Vol. 39 No. 6

Regular Paper

Transactions of Information Processing Society of Japan

June 1998

The SOFL Approach: An Improved Principle for
Requirements Analysis*

SHAOYING Liu,t A JEFF. OFFUTT,"" MITSURU OHBA'
and KEIJIRO ARAKI't

In this paper we point out three major deficiencies of data flow diagrams (DFDs) for re-
quirements analysis. One is the impracticability of the rule for decomposing processes, an-
other is the inconvenience of drawing data flows for complex DFDs, and the third is the
lack of precision in process specifications. We present an improved approach using SOFL
(Structured-Object-oriented-Formal Language) to show how these three deficiencies can be
addressed. This approach can be applied to make the use of DFDs more practical, scalable,

and more accessible to industrial users.

1. Introduction

Data flow diagrams (DFDs) have been widely
used in industry as system modeling tools for
requirements analysis. They are considered to
be easy to comprehend and effective for model-
ing many applications. However, we have found
problems in the following three major aspects of
the use of DFDs: application of decomposition
rules, drawing of data flows, and specification
of processes.

To cope with the complexity of systems and
to allow many people to work on one large task,
data flow diagrams for a large and complex sys-
tem are usually drawn in a hierarchical fashion
by decomposing high-level processes. Such de-
compositions are required to conform to a cer-
tain rule that the dataflows coming into and go-
ing out of a process at one level must correspond
to the dataflows coming into and going out of
an entire DFD at the next lower level which de-
scribes that process'). Unfortunately, the word
correspond is not defined precisely for this rule,
and can be interpreted in more than one way.
However, two examples given by Yourdon on
pages 170 and 1711 show that the meaning
of correspond is to keep the input data flows
(output data flows) of the high-level process
the same as the input data flows (output data
flows) of the entire DFD at the immediately
lower level. Not only does Yourdon advocate
this rule, but it has been a well known princi-
ple since DFDs were proposed 2) and many re-

1 Hiroshima City University
tt George Mason University
111 Kyushu University

1973

searchers have treated this rule as a structural
consistency of DFDs and worked out algorithms
to check it 3)4).

However, through our experience in the FM-
ISEE project**, we have found that this rule
is not effective for requirements analysis. More
precisely, if we conform to this rule, require-
ments analysis cannot be conducted easily and
clearly. Requirements analysis with DFDs is a
complex process and has to be completed grad-
ually through decomposition of processes. It is
usually impossible to list all the necessary input
data flows and output data flows on a partic-
ular abstract level when requirements are de-
rived. Each decomposition may need some new
input or output data flows that reflect further
user requirements for the functionality of the
high-level process. It may sometimes also not
be desirable to draw all the input data flows at
high-level data flow diagrams because the high-
level data flow diagrams need to show clearly
the primary idea of the requirements in order to
allow a user-friendly validation of the require-
ments specification against the client. For these

* This work is supported in part by the Ministry of
Education of Japan under a Joint Research Grant-
in-Aid for International Scientific Research FM-
ISEE (08044167) and by Hiroshima City University
under a Hiroshima City University Grant for Special
Academic Research (International Studies) SCS-FM
(A440).

FM-ISEE stands for Formal Methods and Intel-
ligent Software Engineering Environments. It is
an international collaborative project conducted by
Hiroshima City University and Kyushu University
of Japan, George Mason University of the USA,
The Queen’s University of Belfast of the UK, and
Queensland University of Technology and Monash
University of Australia.

e

1974 Transactions of Information Processing Society of Japan

reasons, we take a more relaxed approach in
SOFL® to allow more input and output data
flows in the decomposed DFD so that the sys-
tem can be modeled gradually from an incom-
plete and abstract level to a complete and de-
tailed level.

Traditional DFDs impose the restriction that
all data flows to be processed or produced must
be drawn in the DFDs, but fail to provide a
mechanism to avoid cross-drawing of data flows
and to express data flows from one page to an-
other. This makes the drawing of data flows
for complex DFDs difficult or unclear. To over-
come these deficiencies, we designed an addi-
tional mechanism in SOFL to allow the use of
broken data flows, thus improving the readabil-
ity of DFDs without weakening the expressive
power of the DFDs.

Traditionally, informal languages (e.g., En-
glish and structured English) and semi-formal
languages (e.g., flowcharts, PAD, and structure
diagrams) are used to describe process specifi-
cations for DFDs. Informal specifications are
usually imprecise and ambiguous in specifying
process functionality. They are also more algo-
rithmic and usually convey some detailed im-
plementation strategy, which should be avoided
at the requirements analysis stage. In contrast,
formal notations (e.g., Z and VDM-SL) have
obvious advantages in this field ®>7-%)., How-
ever, many applications in industry have shown
that formal methods are difficult to use and
resource-intensive.

One solution to this problem that has been
considered is to integrate DFDs and formal no-
tations, and specific integration methods have
been explored. Partly to solve this same prob-
lem, we have designed SOFL for system devel-
opment %8). SOFL has two parts, one for spec-
ification and one for implementation. The spec-
ification language is an integration of DFDs,
Petri Nets, and VDM-SL; the implementation
language is an integration of VDM-SL and high-
level languages (C++ and Pascal) to allow
object-oriented implementations. The specifi-
cation language allows user requirements to be
specified precisely in a hierarchical fashion and
the implementation language allows programs
to be written on an abstract level. In this pa-
per we present a way of using SOFL for require-
ments analysis.

The remainder of this paper is organized as
follows. Section 2 uses examples to show why
the existing decomposition rule is impractical.

June 1998

Section 3 describes an improved decomposition
rule and a requirements analysis process based
on it. Section 4 explains how SOFL realizes
this rule and conforms to this process. Sec-
tion 5 describes how to use broken data flows
to improve the readability of DFDs. Finally,
Section 6 presents our conclusions and outlines
our plans for future research.

2. Problem with the Decomposition
Rule

The rationale for the existing decomposition
rule seems to be that, since a high-level process
should capture all the necessary input and out-
put data flows and the decomposed DFD should
describe the high-level process more precisely, it
should keep their input and output data flows
consistent. However, this motivation ignores
the fact that the high-level process cannot usu-
ally completely capture all the necessary input
and output data flows because of the complex-
ity of software systems. In fact, the decomposi-
tion of a high-level process consists in complet-
ing the functional definition of the high-level
process, and during this process more user re-
quirements may need to be captured by using
more input or output data flows. For exam-
ple, Fig.1 shows a context diagram in which
the HCU Management System process is
an abstraction of the overall system®*. At this
early stage the system analyst may not com-
pletely know what inputs the system needs to
process and what outputs it needs to produce,
and therefore the existing decomposition rule is
too restrictive.

To cope with this problem and maintain the
existing rule, the analyst may add newly occur-
ring data flows in the lower-level DFD to its
high-level process once they are created. How-
ever, this may result in the high-level process
having too many input and output data flows
to draw clearly, adding to confusion and encour-
aging mistakes.

