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EFR: Efficient Fast Retransmit Scheme for TCP
in a Wireless Multiple Access

YOSUKE TAMURA,! YOSHITO TOBE' and HIDEYUKI TOKUDA'

In this paper, we propose a new and efficient fast retransmit scheme for wireless LANs.
Wireless LANs are becoming popular, and providing an efficient protocol over a wireless link is
important. In our experiments with 2.4 GHz WaveLAN, the poor TCP performance observed
was attributed to frequent expiration of the retransmission timer. To avoid unnecessary
expiration of the retransmission timer, we propose a scheme in which fast retransmission is
performed efficiently. The proposed modification only affects a TCP sender, and our version
of TCP with the change is interoperable with existing TCP implementations. The change
is especially effective in wireless LAN environments, where we have demonstrated dramatic
improvements in throughput, 10-15%, via experiments with 2.4 GHz WaveLAN.

1. Introduction

Transmission Control Protocol (TCP)® has
been widely used in computer networks to
achieve reliable communication. Many popular
applications such as web browsing, File Trans-
fer Protocol (FTP)7), and telnet'” use TCP
as the transport protocol. Recent emergence of
wireless local area network (LAN) technology
enables these applications to be used in wire-
less environments as well.

Wireless networking, using AT&T’s Wave-
LAN, has recently been introduced on our uni-
versity campus, with a resulting change in
computer usage. When many students access
the wireless network simultaneously, interfer-
ence among mobile hosts sharing a wireless
link causes significant performance degradation
when using existing TCP implementations. To
minimize the performance degradation of TCP
over wireless LANs, a more efficient TCP algo-
rithm and its implementation are needed.

Efficient TCP operation over wireless links is
also an important consideration for ad-hoc net-
works 918 . In ad-hoc networks, multiple mo-
bile hosts share the same wireless link. The
sharing leads to a higher data loss rate due
to interference, multi-path phasing, and colli-
sion. Efficient TCP implementations suited to
wireless LANs are also beneficial in ad-hoc net-
works.

Ever since the release of BSD version 4.3,
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TCP implementations include sophisticated
congestion control schemes such as fast retrans-
mit and fast recovery'V. In addition, many
schemes have been introduced to improve TCP
performance. For example, selective acknowl-
edgment (SACK)'? and an improved version
of this mechanism, forward acknowledgment
(FACK) %), have been proposed. These perfor-
mance improvement schemes have been tuned
for wired links®, and although some studies
have examined TCP performance over collec-
tions of links, including wireless ones 2%, we
are not aware of any studies that address TCP
performance improvements for a single wireless
link.

Balakrishnan, et al 3) compared various
schemes that proposed improvements to TCP
performance over wireless links and concluded
that the SMART scheme'®), a modification of
the basic SACK approach that combines Go-
Back-N, outperforms other schemes. A major
drawback of the various SACK schemes is the
need to modify the TCP software at both the
sender and the receiver. Interoperability with
existing schemes is thus not possible.

In this paper, we first present results of a
study of the dynamics of TCP windowed flow
control in a wireless LAN which identifies fre-
quent expiration of the retransmission timer as
a major cause of reduced throughput. We then
analyze the cause of the expiration. Since re-
transmission is essential to provide data relia-
bility, we seek a way of reducing the number of
timer expirations. In many cases, timer expi-
ration at the sender occurs because the sender
waits for a fixed number of duplicate acknowl-
edgments (ACKs) from the receiver before re-
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transmitting data; the problem is that the re-
ceiver does not send as many duplicate ACKs
as the sender expects. This situation always oc-
curs when the window size of the TCP sender
is small, ranging from 1 to 4. We call such
windows “tiny windows”. Often, retransmis-
sion timeouts can be avoided for tiny windows;
those timeouts that unnecessarily occur are re-
ferred to as “wasted timeouts”. Based on this
observation, we propose the following efficient
fast retransmit (EFR) scheme:

o The sender dynamically estimates the max-
imum number of duplicate ACKs that it
expects to receive.

o When the sender receives this many ACKs,
it immediately fast retransmits.

