R FLH53E CPR 8 &) 2EAR

3 —309

Checkpoint and Rollback in Asynchronous Distributed Systems *

4 O — 5 Hiroaki Higaki, Kenji Shima, Takayuki Tachikawa, and Makoto Takizawa
Tokyo Denki University *
e-mail{hig,sima,tachi,taki}@takilab.k.dendai.ac.jp

1 Introduction

Distributed applications are realized by coopera-
tion of multiple processes executed in multiple com-
puters. These processes are not always reliable and
available. Checkpointing and rollback are well-known
time-redundant techniques in order to allow processes
to make progress even if some processes fail, The pro-
cesses take checkpoints by saving their state informa-
tion in the local logs while executing applications. If
the processes fail in the system, the processes are rolled
back to the checkpoints by restoring the saved state in-
formation and then restarted from the checkpoints. In
the conventional methods, all the processes are syn-
chronized by using such a protocol as the two-phase
commitment protocol [1]. In this paper, we would like
to discuss a new method where the processes are al-
lowed to be asynchronously rolled back and restarted.

2 Checkpoint and Rollback

“An asynchronous distributed system is composed
of multiple processes interconnected by channels, i.e.,
(V,L) where V. = {p;,...,pn} is a set of processes
and L C V? is a set of channels. (p;,p;) indicates a
channel from p; to p;. Here, (p;, p;) is named a channel
of p;. If there is a channel (p;, p;), p; is referred to as
a meighbor process of p;.

2.1 Checkpoint

c: represents the sth checkpoint taken by p;. <ri rep-
resents a rollback where p; is rolled back to ¢,. If p;
fails at 7}, p; is rolled back and restarted from c}. c} is

active if p; takes ¢, and r} does not occur. If p; has an
active checkpoint and p; sends a message m to p;, mis
referred to as a checkpoint message of ¢* to p;. A global
checkpoint is a set of checkpoints taken by all the pro-
cesses in V, ie., {c!,...,c"}. If the processes take
the checkpoints and are rolled back to the checkpoints
independently of the other processes, there exist two
kinds of inconsistent messages: lost messages and or-
phan messages. If p; records the received messages in
the log, lost messages can be received by taking them
out of the log after p; is rolled back. Hence, the global
state of the system can be defined to be consistent iff
there is no orphan message.

In the conventional checkpointing [2], if some pro-
cess takes a checkpoint, all the processes are required
to take checkpoints. Moreover, additional messages
are transmitted and the processes are suspended dur-
ing the checkpointing. However, all the processes are
not always needed to take checkpoints. Here, we define
a semi-consistent global state.

Definition (semi-consistent) Let P be a subset of
V. A global state S is semi-consistent for P iff there
is no orphan message for every channel of each process

*HEENR S AT AlCBR B F v s v P a—nnty s
Yl % BT I BGT MR R
-3y 1y s

inP. O

The system is kept consistent after the rollback iff a
global state S is semi-consistent for a set P of processes
and only and all the processes in P are rolled back.

2.2 Rollback

In the conventional rollback [2], the processes have
to be synchronized to be restarted. One of the dis-
advantages is that all the processes are suspended
and additional messages are transmitted. The larger
the system becomes, the longer the processes are sus-
pended. Thus, the system becomes less available. In
order to keep the system highly available with the roll-
back, we would like to discuss a method where the
processes are asynchronously restarted from the check-
points.

Here, we would like to define the precedence relation
among the active checkpoints and the rollback domain.

Definition (checkpoint precedence) Let ¢ and c]
be active checkpoints taken by p; and p;, respectively.
Let ¢ and e/ be events such that ¢ — €' and ¢} — e/,
c; precedes & (ci =>) ife' = ¢, O
Definition (rollback domain) A roliback domain
D* contains only and all the following processes:

1) p; € D' if there is an active checkpoint ¢ in p;.

Otherwise, D* = 0.
2) p; € D if] is activein p; and &} = ¢k orck = ¢

where cﬁ is active in pg € D"

For each p; € D¥, p; € D’ and D* = DI. A set C = Dt
of processes is referred to as a rollback class.

For every state S of (V, L) and a subset V/ C V, let
Sy denote a projection of S into V’, i.e., a set of the
local states of the processes in V'. Let Sy be a set
of local states denoted by the active checkpoints taken
by the processes in V.

Theorem 1 For every C at every system state S,
Sy v+ U Sy is semi-consistent for V/ if C C V', O
If p; inC fails, the system state is semi-consistent for
C if all the processes in C are rolled back. This also
means that C is the minimum set of processes to be
rolled back for keeping the system semi-consistent af-
ter the rollback. ‘

Definition (rollback view) p; is included in a p;’s
rollback view W* of D* if p; knows p; € D*. O

p; does not have the complete information on which
processes are included in C. Thus, W* C D*. Based on
the view W* of p;, p; can be rolled back and restarted
from the active checkpoint c!.