3. Improved Decomposition Rule and
Process

3.1 Decomposition Rule

System analysis with DFDs is commonly a
successive decomposition process, and each de-
composition may realize more functions than its

* This system is chosen only as an example to explain
the idea of the proposed principle for requirements
analysis, it does not necessarily reflect the real man-
agement system of Hiroshima City University.

Vol. 39 No. 6

MINISTRY OF
EDUCATION

teaching-report

instruction

research-report

HCU
MANAGEMENT
SYSTEM

The SOFL Approach: An Improved Principle for Requirements Analysis 1975

STUDENTS’
study-report PARENTS

financial-report

education-fund

HIROSHIMA
CITY COUNCIL

Fig.1 Context diagram of the HCU Management System.

high-level process. It is very unnatural and dif-
ficult to make a high-level process capture all
the necessary input and output data flows. In-
stead, it is natural and easy to let high-level
processes capture as many input and output
data flows as possible for its potential function-
ality, and to gradually add more input or output
data flows to its decomposed DFD. Of course,
decomposed DFDs cannot have fewer input or
output data flows than their higher level pro-
cesses because, otherwise, a decomposed DFD
would not realize some behaviors required by
" its high-level process.
Definition 3.1: Let P be a process and D be
a DFD. We then define the following terms:
o Input(P) = the set of all the input data
flows of P.
e OQutput(P) = the set of all the output data
flows of P.
e Input(D) = the set of all the data flows
coming into D.
e Output(D) = the set of all the data flows
going out of D.
Definition 3.2: If P is decomposed into the
DFD D and the following two conditions are
satisfied,

e Input(P) C Input(D)

e Qutput(P) C Output(D)

then we say that P is structurally consistent
with D.

To check the structural consistency for a
given process and its decomposed DFD, we only
need to list all the input and output data flows
of the process and the DFD, and to compare
whether the input and output data flows of the
process are the subsets of those of the decom-

posed DFD respectively. However, if the input
or output data flows of a process can be mu-
tually exclusive (i.e., if they cannot be avail-
able at the same time), then we need to check
it algorithmically; the details of this issue are
discussed in Section 4. The most important im-
pact on system development of this change in
the decomposition rule is that the new rule in-
dicates an evolutionary decomposition method-
ology, in which more functions may be added
to the defined process.

Consider building the HCU Management Sys-
tem as an example. Figure 1 shows the con-
text diagram in which the highest-level pro-
cess, HCU MANAGEMENT SYSTEM, is used
to abstract the functionality of the entire sys-
tem. The diagram includes four terminators
and shows their relations with the system. At
the current level we can only propose data that
are based on current user requirements. When
the process HCU MANAGEMENT SYSTEM is
decomposed into the immediately lower-level
process in Fig. 2, we find that in addition to
the input and output data flows of the process
HCU MANAGEMENT SYSTEM, one more out-
put data flow, failed-student, is necessary as an
output data flow of the entire DFD. Thus this
decomposition not only decomposes the func-
tionality of HCU MANAGEMENT SYSTEM, but
also allow it to evolve so that it can possess
more functions.

3.2 Impact on the Semantics of DFDs

The change of the rule for checking the struc-
tural consistency of DFDs has an important im-
pact on the semantics of classical DFDs such
as DeMarco and Yourdon DFDs '), Classical

1976 Transactions of Information Processing Society of Japan

instruction

1

-report
prrepo PRESIDENT
OFFICE

p-instruction

t-instruction

PERSONNEL
OFFICE

sm-instruction

student

STUDENT
DEPARTMENT

failed-student

sm-instruction = student-management-instruction

t-instruction = teaching-instruction
r-instruction = research-instruction
p-instruction = personnel-instruction
p-report = personnel-report

approval

trained-student

student-in-class

graduate

tudy-report

June 1998

financial-report

wn-fund
4

FINANCE
DEPARTMENT

fund-use-report

Ap&m
wng-result
6

TEACHING
DEPARTMENT,

teaching-report

Fig.2 Decomposition of HCU MANAGEMENT SYSTEM in Fig.1.

DFDs are used to describe a static network of
data flows among processes and the decomposi-
tion of each process spells out in detail how its
input data flows are transformed into its output
data flows. In view of this consideration the ex-
isting structural consistency rule is reasonable,
but it has disadvantages, as we have explained
- previously. Our newly proposed rule for struc-
tural consistency is actually based on a change
in the semantics of classical DFDs.

DFDs are used to describe dynamic interac-
tions among processes with data flows. Input
data flows of processes have the power to fire
{or perform) processes once they are available.
As a result of a firing, processes generate out-
put data flows. A decomposition of a process
is a detailed definition of the process, in which
the additional input or output data flows are
treated as local data flows of the upper-level
process. These additional data flows have one
open end, and their source or destination is not
given. An advantage of this feature is that a
developer can concentrate on the most impor-
tant and interesting issues and leave the job of
determining the exact source or destination to
design or implementation (e.g., by calling other
~ functions or reading/writing from or to the dis-

play). This provides some additional flexibility
for design or implementation.

In fact, this semantics is similar to that of the
Pascal language. Consider as an example de-
composing process A in the upper-level DFD in
Fig. 3 (1) into the lower level DFD in Fig. 3 (2)
as an example. This represents the same se-
mantics as the Pascal procedures given below.

procedure G(var x,y,z: Typel)

begin ...

A(xy);

B(y, 2);

end;

procedure A(var x,y: Typel)
var

a,b,d,c: Type2;

begin

Al(x,a);
Obtain(b);
A2(a,b.d.c);
A3(c, y);

end;
The definition of procedure G corresponds to
the DFD in Fig.3 (1) and the procedure calls

Vol. 39 No. 6

@

The SOFL Approach: An Improved Principle for Requirements Analysis 1977

@

Fig.3 Example of process decomposition.

A(x,y) and B(y, z) correspond to the occurrence
of processes A and B, respectively, in this DFD.
The definition of procedure A corresponds to
the DFD in Fig. 3 (2), in which procedure calls
Al(x,a), A2(a,b.d,c), and A3(c, y) correspond to
the occurrences of processes Al, A2, and A3,
respectively, in Fig.3(2). Since the DFD in
Fig.3(2) is a decomposition of process A, the
additional input data flow b and output data
flow d are allowed. They are treated as lo-
cal (or internal) variables in the definition of
procedure A, and can be implemented in sev-
eral different ways. For example, Obtain(b) can
be implemented in several different ways, ac-
cording to the designer. One way is to use the
read(b) statement if b is a basic variable such
as an integer or a real number. Another way
is to call a procedure or function to obtain b
if b is a compound variable (e.g., array, linked
list, or file). Since process A (or procedure A)
is responsible for obtaining b, b is allowed to
occur in the decomposition of process A rather
than as an input data flow to A in the DFD of
Fig.3(1). The same principle is applicable to
the additional output data flow d in the DFD
of Fig.3(2), with the difference that the value
of d is output to the standard output device.

