of uecdbWeb
on Accl@MIR1l.is.uec.ac. jp,
where SessionTitle->getByPlace(’W5’)
and S->morningSession()
and LabBuilding->getByBuilding(
&changeCode (S->{place}))

We assume that the information sources used
in this example are managed in the same MIR.
Also, the interface rule is the direct conver-
sion rule because there are only two formats

Apr. 1998

S->{place}

Please enter bullding code as follows:
WX or W-X (X Is number from 1-9)

Fser Methods
S

ﬁip.ml A
AmREU.utl D
AltaVistaWeb ResultPage.ut!
JorudanWeb il
<I 1> N I
bullding Building ks
floor _Integer
< &
seLect /S SOURCE
S->{sesslon} A Sin Ses;fb*‘mle A SessionTitle of conmgw
S->{place} |:| L In LayB: [I 1 of W
S->{title},
L->{laby kA -
=i > KI IS < 1>
i WHERE
SesslonTitle->getByPlace('W5’)
s->r9uinlngSesslon()
<[1 =
Fig. 10 User Interface of Mediator.

in this MIR. Then, in this query, the user gets
the morning session data in the building "W5’
by using the first and second condition. The
laboratory information in the same building of
the sessions is accessed by the third condition.
The &changeCode function is inserted to con-
vert data format from WX to W-X by BdDo-
main interface rule.

Recalling to the method invocation of
Perl object, the execution in this query
command can be described as the follow-
ing steps: Firstly, the static command
SessionTitle—getByPlace("'W5’) is converted
into the native command of the Web-embedded
client application corresponding to the Ses-
sionTitle class. In this case, it is the java
applet we showed earlier. Secondly, objects
in SessionTile class that created by the first
condition will be iterated by S object vari-
able, OID—morningSession(), to filter the ob-
jects that satisfy the morningSession boolean-
function. Thirdly, the filtered objects will be
used as condition to join with laboratory in-
formation. Finally, a project operation will be
performed to get only the target attributes.

In order to build the above query, a user is
helped by the mediator on his mobile unit. Fig-
ure 10 shows the user interface for this query
generation. According to Fig. 10, the user inter-

Vol. 39 No. 4

acts with the mediator through a user interface
by the following step: (1) First, when the user
chooses the database name, he can list inter-
face definitions registered earlier. (2) Next, he
selects an interface definition in the list, the me-
diator will show the body and public method
parts of the interface definition into attribute
and method windows respectively. Items in
from and source clauses are also created. (3)
Next, attributes selected by the user will be cre-
ated as target attributes in select clause. (4)
Next, in case that the user chooses a method
from method window, the mediator will check
the number of arguments as well as their do-
mains and ask the user a input data for each ar-
gument. (5) For each domain of the argument,
the mediator invokes the interface rule that is
associated with the current argument, hints the
comment part to the user and waiting for the
user’s input. (6) After the data is inputted, it
will be passed to the interface rule for schematic
conflict checking. In case that the user inputs
an attribute-name that it is not the real data
value, the mediator reads the domain of that
attribute-name and passes its default value of
the interface rule of that attribute to solve the
schematic conflict. If the interface rule can not
solve the conflict, the extract functions will be
provided to the user for making decision to in-
tegration. In this way, the user can generate
0O0-SQL script by the help of his mediator.
From the above query command, when the
user selects the getByBuilding method of the
Laboratory interface definition that has one
BdDomain argument, the mediator opens two
windows for showing the comment of BdDo-
main and waiting for the input for $build-
ing argument as shown in the above Fig. 10,
respecitvely. Suppose that the user inputs
S—{place} as input data into the field. Be-
cause the domain of S—{place} is buildingCode
and its default data is W& (shown in body and
interface rule part of the interface rule in sub-
section 3.1 respectively), the mediator then in-
vokes the BdDomain interface rule (shown in
this subsection) and simulate the execution by
passing default value W5 to the BdDomain in-
terface rule. As a result of interface rule ex-
ecution, the mediator inserts the changeCode
function that is used for converting pattern of
building code and generates the method invo-
cation as the condition of OO-SQL command.