The work presented in this paper proposes
a modification to TCP called EFR that im-
proves the performance of TCP over a wire-
less LAN by more efficiently performing fast
retransmission. Our scheme interoperates with
existing TCP implementations. Evaluation -of
this scheme was performed using the wireless
LAN. Results show that EFR improves TCP
throughput by 10-15% in a WaveLAN environ-
ment.

The remainder of the paper is organized as
follows. Section 2 addresses issues in TCP con-
gestion control in wireless LAN environments.
Section 3 describes related work. Observations
of actual TCP behavior in our experimental
testbed are presented in Section 4, leading to
a discussion of our proposed scheme and its im-
plementation in Section 5. Section 6 presents
an evaluation of our scheme. Discussions and
future work are presented in Section 7, and we
conclude in Section 8.

2. Basic Behaviors in TCP Retrans-
mission '

In this section, we briefly review TCP-Reno’s
retransmission algorithms and see basic behav-
iors of TCP. This forms the basis of discussions
in the following sections.

Let us assume that a TCP sender trans-
mits a sequence of segments, segment i (i =
1,2,3,...), to a TCP receiver. When segment k
is lost and the receiver receives segment (k+1),
the receiver sends an ACK requesting segment
k. When the receiver receives the following seg-
ments, segment (k+2), (k+3), ..., it also sends
an ACK requesting segment k. These ACKs are
called duplicate ACKs. The sender initiates re-
transmission of segment k when either of the
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following conditions is satisfied.

e The number of received duplicate ACKs
reaches the threshold value for determining
loss of a segment.

¢ The number of received duplicate ACKs
does not reach the threshold value and the
retransmission timer expires.

2.1 Retransmission Timer

The retransmission timeout in non-conges-

tion networks can cause an unnecessary degra-
dation of TCP performance. When the TCP
sender transmits a segment, the retransmission
timer is set. If the segment is not acknowledged,

. TCP will retransmit the segment. The value

of this timer is calculated dynamically, based
on the round-trip time measured by the sender.
The retransmission timer is bounded to a value
between 1 and 64 seconds. Reno’s round-trip
time and variance estimates are calculated us-
ing a coarse-grained timer (around 500 ms), as-
suming that the round-trip time (RTT) esti-
mate is not accurate. If the retransmission
timer expires, TCP uses the Slow-Start algo-
rithm '?); the TCP sender starts with a conges-
tion window of one segment and increases the
congestion window exponentially*.

2.2 Fast Retransmit and Fast Recov-

ery

Based on duplicate ACKs, the fast retrans-
mit algorithm enables earlier detection of miss-
ing segments. Since the sender does not know
whether a duplicate ACK is caused by a lost
segment or merely a reordering of segments,
it waits for three consecutive duplicate ACKs
to be received'®). When the sender receives
three consecutive duplicate ACKs, it initiates
retransmission. The fast recovery is a mecha-
nism which enables the sender to go into con-
gestion avoidance mode instead of slow start
mode after the fast retransmit.

These schemes have improved TCP perfor-
mance since the sender can retransmit the lost
segments without waiting for a retransmission
timeout. The waiting time for a retransmission
timeout is very long for TCP in the order of
seconds.

3. Related Work

This section describes the previous work on
TCP performance improvements over wireless

* It is not exactly exponential because the receiver
may delay its ACKs, typically sending one ACK for
every two segments that it receives.



48 Transactions of Information Processing Society of Japan

links. We also state the difference between our
goals and these works.

As described in the previous section, reduc-
ing the occurrence of the retransmission timer’s
timeouts improves TCP performance. = The
NewReno !9 TCP is an approach that changes
the fast retransmit algorithm that eliminates
Reno’s waiting for the retransmission timer’s
timeout when multiple segments are lost within
a single window. As described in Ref. 10), loss
of multiple segments prohibits invoking fast
retransmit of the second lost segment. The
NewReno TCP solves this problem by modi-
fying the fast retransmit algorithm.

TCP Vegas )% also seeks to eliminate unnec-
essary expiration of the retransmission timer.
In TCP Vegas, a fine-grained timer is intro-
duced to calculate RT'T more precisely. When a
single duplicate ACK is returned to the sender,
the sender retransmits a segment without wait
for three duplicate ACKs if calculated RTT is
greater than the timeout value.