In summary, the occurrence of processes in
upper level DFDs is treated as a use of the
processes, and their decompositions are treated
as their definitions. This changed semantics of
DFDs sets up the foundation for SOFL seman-
tics.

3.3 Analysis Process

On the basis of the evolutionary decompo-
sition methodology, we propose a successive

requirements analysis process using DFDs, as
shown in Fig. 4. The essence of this process is
that requirements analysis is a successive pro-
cess in terms of evolving an initial specification
modeled as a hierarchical DFD into a satisfac-
tory specification (though not necessarily a com-
plete one) step by step.

The first activity for requirements analysis
is to capture user requirements as accurately
as possible through communication with the
user. Such requirements are usually initially
written in natural languages together with spe-
cial terminology used informally in the applica-
tion domain. After the developer has reached
a general understanding, the requirements are
then modeled as a hierarchical DFD at an ab-
stract level and a sufficient validation of this
DFD against the user requirements is necessary.
The analysis then proceeds through successive
evolutionary decompositions of this hierarchi-
cal DFD until a sufficiently concrete hierarchi-
cal DFD is obtained (i.e., each lowest-level pro-
cess of the hierarchical DFD is simple enough
and well specified within a certain formality).
Each level of a hierarchical DFD may consist of
many inter-related components, and each de-
composition transforms abstract requirements
into concrete requirements. During a decom-
position, the abstract level hierarchical DFD
is considered to provide functional constraints
for constructing the concrete hierarchical DFD.
In principle, the decomposition decisions about
adding new functional behaviors in the concrete
hierarchical DFD must be made by the devel-
oper in consultation with the user, because the
system is developed for the user (who may be

1978 Transactions of Information Processing Society of Japan

Verification

Verifications

Verification

June 1998

Decomposition

“ - Final hierarchical DFD

Fig.4 Successive requirements analysis process.

the same person as the developer). However,
when system development reaches a detailed
level, it is usually difficult to involve the user. In
that case, the person in charge of the abstract
hierarchical DFD should play the role of the
user, to help make decomposition decisions. In
order to ensure the correctness of the concrete
hierarchical DFD with respect to the abstract
hierarchical DFD, each decomposition must be
justified through consistency checking.

To provide technical support for this anal-
ysis process, we designed SOFL by integrat-
ing DFDs, Petri Nets, and VDM-SL. DFDs are
used to provide a friendly mechanism for de-
scribing connections among processes in terms
of data flows; the concept of firing used in
Petri Nets provides a precise operational se-
mantics for the DFD; VDM-SL-like notation
is employed to specify precise functionality of
processes in specification modules (s-module)
corresponding to DFDs, as illustrated in Fig. 5.

In fact, SOFL provides an integrated ap-
proach for using structured methodology, for-
mal methods, and object-oriented methodology.
Since SOFL and its methodology are not the fo-
cus of this paper, we discuss only how SOFL is
used for requirements analysis. The details of
the SOFL language and methodology are de-
scribed elsewhere 10),

4. SOFL Decomposition Rules

In SOFL we use Condition Data Flow Dia-
grams (CDFD), which are DFDs that are for-
malized in the manner as described previously.

Processes in CDFD are called condition pro-
cesses, because they are specified with pre- and
post-conditions. A condition process is repre-
sented graphically as a rectangle with five parts:
name, inputs, outputs, pre-condition, and post-
condition. These five parts are located at the
center, left, right, top, and bottom of the rect-
angle, as indicated by examples given later
(e.g., Fig.6). The graphical representation of
a condition process also shows how to express
the input and output data flows graphically. All
pairs of data flows (variables) connected with ®
flow into (or leave from) one small rectangular
box; small boxes are separated by a short hori-
zontal line, which denotes the operator @. The
expression a © b means that both a and b are
required to fire a process, while a & b means
that either a or b, but not both, is required
to be consumed by the condition process (if
they are input data flows) or to be produced
by the condition process (if they are output
data flows). Each high-level condition process is
decomposed into a CDFD under its functional
constraints expressed by the pre- and post-
conditions. the decomposed CDFD spells out
the details of how the functionality of the high-
level condition process is realized by lower-level
condition processes. In addition to its func-
tional specification in the form of pre- and post-
conditions, each lowest-level condition process
is implemented in an object-oriented manner,
using the executable part of SOFL.
Considering the HCU Management Sys-
tem given above as an example, we describe

Vol. 39 No. 6

The SOFL Approach: An Improved Principle for Requirements Analysis

1979

s-module Al
Constant, type, class, and/or
variable declarations
_,Condition process]
” Condition process2
- Condition process3
A Condition process4

/ h s-module A2

! Constant, type, class, and/or
\ variable declarations

’ Condition processl.1

v Condition process1.2

\ Condition process1.3

Y's-module A3

Constant, type, class, and/or

variable declarations
Condition process3.1
Condition process3.2
Cendition process3.3

(b) Hierarchical Structure of Specification Modules

- — -

Fig.5 The structure of a SOFL system.

research-report

teaching-report
Students
Parents
Ministry of
Ed“‘:at‘?‘l’“ instruction
study-report
. HCU —
System =
financial-report
student iroshi
. >l Hiroshima
Society City Council
r graduate

education-fund

Fig.6 Highest-level CDFD for the HCU Management System.

how to use SOFL to model this system with
the new decomposition rule and how to check
the structural consistency. Since the focus of
this paper is not SOFL itself, we do not explain
all the constructs and notions unless they are
necessary for this paper. Readers interested in
the details of SOFL can consult our previous
paper®.

4.1 System Modeling

The system is modeled as the CDFD in Fig. 6,
and the condition process HCU Management
System is decomposed into the CDFD in Fig. 7.
This has more inputs and outputs than the HCU
Management System; these are evolved from the

functional constraints of the HCU Management
System based on further requirements. Further-
more, the condition process Faculty is decom-
posed into the CDFD in Fig. 8. For each level
of CDFD, we construct a specification module
to precisely specify the functionalities of all the
condition processes in that CDFD and to give
informal comments about each condition pro-
cess. For reasons of space, we give only the for-
mal specification for some condition processes
in this CDFD.

Note that the condition process Students-
Parents in Fig.6 is called the output condition
process, because it takes input data flows and

1980 Transactions of Information Processing Society of Japan June 1998

p-instruction approval
education-fund [Finance
Department financial-report
™ s
_instmction)} President t-instruction
|{ Office
: . fund-use-report
T-instruction ﬁ
p-report sm-instruction
research-report
R Faculty [t
student-in-class
L) gef;_sonnel “—i] §
“ "™ | Student | graduate teaching-result
— | Dep ent study-report

failed-student

Teachin teaching-report
Departmegnt "

trained-student

Fig.7 Decomposition of the HCU Management System.

