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I. INTRODUCTION

Computing an expectation and maximization is a set
of powerful tools in statistical data processing. Demp-
ster et al. [DEMT78] collected examples from diverse
areas, built a unified theory and coined the name “EM
algorithm.” Then, Jordan and Jacobs [JOR94] con-
nected their leaning strategy on hierarchical mixtures
of experts with this EM algorithm. These algorithms
heavily depend on the logarithim and the nonnegativ-
ity of the Kullback-Leibler’s divergence. Yet, there is
a wider class for such an information measure; the di-
vergence of order a. This paper uses the generalized
measure in order to derive a probability weighted EM
algorithm and learning strategies. Extended versions
of statistics methods such as the Fisher’s measure of in-
formation and the Cramér-Rao’s bound appear in the
execution of learning., Finally, usage of the generalized
EM algorithm as a building block is discussed.

II. PRELIMINARIES
2.1 Rényi’s divergence and a-divergence

Rényi [REN60] is the first who presented the order
« divergence. We replace his « by (1 + a)/2 and nor-
malize the total amount.

D (pllg) = —4/(1 - o) log{ Sipu (/i) 0+/2).

If p and ¢ are continuous, the summation is replaced
by an integration.

The a-divergence [HAV67], [AMA93] has the same
kernel of the surnmand.

D (pllg) = 4/(1 - &®){1 ~ L;pilg/pi) 1 +)/2}

There is a monotonic relationship between the above
two measures.

2.2 Extended Logarithm
Csiszdr [CSI72] (its early version is by Rényi
[REN60]) presented a general divergence measure:

Dc(pllg) = zipif(‘Ji/Pi) = Z{%g(m/qf),

where f and g are twice differentiable convex func-
tion with f(1) = g(1) = 0. Thus, the a-divergence
D) (plig) is the case of f(z) = 4{x — z(+2)/2}/(1 —
a?). If a = —1, then D{®)(p||q) is reduced to the well-
known Kullback-Leibler divergence. Thus, logz corre-
sponds to {2/(1 + a)}{z1*+®)72 4 ¢(z,a)}. The term

¢(x, @) is not unique as long as it satisfy a couple of
necessary conditions. We select ¢(z,a) = —1. There-
fore,
L) = 5@ - 1)
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is selected as an extension of logx. Note that the con-
stant “-1” is often cancelled out when L(®)(z) is differe-
tiated by a parameter or compared with other L™ (y).

III. WEIGHTED EM FROM o-DIVERGENCE

Let py|4(yl¢) be the probability density of observed
data y, Let z be the complete data which contains
unknown parts for the observer. ¢ and 1 denote struc-
tures defining the probability densities. The simplest
case is that ¢ and 1 are parameters. Thus,

Pris(yl®) = /x (y)wa(ﬂflﬁb)dx

is the relationship describing the observation. Let
B @18) = {ov 1 i)/ pyiswlg)} )72,

and

L wlo) = 2R @l9) ~ 1}/(1 + o).
Let the conditional probability be

Pxiy.6(Tly, 8) = px16(z]8)/ Py 4 (yId)-
Then, we use the following convention:

¢ = pxv,(zly, #); ¥ pxyy(zly, ¥).
Then, D(®)(4|l1)) > 0 gives the following equations.

py|x @z, ) }I_JF

S,(f,'z\»(ww) d'—‘efj; (gf}ms(z ly, ¢){ PriX oPUIE, )

QL) (@lg) = 2{S¥ (#16) — 1}/(1 + a),

2 @ 2 e
_I——T(-;LY ('M‘P) > 1= aQy|x (¢I¢)

The following theorem and corollary are obtained.
[Theorem 3.1] The weighted EM algorithm is a series
of applications of E-step and M-step.
E-step:

Compute Q{7 (#19).
M-step:

Compute * = arg max QY (%19)-

[Corollary 3.2] The weighted EM algorithm is clas-
sified into the following three cases depending on the
number a.

b

E-step:
Compute ST (¥16).
M-step:

Compute the foliowings.