The TCP receiver with SACK options!?
can inform the sender which segments have
been correctly received, when it holds non-
contiguous segments. A simulation-based
study® investigated the robustness of SACK
under several types of segment loss. An ad-
vanced version of SACKs, FACK ¥, uses the
additional information provided by the SACK
option to keep an explicit measurement of the
amount of segment outstanding in the network
and uses this information to improve congestion
control.

Indirect TCP (I-TCP)?2 and Snoop?® Pro-
tocols use split-connections. The key idea be-
hind these protocols is to split one TCP connec-
tion into multiple pieces in wired and wireless
links. Congestion control at the wireless link is
done differently from the control at the wired
link. Thus, these protocols aim at better per-
formance of the overall TCP connection.

Our goals of designing a scheme are the in-
teroperability between the existing TCP imple-
mentation and improving TCP over a single
wireless LAN. In this respect, the objectives of
I-TCP and Snoop Protocol are different from
ours. Although SACKs and related algorithms
improve TCP performance, they need coopera-
tion between the sender and the receiver.

The objective of NewReno and Vegas are sim-
ilar to ours. Although NewReno focuses on loss
of multiple segments, we seek a scheme which
solves wasted timeouts also for loss of a single
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segment. Vegas may improve TCP performance
over a wireless LAN, but we seek a scheme
which does not introduce an extra timer. We
compare our scheme with Vegas in Section 7.
Like NewReno, we seek problems in behaviors
of TCP with an actual wireless LAN and create
an algorithm to solve the problems.

4. TCP Behaviors in Wireless Net-
works .

In this section, we examine behavior of the
TCP sequence number at a sender in the ex-
periments with 2.4 GHz AT&T WaveLAN. And
investigate the cause of retransmission.

4.1 Experimental Methodology

Figure 1 shows the experimental environ-
ment which is used throughout the experiments
in this paper. In Fig. 1, Host CH, connected to
a wired 10BASE-T Ethernet, is an IBM PC-AT
compatible computer with 200-MHz Pentium
Pro and 32-MByte RAMs. Hosts MH1-MH4
are Toshiba Dynabook SSR-590 with 90-MHz
Pentium and 16-MByte RAMs equipped with a
PC-Card of 2Mbps WaveLAN. Hosts MH1-
MH4 communicate with Host CH via Wave-
POINT. The round-trip delay between Hosts
MH1-MH4 and Host CH measured with ping
program is about 6ms. In our lab, the seg-
ment loss rate in transferring data between a
single MH and CH with no other network traf-
fic is maintained at approximately 3.0 x 10~4.
We maintained the loss rate to measure per-
formance under a typical environment without
any electromagnetical interference.

FreeBSD 2.2.1-Release which includes TCP-
Reno, the current standard TCP implementa-
tion, is installed in all hosts. All the experi-
ments noted in this paper use 1440-byte seg-
ment size, and the maximum window size for a
connection is set to 35 segments.

We measure the throughput at the sender in

Ethernet

WavePOINT

CH

PC-AT (FreeBSD 2.2.1-R)
Pentium Pro 200MHz RAM 32M

MH1 MH2 MH3 MH4

Dynabook SSR-590 (FreeBSD 2.2.1-R)
Pentium 90MHz RAM 16M

Fig. 1 Our evaluation environment.
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the unit of 10° bit per second (kbps). To com-
pare our scheme with TCP-Reno, we use the
same setup in all hosts. In addition, all infor-
mation regarding the segment transmissions on
the Ethernet and WaveLAN are recorded for
analysis using both tcpdump'® and a Toyo
Technica’s LAN protocol analyzer “Network-
General Sniffer”. We have modified the TCP
source code to obtain information of TCP Con-
trol Block (TCB).

4.2 Overhead of TCP Retransmission

In Fig. 1, Hosts MH1-MH3 continue to trans-
mit data to Host CH through TCP sockets, to
provide a sharing link environment common in
LANs. Throughout the experiment, MH1-MH3
are the senders, and CH is the receiver. We in-
vestigated the behavior of the TCP connection
between Host MH1 and CH by conducting ftp
for a 1 Mbyte data under this environment.

