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1 Introduction

Regarding planning behavior in an ecosystem a trade-
off between cost and time exists. If an agent has to
plan he will tend to minimize the costs of the plan
execution which will lead him to longer deliberation
in order to find a suitable low cost plan. On the other
hand the agent is situated in a competitive environ-
ment which gives him the highest guarantee of plan
execution if his planning behavior is strongly reac-
tive. Thus, a dilemma-like situation emerges which is
due to the bounded rationality [1] which characterizes
living beings as well as intelligent agents in complex
environments: optimizing its outcome with its limited
abilities.

Evolution can be a source for diversity and com-
plexity, but also for stability in a dynamical system
such as a system of multiple, goal-driven agents which
have to do planning in an ever changing dynamic en-
vironment in order to fulfill their goals. We assume
such agents to be selfishly motivated in the first place
and to compete for resources. Executing a plan is con-
nected with costs, e.g. energy consumed when moving
a robot. Fulfilling a goal gives a payoff to an agent,
e.g. reaching a loading-station for a robot. Regard-
ing agents as dissipative systems makes it even costly
to take no actions. Agents which reason deliberately
can reduce arising costs by choosing a carefully se-
lected low-cost plan. On the other hand, such com-
mitting agents might be confronted with a changed
environmental situation when executing their plan af-
ter time-consuming deliberation in a dynamic envi-
ronment. This might result in failure of execution.
Reactive agents will not spend much time on reason-
ing but will execute the fastest plan, which is normally
not the cheapest, in order to fulfill their goal. Because
reactive agents do not spend much or no time on plan-
ning they are likely to fulfill most of their goals as long
as these goals are within their cost range.

In this paper we model this tradeoff problem and
will show some simulation results.

2 The Model

A number of agents is randomly placed in a 2-
dimensional limited discrete world. Each agent has
a limited sensing ability in all directions. Objects are
placed in this world. It is each agent’s goal to reach
food. This is done by mentally moving within his
sensing range. When food is found by this mental
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searching process, the agent moves physically to the
food, the food disappears and the agent gets a pay-
off in form of energy increase. New food is created
in fixed temporal steps which models natural growth
processes.

In order to model the attraction towards the food
and the avoidance of objects in the world, we intro-
duce forces which are influencing each agent. These
forces are determined in the following way in a dis-
crete world where the agent can move in four direc-
tions. Attracting forces from food-points on an agent
which are just mentally attracting focus his interest on
food. The closer the food is, the more it attracts the
agent. We introduce a limit distance beyond which
the food cannot be sensed by the agent. In analogy,
repulsion forces are determined as real physical force
on the agent. For example, the closer a robot moves
to a wall the stronger is the repulsion, the more diffi-
cult it gets for him to navigate. The total forces on an
agent are listed in Equation 1. The factor k is our evo-
lutionary determined biasing factor which makes the
agent more deliberative for small k and more reactive
for high k. The factor ¥ is determined by mutation
when creating offspring.

fagcnt = Z ﬁrepuln‘on, - kZ fauracts‘on; ' (1)
i [

Because we are using a discrete space model it is diffi-
cult to deal with force vectors directly. Thus, we inte-
grate the forces into a potential field. On this potential
field the agent’s decisions are based. The bias factor
k determines the steepness of the attracting food gra-
dient. If an agent moves the costs for him are the
integration of the absolute value of the potential over
the way he moves. The absolute value of the potential
represents a environmental difficulty. We refer to this
cost function as energy-consumption function. The
initial fitness of an agent increases by

e consuming food
and decreases

e by moving,

® as a linear function of time,

e when creating offspring.
The mental focus-point of an agent searches within the
sensing range of the agent. The search is determined
according to the potential of the adjacent fields of the
position of the mental search process. The search pro-
cess moves always to lower potentials. The search is a
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step by step process with the emergence of backtrack-
ing if an agent gets stuck in local minima [2]. Loops
in agent plans are cut. After finding food the agent
moves physically to the food position. The time re-
quired for planning steps is longer then the moving
time. If two agents have the same food as goal, the
faster agent gets the food and the other agent stops
the planning process.

In order to create offspring an agent has to reach
a certain energy level. Offspring inherits its parent’s
characteristics which undergo mutations. Our evolu-
tionary algorithm mutates the bias factor k in small
steps which ascertains a smooth drift to more opti-
mal parameters. The offspring is situated randomly
in the environment. Existing elite in the environment
is preserved because the parent still exists after re-
producing. If an agent’s fitness is lower than a certain
minimum value the agent dies and disappears.

3 Results

We analyzed the planning behavior of different types
of agents ranging from very deliberative to reactive
under fixed conditions for a single agent scenario. In
this frame we chose agents with bias factor between
0.04 as minimum and 10.24 as maximum. In Figure
1 a) to ¢) the average values for planning time, path
length of the chosen plan and cost of the executed
plan can be observed. The exponential falling curve
of the planning time for the very deliberative agents
(very small k) indicates that these agents are too slow
or careful for this environment. They frequently get

stuck in local minima. But because their planning

time is by factor 10 longer than the length of their
executed plans it is obvious that they optimize their
plans quite well. For higher k the curve of the plan-
ning time comes closer to the curve of the plan length
which means that the agent’s planning characteristic
converges towards reactiveness which is reached when
both curves meet. In Figure 1 ¢) it can be seen that
the minimum costs for plan execution are achieved for
a moderate reactive agent with k about 1.6. Further
it has to be kept in mind that the agents plan as feed-
back to the environmental conditions. In our example
we chose a smooth environment which favored reactive
agents. In a more rugged landscape it can be expected
that very deliberative agents have an advantage.
Various simulations for multiple agents showed us
that the ecosystem is very sensitive to parameter-
settings like food production rate and agent sensing
range. Here too, we placed the agents in a rather
smooth environment. For certain parameter-settings
the agents die out after a while. For the simulation
shown here we chose a parameter range similar to the
one we used for the single agent scenario. At the be-
ginning the average k was chosen to 1.6 in order to
observe whether a competitive ecosystem would drift
away from this optimal parameter. As can be ob-
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Figure 1: Average a) planning time, b) path length,
c) cost for plan execution, and d) development of the
factor k averaged over all agents

served in Figure 1 d) the ecosystem drifts away from
the optimal parameter by moving slightly towards
reactiveness. This might be due to local dominant
strategies which develop in some parts of the system
and which have a different optimal k. This could hap-
pen because we chose a large ecosystem and agents
with a smaller sensing range. The bigger the world,
the agents are set in, and the smaller the sensing range
of the agents, the stronger becomes the effect of local-
ity. Thus, an adaptable diversity of planning methods
can evolve naturally because the agents have mutated
offspring.

4 Conclusion

We implemented a simulated ecosystem of multiple
agents and proposed a potential field method by which
agents are adapted between deliberation and reactive-
ness by a process of evolution. We could show that it
depends on the environment to decide whether delib-
eration or reactiveness is favorable. Adaption is the
key to the solution for the tradeoff between delibera-
tion and reactiveness. In one particular example we
could see the effect of local dominant solutions keeping
the system away from the global optimal solution. For
future work we are interested in the detailed analysis
of the emergence of a variety of planning strategies.
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