1. a < -1: 9*=arg min, Sﬁ;((d’kb),

2. a=-1: ¥* =arg maxy E,, ., [logpyixy],
3. a> —1: ¥* =arg max,, 53(,“,}((1/11@-
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1IV. WEIGHTED EM FOR NEURAL NET-
WORKS OF HIERARCHICAL EXPERTS

4.1 WEM for Hierarchical Experts NN

In the neural network of hierarchical experts
[JOR94], random variables have the following corre-
spoandences.

X e X; Y & (Y, 2).
The random variable X stands for an input, Y is the
teacher, and Z gives a path of the hierarchy. Then,

. Py zix.4 W, 2|z, %) Ex
Sy 21x (419) = Bpzixr.s [{ py?‘;t(y,zlx ) } ] ’
(a)

yz(x(l’w)

2 (s 1),

" = arg max Q0 x (@9).

and

4.2 Gradient Ascent Learning Based on WEM
Let Ui(;»') {¢) be a neural weight connecting element

J to i in the probability world of ¢. Let 3 be a post-

learning world. Then % = ¢ + A\¢ corresponds to

(a) (,‘/)) (a) (Q}) -+ AUSX) (¢)s
AU;) ) = 3t [ﬁf—?ﬁ {pvix s (ylz, ¢)}ﬂ

where p is a small constant. First, we consider a succ-
sessive version of the learning. The increment is as
follows.

. . =1lta
AUSN9) = pprixelyie,8)
o}
a0, {prix.sllz, 9)}
The case of a == —1 is the traditional “log” version.

AU (@) = pyix.s Wiz, $) T AU (9)

holds. Therefore, a large a emphasizes learning at a
high probability density. The batch learning version

uses [1,pvix ¢ (y(DIz(2), $) 5.

V. VARIOUS STATISTICS MEASURES AND
EXPECTATION LEARNING FOR THE WEM
5.1 Statistics Measures and Their a-Versions

There can be many a-information measure corre-
sponding to the Fisher’s mformatlon measure We list
up the following two versions for M)

1. Exponential expectation: ~-Eexp( L [3m2”"’]

 (25)
Related to the second M(*)(¢) is the Cramér-Rao’s
bound for parameter estimation:

V($—$) > 1/V(9E/89) = 1/MV(9).
Here, V is the variance, and qg is an estimate of ¢ stat-

isfying E[§] = ¢. This Cramér-Rao bound can be de-
rived from the cr-efficent score:

V(d - ¢) > 1/V(p~ /251 /54).
The righthand side is reduced to

2. Plain expectation: —F [p'

1/V(p~A+/29L@ 194) = 1/V (8/4).

Therefore, one obtains

m & M@ (9)/ M (9) = (1 - a)/2.

Thus, this number m reflects the speed that the learn-
ing system acquires knowlegde from the training. This
m can be called the aptitude number.

5.2 Newton-Raphson Learning and a-Information
Measure

Let the 7-th iteration value of the extended loga-
rithm of p, be

L(p) =2/(1 +a){p T —1}.

An optimizaton method using a Hessian matrix is as
follows.

~1
brar =9 — [E{0°L 00097 || OLI (39,
There are many variants.

V1. SYSTOLIC AND MONITORING WEM

The WEM can be used as a building block. This
idea comes from the fact that the WEM (EM) is too
monolithic to model complex systems such as brains.
Fig. 6.1 illustrates such an example. Each block can
bifurcate. One branch can be regarded as a monitor.
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Fig. 6.1 A systolic layer of the WEM as an example.

VII. CONCLUDING REMARKS

In this paper, the wighted EM algorithm (WEM)
was presented first. Then, extended versions of the
Fisher measure and scoring, and Cramér-Rao bound
were used to discuss computational aspects. The block
monitoring idea presented in Section 6 will create many
profitable structures.
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