In Figs.2-5, we show the dynamics of only
one host, MH1, since all hosts have the same
state. The measured transition of sequence
numbers is shown in Fig. 2. In this figure one
can see a frequent gap of time where the growth
of the sequence number ceases. The gaps are
caused by the expiration of either the retrans-
mission timer, or the fast retransmit.

Figure 3 shows the magnified portion of
Fig. 2 where retransmission occurs due to timer
expiration. We can observe that the sender re-
ceives only one ACK corresponding to a lost
segment, which results in the timer expiration
after approximately 2sec. Each timer expi-
ration ceases transmission for approximately
2sec. and all ceased periods noticeable in Fig. 2
are due to the timer expiration.

16+06 T T ¥ 4
transmit segment © PS I
900000 |- ack segment  + ’ ]
800000 -
700000 | Figure 4 i
§ 600000 Figure 3 4
E
2 e Figure 5
§ 500000 - T
2
& 400000 |- B
300000 - -
200000 - 4
100000 |~ T
oo € ‘
(] 10 20 30 40
TIME (sec)

Fig. 2 A 1-Mbyte transfer in a wireless environment
with 3 hosts (sequence number vs. time).
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Figure 4 shows the magnified portion where
retransmission occurs due to the fast re-
transmit. The fast retransmit invokes the
tep-output() function immediately after the
sender receives the third duplicate ACK.
Transmission of other segments is prioritized

over the fast retransmit, but the overhead asso-

ciated with this fast retransmit is only 0.2 sec.
which proves to be substantially smaller than
that with the timer expiration.

The difference in overhead between the two is
closely related to the retransmit timeout value
(RTO) and the number of the timer expiration.
The RTO is set to the average RTT plus 4 times
its variance. Since the statistics of RTT are
measured in 500 ms clock ticks, the typical RTO
is set to 2sec.

750000 T T T T T T
Transmit ©
ACK +

730000 -

"89',.

*020,

720000 |-

Loss

0‘000

.
° E
.

Sequence Number

710000
°

AN /

ACK Timeout

00"‘../
+%000,

2sec

©
o
O
o
fad
690000 - 9

+
°
o+
°
P
°
-

680000 L L . L L L
205 21 215 22 225 23 235 24
Time(sec)

Fig. 3 Retransmission timeout occurs because the
sender does not receive any duplicate ACKs.
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Fig. 4 Fast retransmit is performed after the sender
receives the third duplicate ACK.
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Fig. 5 Retransmission timeout occurs because the
sender receives only one duplicate ACK.

4.3 Causes of Retransmission

Let us further investigate what occurs when
the retransmission timer expires. Figure 5
shows an enlarged portion where the retrans-
mission timer expires due to TCP’s tiny win-
dow. In Fig.5, a segment corresponding to se-
quence number 650,000 is lost. We call this
segment k. The segments corresponding to se-
quence number 651,440, 652,800, and 654,320
will be expressed as segments (k + 1), (k +2),
and (k+3), respectively. In the figure, ACKs of
segments (k+1) and (k+2) are returned to the
sender, while ACK of segment k is not returned.
Hence, segment k is lost. The ACK of segment
(k +2) becomes the first duplicate ACK. Since
segment (k + 3) is not transmitted from the
sender because the window size is presumed to
be 3, the sender cannot receive the ACK of seg-
ment (k + 3). Therefore both the sender and
the receiver cease transmission that causes the
expiration of the retransmission timer. When-
ever the window size ranges from 1 to 4, the fast
retransmit is never invoked and the expiration
of the retransmission timer always happens. If
the fast retransmit is performed whenever the
sender receives a duplicate ACK of a lost seg-
ment, several benefits to the TCP connection
will occur; (1) Retransmission of the lost seg-
ment with the fast retransmit starts 1.5 seconds
earlier than that without the fast retransmit.
(2) Unnecessary congestion control is avoided.
(3) The throughput is improved by the fast re-
covery.

