Vol. 40 No. 1

Regular Paper

Transactions of Information Processing Society of Japan

Jan. 1999

Network Subsystem Architecture Alternatives
for Distributed Real-time System

TAKURO KITAYAMA,!* TATSUO NAKAJIMA,?2 SHUICHI OIKAWA3
and HIDEYUKI TOKUDA

In traditional operating systems such as UNIX

» network protocol stacks reside in the kernel,

and it processes the protocols in interrupt handlers. This strategy is suitable for time-sharing
systems because of the high performance. On the other hand, this strategy cannot be applied

to real-time distributed systems since

packets are processed in a non-preemptable fashion.

Thus, unbounded priority inversions that may violate timing constraints of packets occur.
We have developed two user-level network subsystems for distributed real-time systems and
show our network subsystems have many advantages over traditional network systems. This
paper focuses on the effectiveness of user-level protocol stacks for distributed real-time systems

and discusses how the protocol stacks

affect the system structures.

We present the imple-

mentation and performance evaluation results of our two different real-time protocol stacks,

which are implemented on Real-Time Mach. The results show that
have different characteristics, and the selection of the architectures
ments of real-time applications. The paper can give a guideline that

respective architectures
depends on the require-
enables programmers to

select suitable network subsystems for their application.

1. Introduction

Many user-level network subsystem architec-
ture researches focus on their performance and
flexibility. They are trying to obtain network
level performance to applications over high
speed networks such as ATM and giga-bit net-
works. Real-time communication, on the other
hand, is becoming more important in many do-
mains such as distributed multimedia systems,
factory automation, and robotics. These appli-
cations require rigid timing constraints as well
as high performance. However, few researchers
addressed the advantage of user-level real-time
network subsystem architectures.

Network subsystem architectures have strong
impact over the tradeoff between their perfor-
mance and timeliness of protocol stack execu-
tion. The past works®):#)19):25) haye mainly fo-
cused on the performance but not the timeli-
ness, and they have never been compared and
discussed intensively. For example, although
Maeda, et al.'¥) demonstrated the performance
improvement of a network subsystem by intro-
ducing a user-level protocol library, they did

11 Keio Research Institute at SFC, Keio University

12 Japan Advanced Institute of Science and Technology

3 School of Computer Science, Carnegie Mellon
University .

14 Faculty of Environmental Information, Keio Univer-
sity

23

not discuss its effect towards real-time systems.
While Lee, et al.’®) made the user-level protocol
library more suitable for real-time systems by
using real-time scheduling and synchronization,
its performance improvement was not clear.

The objective of this paper is to show the
impact of network subsystem architectures for
real-time systems and discuss how the protocol
stack subsystem architectures affect the system
behavior. Our focuses are not only the perfor-
mance, but also many aspects such as flexibility,
security, and resource allocation policies.

We have implemented two types of network
subsystem architectures to provide predictable
communication for real-time systems on Real-
Time Mach (RT-Mach) microkernel?®). One is
Network Protocol Server (NPS)'®), which im-
plements protocol stacks in a user-level server,
and the other is the combination of an ex-
tended packet filter implemented in the micro-
kernel and a user-level socket library. Both use
prioritized-IP (PIP), which can transfer prior-
ity information across a network by using the
IP option field in an IP packet. Their exten-
sive evaluation clarifies the characteristics of
those architectures in terms of the performance
and timeliness, and provides a guideline for pro-
grammers to choose the most suitable architec-
tures for their applications.

In the remainder of this paper, we summarize
the past works in Section 2. Then, we present

24 Transactions of Information Processing Society of J apan

user-level network protocol stack models in Sec-
tion 3. In Section 4, we describe the implemen-
tation of real-time network subsystems. The
performance evaluation results of the network
subsystems are shown in Section 5. We discuss
the effect of network subsystems architecture in
Section 6 and conclude in Section 7.

2. Past Work

Many modern operating systems have net-
work subsystems implemented in user-space. It
provides the flexibility, which enables to ex-
tend, modify, customize, and debug the pro-
tocol stacks easily and effectively. Coinciden-
tally, the user-level network subsystems can be
suitable for real-time environments. It pro-
vides high preemptability. Execution of pro-
tocol stack by lower priority thread can be pre-
empted by other higher priority threads.

In this section, we summarize previous re-
searches of user-level network subsystem archi-
tectures and user-level real-time network sub-
system.

2.1 Protocol Stack in User-level Server

Mach3.0 is -a microkernel-based operating
system. It provides network protocol stacks in
a server, which runs in user-space. UX® and
4.4 BSD Lite Server? are the OS personality
servers, which provide network protocol stacks
as well as other UNIX facilities. z~Kernell® is
a protocol stack server. It provides a frame-
work to implement network protocol stacks in
user-space.