CS
Department
cs-student cs-report
ce-student CE fund-use-report
Department
r-instruction
e -
t-instruction Faculty ce-report Faculty research—reE)rt
H B
student-in-class [Office m-stud i (M{anaggmem teaching-report
e r'm"
b M . trained-student
epartmen
its-student
ITS its-report
Department

Fig.8 Decomposition of Faculty.

produces no output data flows for the system— authors: seq of string;
all the outputs go outside the system. In this title: string;
sense it is an output condition process. In type-of-publication:
contrast, SOFL uses input condition processes, ‘ {BOOK, PAPER};
which take no input data flows from the system publisher: string;
and produce output data flows to the system. volume: natural;
s-module TOP: Fig. 6; number: natural;
year: natural;
/* This specification module corresponds to end;

Fig.6, i.e., this module defines all the necessary
fiata. ﬂows* (variables) and condition processes representative:

in Fig.6. */ string * string * string;
type title: string;

Publication = composed of sponsors: seq of string;

Project = composed of

Vol. 33 No. 6

grant: real;

end;

/*A representative consists of name, faculty,
and position */

R-Report = composed of

pub-list: seq of Publication;
proj-list: seq of Project;
end;
Course = composed of
title: string;
teacher: string;
teaching-hours: real;
end;
Course-info = composed of
course: Course;
pass-stu-no: natural;
failed-stu-no: natural;
end;

/* SOFL is case-sensitive, and thus course is
different from Course */

T-Report = seq of Course-info

Student-info = composed of
name: string;
id-no: natural;
sex: {M, F}
date-of-birth:
natural * natural * natural;
course-score-list:
map Course to real;

end;
F-Report = composed of
item: string;
expense: real;
end;
var
research-report: R-Report;
teaching-report: T-Report;
instruction: string;
student: seq of Student-info;
graduate: seq of Student-info;

study-report: map Course to real;
education-fund: real;

finance-report: set of F-report;

c-process Ministry-of-Education (teaching-
report ® research-report) instruction

pre true

post true
comment
This condition process gives instruction to Hi-
roshima City University based on the annual

The SOFL Approach: An Improved Principle for Requirements Analysis 1981

research-report and teaching-report from the uni-
versity. However, it is difficult to model pre-
cisely how this instruction is made at the ab-
stract level. For this reason, we let both the
pre- and post-conditions be true. This means
that there are currently no constraints on the
input and output data flows, but they may be
added as the system evolves.

The operator ® between research-report and
teaching-report means that when both research-
report and teaching-report are available, this
condition process can be fired (or executed or
carried out).
end-process;
c-process HCU-Management-System (instruc-
tion ® education-fund © student) teaching-
report @ research-report ® study-report ©
financial-report ® graduate
pre len(student) > 0 and education-fund

> 10000 and instruction # ” ”
post len(research-report.pub-list) > 5 and
len(research-report.proj-list) > 1
and len(teaching-report) > 15 and
forall[z inset elems(teaching-report) |
z.pass-stu-no * 100 /(z.pass-stu-no
+ z.failed-stu-no) > 80]
decomposition Dec-HCU

comment

The pre-condition of this condition process re-
quires that student (a sequence of Student-info)
not be an empty sequence that education-fund
be greater than 10,000 US dollars, and that in-
struction be given.

The post-condition requires that in the
research-report more than five publications be
provided (len(research-report.pub-list) > 5)
that in the teaching-report more than fifteen
courses be offered for students (len(teaching-
report) > 15), and that for every course in
the report the passing rate be greater than
80% (forall[z inset elems (teaching-report) |
z.pass-stu-no * 100 /(z.pass-stu-no + z.failed-
stu-no) > 80]). In SOFL we use forall[P;, P,]
instead of Vp, - P» to achieve better readability.

The post-condition of this condition process
does not specify anything concerning the vari-
ables study-report and financial-report.

Since it is still unclear precisely what rela-
tionship exists between input data flows (vari-
ables) or output data flows at this moment, we
use © to abstract their relationship. Once this
condition process is decomposed into the im-
mediately lower-level, this relationship may be

1982 Transactions of Information Processing Society of Japan

refined to @ if it accurately fits the situation.
end-process;

end-module;

Note that we can add comments anywhere,
enclosed between /* and */, as shown in the
module TOP, to provide an explanation or in-
terpretation of any relevant matters (e.g., the
meanings of types and variables). In addition
to this, each condition process is also provided
with a comment part starting with the keyword
comment, in which anything concerned with
the functionality of the condition process can
be explained.

s-module Dec-HCU: Fig. 7;
/* Below we only give the declarations of the
types and variables to be used in the condition
process specification shown in this module. Ac-
cording to SOFL, this module can inherit (i.e.,
use) all the types and variables declared in the
higher-level module (e.g., TOP) */
var
t-instruction: string;
student-in-class: seq of Student-info;
fund-use-report: set of F-Report;

c-process FACULTY (t-instruction ® r-in-
struction ® student-in-class) fund-use-report ®
research-report © teaching-result ® trained-
student

pre len(student-in-class) > 200 and
t-instruction #” ” and
r-instruction #” ”

post post-HCU-Management-System

decomposition Dec-FACULTY

comment

This condition process takes t-instruction, r-
instruction, and student-in-class as its input data
and produces fund-use-report, research-report,
teaching-result, and trained-student. The pre-
condition requires that more than 200 students
be contained in the input variable student-
in-class, and that neither t-instruction nor r-
instruction be empty. The post-condition is the
same as that of the condition process HCU Man-
agement System (which is indicated by post-
HCU Management System).

end-process;

end-module
s-module Dec-FACULTY: Fig. §;

June 1998

/* The contents of this module are omitted. */

end-module;

4.2 Consistency Checking

We need to check whether a decomposed
CDFD is consistent with its abstract condition
process in terms of input and output data flows.
Since input or output data flows of a condition
process may have the ezclusive relationship de-
noted by &, we cannot simply check the follow-
ing conditions as given above:

(1) Input(P) C Input(D)

(2) Output(P) C Output(D)
where P is a condition process and D is its de-
composed CDFD. The reason for this is that
variables representing data flows in Input(P)
and Input(D) or Output(P) and Output(D)
may have either the ® or @ relationship. We
therefore modify this rule as follows:

About input data flows:
(1) Input(P) C Input(D)
(2) Vm,yEInput(P) T QY = T,y €
Input(D) Az opy
(3) Vm,yEInput(P) @y = =y €
Input(D)Az &y
About output data flows:
(4) Output(P) C Output(D)
(5) v:c,yEOutput(P) T Oy = T,y €
Output(D) ANz opy
(6) Vz,yelnput(P) Dy =
Input(D) ANz & y.
where op represents either ® or @.