4.4 Trace of Windows

Next, we traced the behavior of the sender
window. In Fig.1, Hosts MH1-MH3 continue

i snd_ownd, snd_wr)

20 a0 35

25
TIME (sec)

Fig. 7 snd-cur at MH1 over a wireless LAN.

to transmit data to Host CH through TCP
sockets. Figures 6, 8, and 10 show the ac-

" quired behavior of sequence number of MHI1-

MH3. Although only behavior of sequence
number at one host is presented in Fig.2, we
can see the gaps are similarly seen in all hosts
in these figures.

Here, we let snd_cur denote the window
size. The value of snd_cur corresponds to
the minimum of cwnd, a congestion window,
and snd_wnd, the receiver’s advertised window.
Figures 7, 9, and 11 illustrate transition of
snd_cur for three Hosts, MH1-MH3. The ver-
tical line is expressed in units of 1440 bytes, one
segment. Bars are drawn when transmission is
done and the value of snd_cur is zero when the
transmission is not performed. The areas where
the value of snd_cur is equal to or less than 4
segments are shaded in these figures. The area
represents where TCP has a tiny window, and
a possible wasted timeout.

As seen in Figs.7, 9, and 11, snd_cur in-
creases as ACKs are successfully returned to
Hosts MH1-MH3, but once they fail in receiv-
ing ACKs, it is decreased to a small number
within the shaded area, The value of snd_cur
remains less than four segments. To make a
comparison with a wired LAN, Hosts MH1-
MHS3 transmit data to Host CH continuously
through TCP sockets with 10BASE-T. Fig-
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Fig. 9 snd_cur at MH2 over a wireless LAN.

ure 12 shows the behavior of snd_cur in the
wired LAN. Since the values are drawn with
bars, most of the snd_cur is 17280 bytes. Un-
like wireless LAN, the value of snd_cur is mostly
outside the area. Remaining in the area results
in unavailability of receiving three consecutive
duplicate ACKs and trigger of wasted timeout.
Wasted timeout is likely to occur more in wire-
less LAN.

5. Efficient Fast Retransmit Scheme

In this section, we propose a modification to
the fast retransmit algorithm that comes bun-
dled with current TCP implementations. The
fast retransmit algorithm retransmits a seg-
ment after a fixed number of duplicate ACKs
(three) for the same segment are received. In
contrast, our modified algorithm, called EFR
(Efficient Fast Retransmit), dynamically calcu-
lates tcprexmtthresh, the number of consecutive
duplicate ACKs that trigger fast retransmit.

We also consider the timing of acknowledg-
ments and the issue of false fast retransmit.

5.1 EFR Overview

The goals of EFR are to be interoperable
with existing TCP implementations and to pre-
vent wasted timeouts from occurring. To meet
these goals, EFR requires changing only a TCP
sender. The sender avoids waiting for duplicate
ACKs that the receiver will never transmit and
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Fig. 12 snd_cur at MH1 over a wired LAN.
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initiates retransmission before the retransmis-
sion timer expires.

In EFR, when the sender receives the first
duplicate ACK, it calculates tcprexmtthresh,
the maximum number of duplicate ACKs it
can receive before retransmitting the lost seg-
ment corresponding to the duplicate ACKs.
When the number of duplicate ACKs received
at the sender reaches this threshold, the sender
retransmits the lost segment. The value of
teprexmithresh is determined based on the win-
dow size.

Figure 13 compares period of time before a
retransmission occurs between TCP-Reno and
EFR when the value of snd_cur is four; TCP has
a tiny window. In the figure, ¢t_dupacks is the
number of received duplicate ACKs. In EFR,
the sender performs the fast retransmit when
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Tiny Window t_dupacks =2 Timeout!!

l1fz)314 1] (EFR) 1] (TCP-Reno) Sender
Loss!!
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Fig. 13 Period of time before a retransmission
occurs when TCP has a tiny window.

it receives the second duplicate ACK, while in
TCP-Reno the sender waits until the retrans-
mission timer expires (on the order of seconds)
before retransmitting the lost segments. Note
that EFR retransmits the lost segment without
waiting for the retransmission timer to expire.