If processes are rolled back independently of the
other processes, C may not become empty and the
rollback may be continued forever, i.e., the livelock
occurs. Suppose that p; sends a checkpoint message
m’* at e* after taking c} and p; sends a message m’ at ¢’

after receiving m* as shown in Figure 1. Here suppose

3310

D, 2 >

Figure 1: Livelock.
that r¢ occurs in p;. Since e’ — ¢/ and ¢, — €' — 7'
i ca.nnot receive m’ after p; is rolled back from 7}
i.e., €' is canceled. This is because p; is sure that pj
would be rolled back owing to the rollback of p; and
the message-receiving event for m/ has to be canceled.
If p; receives m?, p; is required to be rolled back again
due to the rollback in p;. Thus, livelock may occur.
In order to identify the messages to be discarded, we
define the generation of each process and each event
as follows:
Definition (generatlon) The generation g(p;) is s
between ri_, and ri. Before i occurs, g(p;) = 0. If
¢t is active and an event e occurs in p;, the generation
g(e) is 5. Otherwise, g(e) is L (unknown). O

3 Algorithm

In this section, we would like to present the al-
gorithm using the vector clock of the generations
for preventing the livelock. A message m con-
tains the data m.data and a vector clock m.clock =
m.cly,...,m.cl,) in the header. p; manipulates the

following variables. Here, let N* be a set of neighbor
processes of p;.
o A checkpoint clock ¢.CL' = (c.clj,...,ccl):
Each c.cl; shows the generation of the active
checkpoint in p; that p; knows. c.cl} is incre-

mented by one each time p; takes a checkpomt
Initially, c.cl{ = 0 and c. cl‘ =1 for j #1.

e A rollback clock r.CL* = (r.cli,. .,rcli): Each
r.cl; shows the generation of the rollback most
recently occurred in p; that p; knows. That is,
if p; receives a message m where p; has no active
checkpoint and m.cl; < r.cl}, p; detects that m is
canceled by the rollback r cl; is updated to be
c.cl;: each time a rollback occurs in p;. Initially,
r.cli = 0 and r.cl;'- =1 for j # 1.

o A rollback view W*: p; records an identifier of
a neighbor process p; in W if p; has an active
checkpoint c; and p; communicates with p;. Ini-
tially, W* = 0

i takes c} if one of the following conditions is sat-

isfied:
C1 If p; decides to take a checkpoint by such a trigger
as user request or timeout, p; takes c.
C2 If a message-receiving event e occurs in p; where p;

has no active checkpoint and p; receives a check-
point message m from a neighbor process p; of p;,

pi takes ¢t just before e.
By C1, checkpointing can be initiated by multiple pro-
cesses. By C2, there is no orphan message in (p;,p;)

and (p;,p:).

Table 1: Overhead.
Checkpointing Rollback
Message | 1Time | Message | lime
Koo & Toueg 2] [O(N) [O(D) | O(N) | O(D)
Ours 0 0 O(n) 0o(d)
Here, we would like to present the checkpointing al-

gorithm. Suppose that p; and p; are in C where p;

and p; have active checkpoints ¢} and ¢}, respectively.
Consider a case that p; receives a checkpoint message
m from p;. Let e'(m) denote the message-receiving
event of m in p; and €’ (m) denote the message-sending
event of m in p;. If r% occurs before €'(m), p; dis-
cards m because e;(m) would be canceled. In order
to discard m, p; uses c.CL*, r.CL* and m.clock. Each
time p; sends m, m.clock = (m.cly,...,m.cl,) where
m.ch = c.cli(k=1,...,n).

Livelock-free message reception On receipt of a
checkpoint message m from p;, p; discards m if 1) p;
has no active checkpoint and 2) m.cl; #.L and m. cl;a <
r.cli for some k. O

If p; fails, a rollback is initiated. The rollback is
finished if C of p; becomes empty. This is realized by
using the message diffusion protocol. If p; receives the
rollback request m, from p;, p; sends m, to all the
processes in W* except p;. Then, p; is restarted from
ct. ».CL' is updated to be c.CL*.

4 Evaluation

The algorithm has the following properties:
Theorem 2 The rollback is terminated. O
Theorem 3 The number of rollback request in a
rollback class consisting of | channels is O(l). O

Here, we would like to evaluate the overhead for
checkpointing and rollback by comparing with [2]. In
Table 1, N is the number of processes in the system, D
is the diameter of the system, n is the number of pro-
cesses included in C and d is the diameter of C. Our
algorithm reduces the overhead especially in a large-
scale distributed system because n « N and d <« D
are satisfied.

5 Concluding Remarks

This paper has proposed the new algorithm for tak-
ing checkpoints and rolling back processes in asyn-
chronous distributed systems. Each process manip-
ulates O(n) information and each message contains
O(n) information. The rollback algorithm is termi-
nated with O(l) message transmissions where / is the
number of channels. The algorithm realizes the more
highly available system than the conventional one be-
cause the processes in the system can take the check-
points without transmitting additional messages and
and can be asynchronously rolled back.

References

[1] Bernstein, P. A., Hadszilacos, V., and Good-
man, N., “Concurrency Control and Recovery in
Database Systems,” Addison- Wesley, pp. 222-261
(1987).

[2] Koo, R. and Toueg, S., “Checkpointing and Roll-
back Recovery for Distributed Systems,” IEEE
Trans. on Software Engineering, Vol. SE-13, No.
1, pp. 23-31 (1987).