These rules state three things. First, if = is
an input data flow to the high-level condition
process P, then it should also be an input data
flow to its decomposed CDFD D (likewise, if
it is an output of P, it should be an output of
D). Second, if z and y are two input or output
data flows of P and their relationship is ®, then
their relationship in D can be either ® or @. In
other words, we consider either of 2 ® y and
z@®yin D as a refinement of z ®y in P. It
is not difficult to understand that x ® y in D
is a refinement of itself in P, but perhaps it is
difficult to understand that z @ y in D is also
a refinement of z ® y in P. In fact, z®y in P
may be used to represent two situations: one is
that z and y do have a clear relationship ® in P
(both the designer and the user agree on this),
while the other is that the precise relationship
between z and y is unclear (or uncertain) in
P for some reason. Therefore, once the precise

Vol. 39 No. 6

The SOFL Approach: An Improved Principle for Requirements Analysis 1983

Table 1 Relationships between input data flows.

instruction | student | education-fund
instruction ® ®
student ® ®
education-fund ® ®

Table 2 Relationships between output data flows.

research-report | teaching-report

finance-report | study-report | graduate | failed-student

research-report ®
teaching-report
financial-report
study-report
graduate
failed-student

POEDOO
DO

PE® OO
PO SoOD
e 0o
CODDSD

relationship becomes clear as @, * ® y can be
refined into = @ y.

An algorithm for obtaining Input(D) and
Output(D) as well as the relationships be-
tween input or output variables have been de-
veloped 3)-8) (the algorithm appears in the Ap-
pendix A). These two sets of input and out-
put data flows and their relationships are ex-
pressed by ext-inp(D) and ext-outp(D) in the
algorithm. With this information we can check
the consistency of Input(P) and Input(D) and
also that of Output(P) and Output(D) accord-
ing to the above rules.

For example, by applying this algorithm to
the CDFD in Fig.7, we obtain the following
results:

ext-inp(D) = instruction ® student
® education-fund, .
ext-outp(D) = research-report
© teaching-report
Gfinancial-report
@ study-report © graduate
@ failed-student

Since the process of deriving ext-inp(D) and
ext-outp(D) is complicated, we include it in Ap-
pendix B for reference.

By extracting all the data variables from ext-
inp(D) and ext-outp(D) we obtain the two sets:
Input(D) = {instruction, student,

education-fund}

Output(D) = {research-report, teaching-report,
finance-report, study-report,
graduate, failed-student}.

The relationships between the data variables
in ext-inp(D) and ext-outp(D) are expressed in
Tables 1 and 2, which facilitate the algorithm
for consistency-checking given below.

The first table, called M;,, shows the rela-
tionships between input data flows (variables).

It is constructed on the basis of ext-inp(D) by
using the following rules:

e Each input data flow corresponds to a row

and column.

e Forz;0120...0%y, let Miy[z;,2;] = © and

Minlz;, ;] = ©, where i # jAi,j € [L..n].

e Forz102z2... 0 ®y1 ©y2 ... ©ym, let

M;, [.’l:i, yj] = ® and Min[yj, .’Ifz] = @, where
1<i<n,1< 7 <m. Note that y; can be
ZT;.

The second table, called M,,;, can be simi-
larly constructed on the basis of ext-outp(D),
but M;, should be replaced with M,,; in the
rules.

An algorithm for checking the structural con-
sistency by using the new decomposition rule
is given below. In this algorithm we use the
matrices M} and ML, to represent the rela-
tionships between the input data flows and out-
put data flows, respectively, of the upper level
condition process P, and the matrices Miﬁ and
MZE, to represent the relationships between the
input data flows and output data flows, respec-
tively, of its decomposition (i.e., the decom-
posed CDFD of P).

Algorithm 4.1:
(1) X := Input(P); consistent := false;
checkdone = true; My := ML; M, =
Mp;
(2) Foranyz, ye X,
if Ml[.'l,‘, y] =0OA (Mz[lE, y]
then goto (3)
else begin checkdone := false; goto
(4) end;
(8) if for every z, y € X (2) is performed
then goto (4)
else begin (z, y) := GETNEW(X);
goto (2) end;

1984 Transactions of Information Processing Society of Japan

(4) if checkdone = true
then if X = Input(P)
then begin X := Output(P);
My = MZE,: My := ME,;
goto (2) end

else consistent = true

else consistent = false
where (z, y) := GETNEW(X) is a function
for obtaining an unchecked pair of data flow
variables from X and assigning them to x and
y respectively.

This algorithm first checks the relationships
between the input data flows of the upper-
level condition process and its decomposition
and then checks that between their output data
flows. Only when both relationships satisfy the
decomposition rules can the structural consis-
tency of the hierarchical CDFDs be confirmed.

Compared with the input and output
data flows of the condition process HCU-
Management-System in Fig. 6, it is obvious that
the new decomposition rule given above is sat-
isfied by this CDFD and the condition process.

4.3 Evaluation of the Decomposition

Rules

The new decomposition rules substantially
affect the use of traditional DFDs in several re-
spects. First, they change the way in which
people use DFDs hierarchically. The decompo-
sition of an upper-level condition process is in
fact its precise definition, while its own occur-
rence on the upper-level CDFD is treated as
a reference (or calling). Thus, only the neces-
sary input and output data flows (or parame-
ters) for the upper-level condition process are
given in the diagram, while other input or out-
put flows (i.e., additional data flows) for defin-
ing its functionality are given in its decom-
position. When attempting to understand an
upper-level condition process, one needs to read
both its own occurrence and its decomposition.
The function of the lowest-level condition pro-
cess is completely specified by its own occur-
rence in the diagram and by the formal spec-
ification given in the specification module. In
other words, such a decomposition is a refine-
ment rather than just a detailed description.

Second, it provides an effective way of cap-
turing the most essential input and/or output
data flows at each level so that unnecessary in-
put or output data flows can be hidden away
from the current level for readability and main-
tainability.

Third, application of the new rules can be

June 1998

automatically supported by means of the algo-
rithms given in this section and Appendix A,
although the efficiency of the algorithms needs
to be improved.

It is, however, worth mentioning that the pro-
posed decomposition rules may not be correctly
used if they are applied to traditional DFDs,
because of the difference in semantics between
CDFDs and DFDs, as explained in Section 3.2.
Ounly if DFDs used to describe dynamic rela-
tion between processes based on an operational
semantics, is it sensible to apply the proposed
decomposition rules in guiding and checking the
construction of hierarchical DFDs.

5. Broken Data Flows

A broken data flow is a data flow that exists
in a CDFD but is drawn in a broken fashion,
using connecting points. The motivation be-
hind broken data flows is to avoid cross-drawing
of data flows and to express data flows that
must be drawn over one page, therefore allow-
ing CDFDs to more neatly express the most im-
portant and relevant information flows among
condition processes. For example, in Fig. 9 (a)
data y is needed by condition processes B, C,
D, and E. Therefore, we need to draw all the
arcs from condition process A to B, C, D, and
E, but it may be impossible to avoid cross draw-
ing with the data flow ¢, which is cumbersome
and unclear. This problem will become more
serious for more complex CDFDs. However, if
we draw y as a broken data flow to C, D, and
E using the connecting point (1) as shown in
Fig.9(b), the DFD looks much neater than the
one in Fig.9(a). This advantage will become
more obvious for more complex CDFDs.