5.2 Issue in False Fast Retransmit

TCP operates on top of the Internet Protocol
(IP), which does not guarantee reliable packet
delivery. In some cases, when segments arrive
out of sequence at a receiver, a false fast re-
transmit may occur. Despite no actual conges-
tion, the fast retransmit algorithm may mistak-
enly force the sender into congestion avoidance
mode. When the TCP sender has a large cur-
rent window, these false fast retransmissions
significantly degrade TCP performance. As
tcprezmithresh becomes smaller, the probabil-
ity of falsely invoking fast retransmit increases.
We therefore dictate the.policy that tcprezmi-
thresh should not be fixed at one or two.

In our scheme, however, EFR is triggered
only when TCP has a tiny current window. In
this case, even if false fast retransmit occurs and
TCP enters congestion avoidance mode, TCP
performance is not substantially affected.

5.3 Counsideration of Acknowledgments

TCP does not always send an ACK immedi-
ately on receipt of a segment. Instead, normal
acknowledgements occur when either a 200ms
ACK timer expires or the window at the re-
ceiver has increased by two segments. On the
other hand, a receiver sends a duplicate ACK
immediately upon receipt of out-of-order seg-
ments. We should note here that an ACK of
segment (k — 1) may not be transmitted to the
sender when segment k is lost and the ACK of
segment (k + 1) is transmitted to the sender.

EFR counts duplicate ACKs to trigger re-
transmissions. However, it is not always pos-
sible to distinguish between the first ACK and
subsequent duplicate ACKs. Consider the fol-
lowing example. As shown in Fig. 13, assume
that segment 0 is transmitted before segment 1
and suppose that segment 1 is lost. If the ACK
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of segment 0 is not received by the sender, then
the ACK of segment 2 corresponds to the first
ACK received by-the sender. Then, the ACK
of segment 3 becomes the first duplicate ACK.
On the other hand, if the ACK of segment 0
is received by the sender, the ACK of segment
2 becomes the first duplicate ACK because the
ACK of segment 0 has already requested seg-
ment 1. In either case, when the send win-
dow is four segments, the sender can send up
to segment 4. Therefore the number of dupli-
cate ACKs is 2 and 3, respectively. If we set the
threshold value of duplicate ACKs to 2, a false
fast retransmit can occur. But if we set the
threshold value of duplicate ACKs to 3, wasted
timeouts can occur. In designing EFR, we as-
sume that the ACK of segment 0 is not received
by the sender because the cost of a false fast re-
transmit is less than that of wasted timeouts
when TCP has a tiny window.

5.4 Implementation of EFR

In this section, we describe our implemen-
tation of EFR in detail, using the FreeBSD
TCP-Reno source code as our initial starting
point. The EFR algorithm is only added to
the fast retransmit part of the TCP source
code. We add two variables to TCB: snd_cur
and tcprexmitthresh. The variable tcprezmt-
thresh represents the threshold value used to
trigger fast retransmit; it is implemented as a
global variable. A default value of tcprezmt-
thresh is fixed at three in the FreeBSD TCP-
Reno implementation. In EFR however, a sep-
arate tcprexmitthresh is maintained per connec-
tion and dynamically changed, based on the
value of snd_cur.

Figure 14 presents the EFR algorithm.
Fach time a TCP sender receives a duplicate
ACK, it executes a portion of the EFR algo-
rithm. If the received duplicate ACK is the
first for a segment, the minimum of snd_wnd
and snd_cwnd is saved into snd_cur. To esti-
mate the number of segments, snd_cur is di-
vided by t_mazseg, the maximum segment size.
We set tcprezmitthresh to (snd-cur/t_-mazseg)-
2. Recall that our proposed modification only
invokes the fast retransmit to recover lost seg-
ments when the sender has a tiny window. If
teprexmithresh is more than three, EFR sets
this variable to three. Note that we do not
claim that the smaller value of tcprexmtthresh is
desirable, but we need to adjust tcprexmtthresh
to a more reasonable value when the send win-
dow is tiny.
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Fig. 14 EFR algorithm.

6. Performance Results

In this section, we present the performance of
EFR. The experimental environment, which is
shown in Fig. 1, is described in Section 4 in de-
tail. We have compared EFR with TCP-Reno
under multiple access environments.

6.1 Retransmission Characteristics

To examine how the number of timeouts is re-
duced by EFR, we transmitted 10-Mbyte using
a UNIX socket-type client-server program. The
number of hosts was varied from 2 to 4 by av-
eraging the results of 50 trials in consideration
of statistical fluctuations.