The dominant overheads of the user-level net-
work server architecture are local IPC cost be-
tween servers and clients and synchronization
cost. To eliminate the overhead of user-level
protocol servers, extensible kernels, such as
SPINY and VINO??), provide network proto-
col stacks in kernel-space without losing flexi-
bility. The protocol stacks in these systems are
dynamically loaded into and executes in kernel-
space. The drawback of this architecture is the
technique used to realize safeness of the system,
such as using a type safe language and software
fault isolation, to protect the system from the
untrusted user code.

2.2 Protocol Stack in User-level Li-

brary

User-level protocol stack libraries?)7)-14):25)
reduce the overhead of IPC costs. It is linked
with application programs, and executes the
protocol stack in the same address space as the
application programs.

Jan. 1999

Since the protocol stacks execute multiple
user-space, mechanisms to demultiplex incom-
ing packets are necessary. Packet filter!®)-17)
is the mechanism to demultiplex packets from
networks to appropriate user’s address space.

Previous researches proposed hardware de-
multiplexing techniques such as U-Net?®) and
Application Device Channels (ADC)%). In these
systems, the network interface dispatches in-
coming packets, and application programs can
directly access the network interfaces without
operating system interactions.

2.3 Real-time Network Subsystems

Many real-time protocols®)24):39) have been
developed to support distributed real-time sys-
tems. These protocols, especially in capacity-
based protocols, require complicated control
message handling such as error handling and
resource reservation. However, few researchers
address the advantage of user-level network
subsystem architectures in the context of real-
time, although the architectures provide many
benefits for implementing protocols effectively.

Druschel, et al.®) proposed the Lazy Re-
ceiver Processing (LRP) technique, which de-
lays protocol processing until the data is re-
quested by an application when the network
is under high load conditions. They expect
that LRP is applicable to real-time networking
when combined with real-time thread schedul-
ing. They implemented the protocol stack in
kernel-space, which lacks flexibility and pre-
emptability. Tokuda, et al2”) discussed the
effect of preemptability of protocol stack exe-
cution. They increased preemptability and re-
duced unbounded priority inversion in ARTS
kernel?®). Lee, et al.!3 addressed the end-
to-end predictability in distributed real-time
and multimedia applications protocol process-
ing, and provided preemptable protocol stack
structure with the extension of the socket li-
brary'¥), and coordinated with CPU reserva-
tion scheme on RT-Mach. However, they did
not discuss the flexibility nor the performance
penalty of real-time support. Network Proto-
col Server (NPS)*® provides protocol stacks in
a user-level server. It also provides a communi-
cation mechanism for distributed real-time en-
vironment by server architecture, and they dis-
cussed the advantage of implementing protocol
stack in user-space for distributed real-time sys-
tems.

These real-time network subsystem re-
searches are focused on their advantages such as

Vol. 40 No. 1

preemptability and performance. However, pre-
cise comparison of user-level real-time network
subsystem architectures from many aspects has
not been made.

3. User-level Protocol Stack Model

In this section, we present these two user-level
network protocol stack models and discuss their
problems.

3.1 Protocol Stack in User-level Server

Figure 1 (a) illustrates the structure of pro-
tocol stack execution in a user-level server.
There are two types of threads, service threads
and a network input thread in typical servers
on the microkernel. For sending packets, ap-
plication threads send packets via IPC to ser-
vice threads. After the data is passed, the ser-
vice thread executes the protocol stack in the
server, then send the packet to the microker-
nel. On receiving side, service threads receive
requests from application, and wait until the re-
ceive buffer fills up. The network input thread,
on the other hand, receives incoming packets
from the microkernel, then it executes the pro-
tocol stack, and unblocks the waiting service
threads. Then, the service threads send the
data to application threads via IPC.

The cost of context switching and data pass-
ing is a main source of the protocol stack exe-
cution overhead in the server. Another source
of overhead is the locking mechanism. Protocol
servers use spin-lock mechanism for lock and
unlock, while the in-kernel protocol stack uses
spl to change processor priority level.

3.2 Protocol Stack in User-level Li-

brary

The original socket library, which implements
protocol stacks in user-space, has been devel-
oped by Maeda, et al.'¥) for high performance
and flexibility. Figure 1 (b) illustrates the struc-
ture. In contrast to the execution of protocol
stacks in a server, there is no service thread.
When sending packets, application threads di-

Application
Procure Cajl
@Iw Threads 1° -
S
IPC Protocol Protocol
. Stack Stack
Application —
s)

T T

T

[Packet Filter

(b) Protocol Stack In Library

Microkernel I Microkernel
(a) Protocol Stack in Server

Fig. 1 User-level protocol stack model.

Network Subsystem Architecture Alternatives for Distributed Real-time System 25

rectly execute the protocol stack and send pack-
ets to the microkernel without communicat-
ing with other servers in the local machine or
switching to other threads. For receiving in-
coming packets, on the other hand, a packet
filter implemented in kernel space dispatches
packets to the network input thread by send-
ing IPC messages. After receiving message, the
network input thread executes protocol stack
in the user-level library. An application thread
then receives the packets.