The broken data flows are in fact semantically
the same as normal data flows, but different
representationally (i.e., syntactically). There-
fore, their occurrences do not affect the defini-
tion of related condition processes in the speci-
fication module. '

6. Conclusions

In this paper we have suggested that the
existing decomposition rule for data flow dia-
grams be not effective for realistic systems anal-
ysis, and have proposed an improved rule. The
improved rule does not require that the data
flows coming into and going out of a process
at one level correspond to the data flows com-
ing into and going out of an entire DFD at the
next lower level. Instead, additional data flows

Vol. 39 No. 6 The SOFL Approach: An Improved Principle for Requirements Analysis 1985

q DT
w
X A y
T \EE u
E 1
C
(a)
z
B g D
q w
X y u
Eam— A { E ——t
"(:) Ll r "
C

()
" Fig.9 An example of broken data flows.

in the DFD at the immediatelly lower-level are 2) DeMarco, T.: Structured Analysis and System
allowed. This change leads to an evolutionary Specification, Yourdon, New York (1978).
decomposition methodology for systems analy- 3) Tse, T.H. and Pong, L.: Towards a Formal
sis using DFDs, which we believe is more prac- Foundation for DeMarco Data Flow Diagrams,
tical. Comput. J., Vol.32, No.1, pp.1-11 (1989).

4) Adler, M.: An Algebra for Data Flow Diagram
Process Decomposition, IEEE Trans. Softw.
Eng., Vol.14, No.2 (1988).

5) Liu, S. and Sun, Y.: Structured Methodol-
ogy + Object-Oriented Methodology + Formal

We are currently interested in investigating
the rules for checking whether the pre- and
post-conditions of a high-level condition process
are consistent with the pre- and post-conditions

of its decomposed CDFD. To this end, we need Methods: Methodology of SOFL, Proc. First
to first wc_)r,k out how to generate th(? pre- and IEEE International Conference on Engineering
post-conditions of a CDFD based on its seman- of Complez Computer Systems (Ft.Landerdale,
tics and then design an algorithm to check the FL, USA, November 6-10), pp.137-144, IEEE
consistency between a condition process and its Computer Society Press (1995).

decomposed CDFD. 6) Hall, A.: Seven Myths of Formal Methods,

Acknowledgments We would like to thank IEEE Software, pp.11-19 (1990).

all of our colleagues who have provided us with 7) Craigen, D., Gerhart, S. and Ralston, T.: For-
help in various ways during this research, es- mal Methods Reality Check: Industrial Usage,
pec]aﬂy M. Sato and N. Arai of Hiroshima FME’93: Industrial-Strength Formal Methods,
City University, and C. Ho-Stuart of Queens- (Odense, Denmark), pp.250-267, Springer-
land University of Technology in Australia. We Verlag (1993).

8) Liu, S.: A Formal Requirements Specification
Method Based on Data Flow Analysis, Jour-
nal of Systems and Software, Vol.21, pp.141-
149 (1993).

9) Liu, S., Stavridou, V. and Dutertre, B.: The

also thank the Ministry of Education of Japan
and Hiroshima City University for funding this
research under a Joint Research Grant-in-Aid
for International Scientific Research FM-ISEE

(08044167) an('i a leosh}ma City University Practice of Formal Methods in Safety Criti-
Grant for Special Academic Research (Interna- cal Systems, Journal of Systems and Software,
tional Studies) SCS-FM (A440), respectively. Vol.28, pp.77-87 (1995).

References 10) Liu, S., Offutt, A.J., Ho-Stuart, C., Sun, Y.

and Ohba, M.: SOFL: A Formal Engineering
1) Yourdon, E.: Modern Structured Analysis, Methodlogy for Industrial Applications, IEEE
Prentice Hall International (1989). Trans. Softw. Eng., Vol.24, No.1 (1998).

1986

Transactions of Information Processing Society of Japan

Appendix A
Algorithm:

1.

Let P, P,,..., P, be the condition pro-
cesses of the CDFD D. Relate each P;
with a data transformation of form:

L(P) — R(P)

Hence we represent D by a combined
transformation:

L —)R1®L2 —>R2®®Ln

— R,.
For every transformation of the form
(L1 ® Ly & ... ® L) — R, expand it
to: :

Li—R®L, — R®...® L

— R
For every transformation of the form:

L—)(Rl @RQ@...@R[)
expand it to:

L— R®L — Ry®..dL — R;
For every transformation of the form

L—(RiOR;®...0Ry),
expand it to:

L— R;,®L — R;0...0L— R,
Using the distributive property of the op-
erator “©” over the operator “@®”, ex-
pand the expressions of transformations.
For example,

L — Rl@(Lz — Ry®lL3 — Rs)
becomes

Li —m R ©OLy— Ry ®I4

— Ry ®Ls — R3
We define a path as a combination of
transformations joined together only by
“®”s but not “@”s. Do the following for
each path:

(6.1) For any L' — R' such that R’
is a subexpression of L for some . — R
in the same path.

(a) Substitute L' for R’ in the trans-
formation L — R;

(b) Remove L' —» R’ from the path.

(6.2) Remove all transformations L —
R such that

(a) R & ext-outpset(D) or

(b) Jaes(r) - d & ext-inpset(D).
Combine transformations within a path
into a single transformation by convert-
ing

Li — R OLy— R ®...0 Ly

— Rk
into

June 1998

Table 3 Simpler variables for data flows.

T = instruction

T2 = student

z3 = education-fund
Y1 = research-report
) = teaching-report
ys = financial-report
Y4 = study-report

Ys = graduate

Y6 = failed-student
21 = p-report

29 = p-instruction

z3 = approval

24 = t-instruction

25 = r-instruction

26 = sm-instruction
27 = student-in-class
28 = fund-use-report
29 = teaching-result
210 = trained-student

(L1®L2@...®Lk)—-)
(R1®R2®...@Rk).

8. Combine all the transformations into a
single transformation by performing the
following two operations:

(8.1) Convert
Li— R ®Ly —Ry®...0 Ly
— Rt
into
(Li®Ly®...® L) —
(Rl@R2®...€BRt).

(Ri®R,®...® Ry), for every L; (i €
[1..2]) (or R;), ifL; =L; (J#1INj € [1..¢])
(or R; = R;), then delete L; (or R;) and
the left @ to L; (or R;) (if applicable).

9. Let L — R be the resulting transforma-
tion. Then

(a) ext-inp(D) = L;
(b) ext-outp(D) = R;

where ext-inp(D)(ext—outp(D)) is a data ex-
pression in which all the input (output) vari-
ables are in the set Input(D) (Output(D)) and
are connected with the operators ® or @. For
example, let ext-inp(D) = z © y @ 2, then
Input(D) = {z,y,z}.