Figures 15 and 16 show the number of re-
transmitted segments and the ratio between
the Fast Retransmit and Timeout, respectively.
Regardless of the number of hosts, the number
of retransmitted segments is reduced approxi-
mately by 10% with EFR.

To investigate timeouts further, let Naup(3)
represent the number of each occurrence that
the number of duplicate ACKs is 5. When 3
is greater than 3, the occurrence is counted in
Niup(3). The value of Nyy,(3) can be positive
because the fast retransmitted segment and the
following segments may be lost. The values of
Naup(i) (1 = 0,1,2,3) are shown in Fig.17.
When the number of hosts is 2, Ng,,(1) and
Ngyup(2) are both reduced with EFR from 12
to 8, and from 30 to 7, respectively. It is
presumed that this is because wasted time-
outs are removed with EFR. The reduction
of Ngup(1) and Ngy,(2) results in the reduc-
tion of the number of timeouts. The values

(TCP-Reno vs. EFR).

100%

Reno EFR Reno EFR Reno EFR
2 Hosts 3 Hosts" 4 Hosts

Fig. 16 Ratio between the fast retransmit and
timeout (TCP-Reno vs. EFR).
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Fig. 17 Number of duplicate ACKs when the retrans-

mission timer expires (TCP-Reno vs. EFR).

of Naup(1) and Ny, (2) are not zero because
there are cases when tcprezmtthresh is 2 and
the sender receives only one duplicate ACK,
and when tcprexmitthresh is 3 and the sender re-
ceives either one or two duplicate ACKs. These
cases occur when segments following a lost seg-
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ment or a duplicate ACK are lost. The value of
Naup(0) cannot be reduced because the num-
ber of duplicate ACKs is zero when a burst
of segments is lost. The value of Ngy,(3) is
counted, for instance, when the segment of the
fast retransmit is lost. The timeouts at which
the number of duplicate ACKs is more than or
equal to three are not wasted timeouts. EFR
does not remove such timeouts.

The following point should also be noted.
The addition of the number of timeouts and fast
retransmit is with EFR. If EFR were to sim-
ply change some timeouts to the fast retrans-
mit, the added value would remain the same.
A possible explanation for this is that the pos-
sibility of segment loss with collision increases
with transmission. If the overhead of the time-
out is much larger than that of the fast retrans-
mit, reduction of the total loss time is expected.
The total loss time of a TCP connection is cal-
culated as follows,

Tioss = Nout X Tout + Nfast X Tfast:
where Tioss, Touts Tfasts Nout, and Nyqst are
the total loss time, the consumed time for time-
out, the consumed time for the fast retransmit,
the number of timeout, and the number of the
fast retransmit, respectively. An evaluation of
effectiveness needs to be carried out with the
throughput of TCP connections described in
the following section. Although we only present
a case using two hosts, the same arguments are
valid for other cases as well.

6.2 Throughput Measurements

Figure 18 shows the total aggregate
throughput through each pair of TCP connec-
tions using either EFR and TCP-Reno. The
values shown in the figure are obtained by
averaging results fifty times. Since a seg-
ment loss causes transmission to be interrupted
and causes additional messages to be sent, the
2 Mbps bandwidth of WaveLAN is not fully uti-
lized. Yet, EFR contributes to enhancing the
effective usage of bandwidth.

Figure 19 shows throughput with 1 Mbytes,
2 Mbytes, 4 Mbytes, and 8 Mbytes of data. It
was obtained by averaging results fifty times.
The bars indicate the averaged values and the
straight lines associated with the bars show the
range of measured values. As the data size de-
creases, the variance of the throughput spreads
over wider range. These figures indicate that
EFR has higher performance than TCP-Reno
under a multiple hosts environment. In the case
of 8 Mbyte data transfer with three and four
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Fig. 19 Comparison of throughput.

hosts, the throughputs with EFR are 14.4% and
12.2% higher than that with TCP-Reno, respec-
tively. These results demonstrate that EFR at-
tains better performance than TCP-Reno in a
shared wireless link with multiple hosts.