An Information Integration Architecture for Mobile Users in WWW Environment 897

[Web—cmbeded i
A !

adpater
functions

incoming & 00~ -SQL utgoing
script Analyzer Packer script
(A) (c.1)
select $->{session},$-> {place),S->{s_dats}, | select S->{session),S->{place},S->(s_date}
L-> (building}, L-> {floor},L->{1ab}, from S in SessionTitle of confl
from S in SessionTitle, L in LabBuilding, where SessionT itle->getByPlace(’l5”)
sourca SessionTitle of confDBreb No join

on ACCIGMIRL. is..uec.ac. o,
LabBuilding of uecdbHed
on AccBMIRL. is.uec.ac. b
where SesslonT itle->gatByPlaca(’Hs)
end S-ymorningSession()
and LabBuilding->getByBuilding (
&changeCade (S-> {place}))

(c.2)

select L->{building),L-> (floor},L->{lab}

from L in LabBuilding of uecdbheb

where LabBuilding->getBuBullding (
&changeCode (S-> {place)))

Join (S-> {Place},L-> {0ID})

(D) (x) [€4)
SessionTitle->getByPlace('W5”) place=W5 getConferenceData{WS)
©
“[Classification Methods, KS, 07-28-1 ... ,C. Silverstein]
[Classification Fethods, K5, 07-23-1987, y er SHTL Ngd
[Opening Session, WS, 07-28-1987, 7:30, George Miller]
[Opening Session, W5, 07-28-1997, 7:30, 1len Voorhaes)
[Relevance Feedback, S, 07-28-1997, 1 . ,S. Robertson)
[Relevance Feedback, K5, 07-28-1997, 11: v« »B, Velez]

{H)
new SessionTitle(Classification Methods,...,C.Silverstein) (x)
new SessionTitle(Relevance Feedback, ... , B. Velez) S->MorningSession(}

Fig. 11 A wrapper architecture.

4. Wrapper Architecture and Query
Execution

In this section, we describe how a wrapper ex-
ecutes a query command of an incoming script
program. To understand the query execution
more clearly, we discuss the example with the
query command shown earlier. When the query
command together with the necessary informa-
tion that are formed as a script program arrives
at the MIR, the wrapper will perform as shown
in Fig.11:

OO-SQL Analyzer: The OO-SQL Ana-
lyzer checks the incoming command and divides
it into two parts: a related command (A) and
an unrelated command (B). The related com-
mand is the sent for execution while the unre-
lated command is sent to OO-SQL Packer. In
this case, all information is in the same MIR.
Therefore, no unrelated command is produced.

Request Handler: The request handler is
one of the important component of wrapper.
It controls the execution process. After check-
ing the TOC (Table of Contents) of an incom-
ing script, it loads the necessary services from
its library, the additional services and objects
packed from the incoming script into the sys-
tem pool. In this case, it will load changeCode

898 Transactions of Information Processing Society of Japan

function from system library of this MIR. Af-
ter initializing the environment, it divides the
command into static and boolean methods and
passes the execution processing with static com-
mand method (C) to the application-specific
wrapper. This command is concerned with
two Web-embedded client applications; C.1 and
C.2. The application C.1 is first executed and
the boolean method (K) will be applied to filter
the result in later.

The static method is executed (D) and its re-
turned result (E) is then mapped and converted
to the native command (F). After execution is
performed, the output stream (G) is returned.
The required string data is extracted from the
output stream and passed to the constructor
method (H) defined in the interface definition to
create objects (I) in common object model. Af-
ter creating the objects, the application-specific
wrapper invokes join-operation, registers the re-
sult of join into system pool (J) and passes the
execution to the request handler for invoking fil-
ter methods (boolean method (K)) to filter the
qualified objects (L). In this case, the first ob-
ject and second object are filtered out because
their from_time values equal 16:00.

After finishing this execution, the request
handler will start the next execution (C.2). The
process execution flow is the same as the previ-
ous one that we have just described.

To accomplish the above task, we provide a
WDT (Wrapper Development Tool) for devel-
oping a wrapper. The developer can write the
application-specific wrapper with little effort to
control the execution of client-application call,
data model conversion and join process that we
have described above.

0O0O-SQL Packer: The OO-SQL Packer
packs the result objects and the necessary ser-
vices (M) from the system into TOC of script.
It updates OO-SQL with the unrelated com-
mand (B) into the script program whose for-
mat is shown in Fig. 9 and sends this script, if
necessary, to the next information source/MIR.

The processing done in the above modules
will continue until the filtering script completes
the execution. The result of the execution will
be sent back to a server specified by the user.

5. Preliminary Experiment

To test the realization of our approach, we
have implemented and tested the wrappers
for the following information sources shown in
Table 1. To test the heterogeneous Web-

Apr. 1998

Table 1 Information sources and their Web-

embedded client apllications.