Appendix B

For the sake of readability, we use simpler
variables to replace the data flow variables as
given in Table 3 in the expressions derived by
applying the algorithm given in Appendix A.

We use = (n) to mean that the following ex-

Vol. 39 No. 6

pression is derived by applying step n in the
algorithm. For the sake of readability, we also
omit some steps that are not important in de-
riving the final expected result.

= (1)

(.’L‘1 ¥ ——)22@Z3®Z4®Z5®Zs)@

(2'2 —F 21) ®

(z6 ©® 22 ® 210 — 2 DY OYs P yYs) ©
(2303328 — y3) ©

(Z4®Z5®Z7 —r 23O Y1 @Zg@Zlo)(D

(29 — y2)

= (2)

(x1 — 220202 Oz5025) D

(21 —> 220 23 024 © 25 © 25)) O

(22 — 21) ©

((Zs@.’Bg ——>Z7@y5®y4€9y6)69

(210 — 27D Y5 O Ya ®ys)) O

(23 — y3) @ (x5 © 28 —> ¥3)) ©
(240250271 —> 28 QY1 O 29 @ 210) ©

(29 — y2)

= @)

((.’171 — 29 02302 025025) D

21 ——)22(923624@25@%))@

(22 — 21) ©

(26 ©23 — 27) ® (26 © T2 — Y5 Oys) ®

(26 © T2 — Ys) ®

(210 —_ 27) ® (210 — Y5 ®y4) (©) (210 — ye) ®
(25 — y3) ® (23 © 28 — ¥3)) O
(24025027 — 23O ® 29 ® 210)O

(29 — 12)

= (4)

((xy — 22) © (T — 23) ©

(£ —> 24) © (@1 — 25) O

(1 — 26) ® (21 — 22) ©

(21 — 23) ©

(21 — 24)®

(21 — 25) © (21 — 26))O

(22 — 21)®

((26 ® o — 27) @ (26 ® 1o — y5) O]

(26 ©® T — Ya) ® (26 O T2 — Yo) ®

(z10 — 27) ® (210 — ¥5) © (210 — Ys) ®
(210 — ¥6)) @

(23 — y3) ® (23 © 28 — ¥3)) ©

(24 @25 Q27 — 28) © (24 O 25O 27 —> Y1) ©
(Z4®Z5@Z7 — ZQ)Q (24 ©z5O2r — 210))®
(29 — y2)

= (5)

((A) O (260x2 — 27)B(A) O (26 OT2 — Y5)O
(26 @2 — Y1) B (A) © (26 O T2 — Y6)D
(A) © (210 — 21) & (A) © (210 — ¥5) ©

(210 —> Y1)

(A) ® (210 — ¥6))®

((B) O] (23 — yg) @ (B) O] (.’L‘3 ®zg — zl) ®
(z3® 28 — ¥3)) ©

The SOFL Approach: An Improved Principle for Requirements Analysis 1987

(24 @25 @27 —> 28) © (24 © 25 © 27 — 1) ®
(24 © 25 @ 27 — 29) © (24 © 25 @ 27 — 210) ©
(29 — ¥2)

= (5)

(B) ® (#1 — 22) © (T1 — 23) ©

(.'171 -— 24) [0} (.’B1 — z5) ®

(20 — 21) ® (29 — ¥2) ©

(26 @ Tg — 27) ® (23 — 21) © (23 — y3) ©
(z1 — 22) ©® (Zl — 23) ®© (Zl — Z4) ®
(21 — 25) ©® (21 — 26) ©

(22— 21) @ (29 — ¥2) ©

(26 O 22 — 27) © (23 —> ¥3) @

(171 — 22) ® (.’171 — 23) ®r — 24) ®
(iL'l e 25) O]

(22 — 21) ® (Zg — yz) ®

(26 ©32) — Y5 © (26 O T3 — Y4) ©

(23 — 21) © (23 —> y3) @

(Zl — 22) O] (Z1 — 23) ® (2’1 — Z4) O]
(21 — 25) @ (21 — 26) ©

(20 — 21) © (29 — ¥2) ©

(26 @22 — y5) @ (26 O T2 —> Y1) ©

(23 — 21) @ (23 — ¥3) ® (21 — 22) ©
(w1 — 23) O (71 — 24) ©

(1 — 25) ©

(22 - Z]_) ® (29 — yz) ®

(ZG O T2 — yS) ® (23 — y3) (&3}

(21 — 22) © (21 — 23) ©

(21 — z4) ®

(21 — 25) © (21 — 26) ©

(22 — 21) © (29 — ¥2) ©

(26 ® g — ys) ® (26 ® Lo — y3) (<)

(.721 — 22) ® (fL’l — Z3) O — 24) ®
(x1 — 25) ©

(22 — 21) ® (29 = Y2) © (210 — 27) ©
(23 — y3) @

(21 — 22) © (21 — 23) © (21 — 24) ©
(21 — 25) © (21 — 26) ©

(22 - Zl) ® (Zg — yz) ®

(26 ©xe — ye) ® (23 — yg) D

(-’L'l — 22) O] (5131 — Z3) (O] (.’131 — 24) ©
(:Bl — Z5) ©

(252 —_ Z1) ® (Zg — yz) ® (210 — 27) ®
(23 — y3) ®

(21 — 22) © (21 — 23) ® (21 — 24) O]
(Zl — 2'5) O] (Z1 e Za) ®

(22 — Z1) © (Zg — yz) ® (Zm — 27) ®
(23 — y3) ®

(xy — 22) © (T — 23) ©

(1 — 24) ©

(.’171 — 25) ®

(22 — 21) ® (29 — Y2) © (210 — ¥5) ©
(210 — y4) © (23 — y3) @

(21 — 22) ® (Zl — 23) ® (21 — 24) ®
(21 — 25) © (21 — 26) ©

1988 Transactions of Information Processing Society of Japan June 1998

(22 — 21) © (29 — Y2) @ (210 —> ¥5) ©
(210 — ys) © (23 — y3) ®

(1 — 22) © (1 — 23) O (1 —> 24) O
(iL‘l - 25) ®

(72 — 21) © (29 — ¥2) © (210 — 6) O
(23 — y3) ®

(21 —22)©® (Zl — 23) ® (Zl — 24) ®
(71 = 25) © (21 — 26) ©

(22 — 21) © (20 — y2) ® (210 — y6) ®
(23 —y3) @

(@1 —22) O (21 — 23) O (x1 ~—> 24) O
(.Z‘l — 2'5) ®

(2’2 —_— 21) ® (ZQ — yz) O]

(26 ©2 —> 27) O (T3 O 28 —> y3) @
(71— 22) © (21 —> 23) © (21 — 24) ®
(z1 — 25) O(z1 — 26) ©