7. Discussions and Future Works

In this section, we compare EFR with TCP
Vegas and discuss applicability of EFR to var-
ious types of networks. At the end of this sec-
tion, we address our future works.

7.1 EFR vs. TCP Vegas :

EFR and TCP Vegas’s retransmission ap-
proach are similar in that both attempt to re-
duce wasted timeouts. They differ in their
mechanisms. EFR is based on the send window,
snd_cur, while TCP Vegas uses RTT estimation
with its fine-grained timer. Unlike RTT, the
send window does not depend on the amount
of traffic. Therefore we can eliminate wasted
timeouts easily with EFR.

7.2 EFR Performance

We have only investigated EFR over wireless
links because our motivation was in improve-
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ments in a wireless LAN in this paper. EFR
is designed, however, to enhance TCP through-
put when the current window size is small and
the TCP sender cannot push enough segments
to receive three duplicate ACKs. In wired net-
works, the same situation may happen, for in-
stance, at the beginning of slow-start mode af-
ter the expiration of the retransmission timer or
the establishment of a TCP connection. There-
fore EFR can be also used to improve such sit-
uation in wired networks. ‘

7.3 Wired LAN Environments

A wired LAN has a lower error rate and a
smaller round-trip delay compared with a wire-
less LAN. Unlike Carrier Sense Multiple Access
with Collision Avoidance (CSMA/CA) used in
a wireless LAN, Carrier Sense Multiple Access
with Collision Detection (CSMA /CD) deployed
in a wired Ethernet supports detection of colli-
sion and retransmission of collided frames at the
link layer with limitation in the number of re-
tries. Therefore the multiple access over wired
Ethernet does not induce TCP segment loss as
seriously as that over a wireless link except a
case where retransmission at the link layer fails
frequently in overloaded traffic. Thus, the size
of the congestion window increases smoothly
and the window size is so large that EFR algo-
rithm is not operated in the wired LAN. As a
result, EFR offers almost the same performance
as a TCP-Reno’s fast retransmit with some ex-
ceptions with segment retransmission at the be-
ginning of slow-start mode after the expiration
of the retransmission timer or the establishment
of a TCP connection.

We emphasize that EFR offers performance
not worse than TCP-Reno even in wired LANs
because an algorithm cannot be accepted when
the performance is improved in a domain and
deteriorates in another with it.

7.4 WAN Environments

TCP connections in WAN environments,
such as these for access to World Wide Web
servers, may not be able to transfer data
smoothly due to packet losses over the connec-
tions with a long delay. In this case, for in-
stance, Web server’s TCP window is kept small
due to congestion control. In addition, RTO
becomes long. Therefore, EFR can be per-
formed in WAN Environments when TCP waits
for non-existing duplicate ACKs.

Congestion in routers leads to bursty segment
losses. Since EFR does not work in the multi-
ple losses within single window, EFR is not an
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obstacle to congestion control which will bring
about a network collapse.

7.5 Future Works

Although we have evaluated our algorithm in
an experimental system, evaluation in a larger
real wireless environment remains for our future
work.

Evaluation of extensive feasibility of our al-
gorithm to long delay networks which include
end-to-end wired link is also our future work.

We are planning to further evaluate EFR
scheme combined with NewReno to investi-
gate improvements in the occurrence of mul-
tiple segments loss. Evaluation of such a com-
bined scheme in our operating wireless network
should be done based on various mobile appli-
cations.

8. Summary

We proposed a new EFR scheme for im-
proving TCP performance over wireless LANs.
Since TCP is becoming popular over wireless as
well as wired LANs, TCP should run efficiently
also on lossy wireless multiple access networks.

EFR is based on the clever determination of
the timing of the fast retransmit. It allows a
TCP sender to adjust the timing of retransmis-
sion dynamically depending on the current win-
dow size; the TCP sender is able to avoid a du-
plicate ACK which the receiver never transmits
and initiate retransmission before the retrans-
mission timer expires. EFR is compatible with
existing TCP implementations.

We implemented our proposed algorithm on
FreeBSD-2:2.1R.  Evaluation with multiple
hosts under 2.4 GHz WaveL AN as is common in
actual environments demonstrated significant
improvements in throughput, 10-15%, com-
pared with TCP-Reno.
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