Client Backend MIR
mobile Perl MIR1
script Program

Information Source
HTML Files

Conference DB Applet | Postgres | MIR1
Laboratory DB CGI Postgres | MIR1
Homepage in UEC CGI Altavista | MIR1
Event DB CGI Postgres | MIR2
Transportation CGI unknown | MIR2

embedded client applications, we have used all
three types of the clients shown in Fig.3. The
first source is the a collection of HTML files
which is accessible through a Persistent Perl
mobile script communicating with the server
written by Persistent Perl. The second is the
java applet client used in Fig.7. The oth-
ers are Web-embedded client using the CGI
interface. ~ The Altavista server is running
at http://www.altavista.com/ and the server
of transportation information is running at
http://www.jorudan.co.jp/.

MIR1 and MIR2 are running on the UNIX
workstations. The user carrries a mobile com-
puter, which has a user interface implemented
in Java and running on the Hotjava browser.
The user interface lets a user generate a filter-
ing script (Fig. 10), sends it to MIRs, browses
the result and so on.

Recall the query we used as an example in
Section 3.2.2. Figure 12 (left) shows the Web-
embedded client application of the second infor-
mation source of Table 1. Now we also add the
fourth information source of the Table 1 and
pass the laboratory name as a keyword to find
out the URLs of homepages in our university.
With the user interface of the mediator shown
in Fig. 10, we can generate an OO-SQL query
command as follows:

select S->{session},S->{place},S->{s_datel},
L->{building},L->{floor},L->{1ab},
Se->{urlList}
from S in SessionTitle, L in LabBuilding,
Se in SearchEngine
source SessionTitle of confDBWeb
on Accl@MIR1.is.uec.ac.jp,
LabBuilding of uecdbWeb
on Accl@MIRl.is.uec.ac.jp,
SearchEngine of altaVistaWeb
on Accl@MIR1.hol.is.uec.ac.jp
where S->confirm(S->{session},S->{place},
S->{s_date},S->{title})
and LabBuilding->getByBuilding(
&changeCode (S->{place}))
and SearchEngine->searchByKey(L->{lab})
and &resultPage(’Building’,L->{building},
’Floor’ ,L->{floor}, ’Lab’,L->{1ab},
’Session’,S->{session},

Vol. 39 No. 4

LabBuilding Query Form

Please enter qualifiers in the fields below and press the 'Search’
button.

“ Building : 8

¢ Floor... 3 ;
% Lab..... E

41— Nov-28-1985 ... Send comments to ¢,

An Information Integration Architecture for Mobile Users in WWW Environment 899

Fig. 12 LabBuilding Web page and execution result.

URLLINK’,Se->{urlList})

In this example, we also show a confirm func-
tion that is one important feature for informa-
tion integration. With this function, the wrap-
per stops the execution as the check point and
creates the intermediate result. The user can
select the subset of result as the condition of the
next task and send it to the network to restart
the execute again. This feature is appropriate
for not only generating interaction to receive
decision from the users but also preventing the
explosion of data from the join process. Finally,
the last condition is the user-provided result-
Page() method that converts data in Persistent
Perl object into HTML file. The final result of
the execution is shown in Fig. 12 (right).

We have also tried other experiments in var-
ious combinations of the Web-clients shown in
Table 1. Based on our observations, the inter-
face definition that contains services description
and executable rules is suitable for describing
heterogeneous Web-clients as shown in Fig.3
and for providing the information to generate
customized application on the mobile computer
in the disconnected state. About the schematic
conflict problem between different cells, the ex-
tract functions can solve the problem at some
level. However, using the well-known domain
is a preferable solution for the schematic con-
flict problem. Comparing with the other soft-
ware component architectures such as Active-X
or Java Bean, our work provides the architec-
ture and tools for mobile users to be able to
easily create customized applications for inte-
grating information from heterogeneous Web-
embedded client applications in the remote pro-

gramming style.
6. Summary and Discussion

In this paper, we have described the architec-
ture for mobile users to integrate information
from heterogeneous Web-embedded client ap-
plications in the remote programming style. By
wrapping heterogeneous Web-embedded client
applications in interface definitions, the mobile
users can see these applications as components
that advertise their services. With the mediator
on mobile side, the information in these com-
ponents is automatically explored and used to
create “customized applications” by the mobile
users in disconnected state. This is our original-
ity different from various works of generic soft-
ware components that are integrated to create
an general applications working in distributed
object-oriented frameworks.