(72 = 21) © (29 — 92) ©

(26 @3 — U5) © (T7 @22 —> Y4) ©

(23 © 28 — y3) ®

(21— 22) O (21 — 23) O (21 — 24) ©
(Z] g 25) ® (21 — 2’6) ®

(22 — 21) ® (Zg — yz) ®

(%6 @ @2 ~—> Y5) @ (7 Q3 — Y4) ©

(373 ®zg — y3) ©

(Il:l — 22) ® (a:l — 23) ® (.’ﬂl — z4) ®
(.’131 b 4 25) O]

(22— 21) O (20 — ¥2) ®

(Z6®.'L'2 ——>y6)®($3 ® zg —>y3)€B

(Z1 — Zz) © (21 — 23) ® (21 e Z4) ©
(Zl — z5) O] (Zl — 26) ®

(22— 21) © (29 — 42) ®

(26 ©22 — Y6) © (T3 O 28 — y3) ®

(@1 — 22) O (1 —> 23) O (T —> 24) ®
(.'131 — Z5) ®

(22 — Zl) ® (Zg — y2) © (210 — 27) ®
(3 © 28 —> y3) ®

(21 — 22) O (21 — 23) © (21 — 24) ®
(71 — 25) ©® (21 — 26) ©

(72 —> 21) © (29 — ¥2) © (210 — 27) ©
(r3© 28 — y3) ®

(1 — 22) O (1 — 23) O (T — 24) ®
(:L'l — 25) ®

(220 — 21) ©® (29 — Y2) @ (210 — ¥5) ®
(210 — Y1) O (230 23 — y3) ®

(21 — 22) © (21 — 23) O (21 — 24) ©
(21 — 25) ©@ (21 — 26) ©

(29 — 21) © (29 — y2) © (210 — ¥s) ©
(210 — y4) ® (£L'3 ©® 23 —> y3) @

(T1 — 22) O (21 — 23) O (1 —> 24) ©
(:151 — 25) O]

(22 — 21) © (29 — y2) ® (210 — ¥6) ®

(1173 © zg —> y3)]

(21 — 22) ® (21 — Z3) ® (2:1 — 24) ®

(21 e Zs) ® (Zl e 2'6) ®

(22 — 21) © (29 — ¥2) ® (210 —> ¥6) ®

(T3 @28 —> ¥3)) © (24 © 25 @ 27 — 23) ©

(Z4'® 25 O zp — yl) O] (Z4 ©zs Oz — 29) ©

(24 © 25 © 27 — 210) © (29 — y2)

= (5,6)

(1'1 (OF 7XOF 1 ——+y1)®(x1 Qrs©Oxr3 — y2)®

(T1 022023 —> y3) ®

(:121@272 —~>y4)®(x1 ®© X9 -—)yz;)@

(11:1 Oz — 'ye)

= (7)

(21022023021 02202302, O3 O 3

— Y OY2Qys) @

(710220210 — Y1 O yYs) D

1 O Ty — Ys)

F (8.1) ;

1022023071 02202302; 02023 BT OX2O

T10T20210%2 — Y1 0Y2 QY3 DY OYs DYe:

F(8.2)

Z10T2023 — Y1 CROY DY Oys B Ys

= (9)

ext-inp(D) = 21 © T3 ® z3

ext-outp(D) = y1 O Y2 O ys D ys O ys ® Yo

where

A= ((x1 — 22) O (21 — 23) O3 —> 24) ©
(; — 25) O (¢ — %) © (29 — 2)®
(zg — y2) ®
(21 — %) O (21 — 23) ® (21 —> 24) ©
(Zl — Z5) © (21 — 2) 0O (Z2 — 21) ©
(29 — y2))

B= ((A)0(z60z — 21)® (4) ©®
(26072 — ¥5) O (26 ©T2 —> y4) D (A) ©
(26 @22 —> yg) @
(A) © (210 — 27) ® (4) © (210 — ¥5) ©@
(210 — y1) @
(A) ® (210 — ¥s))

(Received June 21, 1996)
(Accepted March 6, 1998)

Vol. 39 No. 6

Shaoying Liu is an asso-
ciate professor in the Com-
puter Science Department at Hi-
roshima City University. He
holds B.S. and M.S. degrees in
Computer Science from Xi’an

s Jiaotong University, The Peo-
ple’s Republic of China, and a Ph.D. in Formal
Methods from the University of Manchester,
the United Kingdom. His research interests
include formal engineering methods, software
development methodology, software evolution,
software testing, software engineering environ-
ments, formal languages, and safety-critical sys-
tems. Dr. Liu received an “Outstanding Pa-
per Award” at the Second IEEE International
Conference on Engineering of Complex Com-
puting Systems (ICECCS’96) and has over 35
publications in refereed journals and interna-
tional conferences. He served as the General
Chair of First IEEE International Conference
on Formal Engineering Methods (ICFEM’97)
and Co-Chair of formal methods track of Third
IEEE International Conference on Engineering
of Complex Computing Systems (ICECCS’97).
He is a member of IEEE Computer Society and
IEICE Japan.

A Jeff. Offutt is an Asso-
ciate Professor of Information
and Software Systems Engineer-
ing at George Mason University.
His current research interests in-
clude program testing and auto-
matic test data generation, soft-
ware reliability, module and integration test-
ing, formal methods, and change-impact anal-
ysis. He has published over fourty research pa-
pers in refereed computer science journals and
conferences. Offutt received a Ph.D. degree in
computer science from the Georgia Institute of
Technology, and is a member of the ACM and
IEEE Computer Society. He previously held a
faculty position,in the Department of Computer
Science at Clemson University.

The SOFL Approach: An Improved Principle for Requirements Analysis 1989

Mitsuru Ohba received the
M.S. and B.S. degrees from
Aoyama Gakuin University,
Tokyo, in 1973 and 1971, respec-
tively. Ohba has been a profes-
sor in the Computer Science De-
partment at the Hiroshima City
University since 1994. Ohba was a co-founder
of the Software CALS national project of Japan
that aimed to establish a new framework for in-
ternational collabtorations using the internet.
He developed his 20-year professional career
with IBM. His experience with IBM involved
the study of software reliability analysis, study
of design notation and specifications, develop-
ment of a high-speed prolog compiler, study of
software testing practices, and development of
software test tools.

Keijiro Araki was born in
Fukuoka City, Japan. He re-
ceived B.S., M.S., and Dr.
degrees in Computer Science
and Communication Engineer-
ing from Kyushu University in
1976, 1978, and 1982 respec-
tively. He became a professor at Nara Insti-
tute of Science Technology in 1993, and since
1996 he is a professor at Graduate School of
Information Science and Electrical Engineer-
ing, Kyushu University. His research interests
include software development methods, formal
specification, programming languages, internet-
working, multi-media communication systems.
He is a member of ACM, IEEE Computer So-
ciety, IPSJ, JSSST, SEA, etc.