Our approach does not require mobile users
to describe the details of integration in a query
command. Instead, our mediator on a mobile
unit tries to help the users in providing hint in-
formation, solving the schematic conflict prob-
lem and generating a query command.

With this approach, the mobile users load
the new interface definitions and integrate them
with the existing ones to create new customized
applications while they are moving around the
network. Moreover, the customized applica-
tions created to suit the specific requirement of
an application in any area can be exchanged
together in a group of mobile users, thereby
enabling more widespread network-services uti-
lization. With the cell design and the media-
tor on mobile unit, our approch provides mo-

900 Transactions of Information Processing Society of Japan

bile users with a capablity for generating inte-
gration view when comparing to the TSIMMIS
and HERMES, and with a specialized and eas-
ier integration environment when comparing to
CORBA and DCOM.

In the future, we will investigate the possi-
bility of introducing a template-based specifi-
cation for developing a wrapper. We also inves-
tigate the possibility of wrapping the GUI part
to a much wider range of Web-embedded client
applications.

References

1) Armstrong, T.: Designing and Using Ac-
tiveX Controls, p.630, M&T Books, New York
(1997).

2) Brookshier, D.: Java Beans Developer’s Ref-
erence, p.733, New Riders Publishing (1997).
3) Wall, L.: Programming Perl, p.646, O'Reilly

and Associates (1996).

4) Chawathe, S. et al: The TSIMMIS project: In-
tegration of heterogeneous information sources,
Proc. 100th IPSJ Tech. Rep. DBS Tokyo, Japan
pp.7-18 (1994).

5) Wisut, S.T.: An Information-Retrieval Archi-
tecture for Mobile Computers based on a Per-
sistent Script Language, Master’s Thesis, p.61,
Dept. Information System, The University of
Electro-Communications (1995).

6) Wisut, S.T., Ohmori, T. and Hoshi, M.: An
Information-Retrieval Architecture for Mobile
Computers based on a Persistent Script Lan-
guage, IPSJ Tech. Rep. DBS, Vol.96, No.109-
45, pp.269-274 (1996).

7) Subrahmanian, V.S. et al.: HERMES: A Het-
erogeneous Reasoning and Mediator System,
available at http://www.cs.umd.edu//projects/
hermes/publications/authors/all.html

8) Lange, D.B.: Java Aglet Application Pro-

* gramming Interface (J-AAPI) White Paper,
available at http://aglets.trl.ibm.co.jp/JAAPI-
whitepaper.html

9) IIEE—~H =YV MEMOAZ VTS
SEEOTRFEN [Telescript % Hu.0 & LTJ, Proc.
Advanced Database System Symposium ’95,
Tokyo, Japan, pp.59-67 (1995).

10) TERERER | £ER SQL, p.302, 7 A X —HIEE
(1996).

Apr. 1998

11) Vinoski, S.: CORBA: Integrating Diverse Ap-
plications within Distributed Heterogeneous
Environments, p.12, available at http://www.
acl.lanl.gov/CORBA/#DOCS

(Received September 2, 1997)
(Accepted February 2, 1998)

Wisut Sae-Tung is a doc-
teral student in graduate school
of information systems at the
university of Electro-Communi-
cations (UEC). He received a
BE in electrical engineering from

*+ Chulalongkorn University, Thai-
land, in 1988 and ME in information engineer-
ing from UEC in 1995. His research inter-
ests include heterogeneous information system,
mobile computing, programming language and
database technology.

Tadashi Ohmori received
Dr.Eng. degree in 1990 from The
University of Tokyo. Since 1994,
he has been an Assistant Profes-
sor for Graduate School of Infor-
‘. mation Systems, The University

B of Electro-Communications. His
research interests are data engineering as well
as database-oriented middlewares for advanced
applications.

Mamoru Hoshi received the
B.E., M.E., and Dr.E. degrees in
mathematical engineering from
the University of Tokyo, in
1967, 1970, and 1985 respec-
tively. During 1970-1978 he was
with the Electrotechnical Labo-
ratory, Tokyo, Japan. During 1978-1992, he
was on the Faculty of Engineering of Chiba Uni-
versity. He is now a Professor of the Graduate
School of Information Systems, The University
of Electro-Communications, Tokyo, Japan. His
research interests include algorithms and data
structures for searching, image processing, and
computer graphics.