This model eliminates the additional over-
head of local communication and context
switching, which can be found in a user-level
server for sending and receiving packets. Unlike
the server implementation of protocol stacks,
send and receive calls are just procedure calls,
not local IPC. So the cost of context switching
and data passing between server and applica-
tion is eliminated with this architecture.

4. Real-time Protocol Stack Imple-
mentation

We have built two real-time network sub-
systems on RT-Mach. One is Network Proto-
col Server (NPS), which implements protocol
stacks in a user-level server. The other imple-
mentation is an extension of the packet filter
and user-level protocol library. Both protocol
stacks support UDP/IP. The main reason, we
choose UDP rather than TCP, is that TCP has
much richer mechanisms, such as window con-
trol and retransmission, for reliable communi-
cation. Real-time system designers need to pre-
dict the worst case execution time, and these
mechanisms make the behavior of real-time sys-
tem unpredictable, since application programs
cannot control the mechanisms. Furthermore,
UDP is a light protocol stack compared to TCP.
In this section, we describe these implementa-
tions. .

4.1 Real-time Communication Server

Figure 2 shows the structure of NPS. It con-
sists of two sets of worker threads, input worker
threads and output worker threads. The out-
put worker threads are the service threads for
sending packets. They process requests from
application and execute all layer of the proto-
col stack. The output worker threads inherit
the priority of the applications, which sent the
requests. :

Unlike the network input thread, described
in the previous section, the execution of proto-
col stacks for receiving packets is done by input

26 Transactions of Information Processing Society of Japan

QApplicaﬁon Program
¥ O Application Program
O O O Output Worker R [, - -
Threads
{ Interface J l socket Imartace 1
[UDP] C l
Input Worker UDP
Threads O O O
r P 2] [e J
[T /’] { Ethernet]
- Manage Network Thread
Thread Socket Library Q
*

t Real-Time Mach Microkernel |

Real-Time Mach Microkernel | Packet Fiter |

(a) Network Protocol Server Structure
Fig. 2 User-level protocol stack structure.

(b) Real-Time Socket Library Structure

worker threads and a manager thread in NPS.
The manager thread receives Ethernet pack-
ets from the microkernel and executes IP layer,
then dispatches to an input worker thread for
execution of UDP layer. Since Ethernet packets
do not support the notion of priory, all packets
should be scheduled at the same priority in IP
layer. The manager thread is running at the
highest priority in the NPS system for reducing
unbounded priority inversion. The priorities of
the input worker threads are assigned by the
manager thread according to the priority, which
is contained in incoming packets.

To transfer the priority information to
the input worker threads across a network,
Prioritized-IP (PIP)'®) was introduced. PIP is
an extension of the IP protocol and provides the
notion of priority. For compatibility with nor-
mal IP, PIP uses an IP option field to conation
a priority, so that PIP packet can be received
by normal IP software. As PIP options, there
are three elements, priority, period, and dead-
line, since RT-Mach supports various schedul-
ing policies, and each machine can select a suit-
able policy for the application. Threads in RT-
Mach must have the priority, period, and dead-
line for their attributes to be scheduled with
any scheduling policies.

In real-time environments, the spin-lock
mechanism causes priority inversion problems,
where a lower priority thread is executing a crit-
ical region when higher priority thread tries to
obtain the lock. In order to solve this problem,
priority inheritance scheme was developed?).
A locking mechanism supporting this scheme
should be used for real-time protocol stack.
However, this mechanism needs to maintain
thread queues of waiting threads and the thread
executing the critical section needs to inherit
the priority when a higher priority thread tries
to acquire the same lock. Therefore, the cost of
this locking mechanism is high.

Jan. 1999

4.2 Real-time Communication Library

Since the original socket library was de-
signed to use C-threads package?, Lee, et al.!3)
extended the socket library to use real-time
thread and real-time synchronization mecha-
nisms provided by the RT-Mach microkernel.

We have extended the socket library for real-
time communications'?). This extension makes
better use of sender priority transferred across
the network using PIP, which is explained in the
previous subsection. The packet filter in the mi-
crokernel was extended to check PIP options.
The extended packet filter checks whether in-
coming packets have PIP option or not. If a
packet has PIP option, the packet filter sends
a RT-IPC'? message containing the priority
to the network thread when dispatching the
packet. Then, the network thread can start
executing the protocol stack at the priority of
the request after receiving the message. After
the execution of the protocol stack, the net-
work thread sends a RT-IPC message to the
receiver thread of an application program. By
using RT-IPC, a receiver thread automatically
inherits the priority of the sender thread.

A problem is the locking mechanism, since
multiple threads may use the same protocol
stack library, and the protocol stack library it-
self is multi-threaded. The lock should be sup-
ported the priority inheritance protocol.

5. Performance Evaluation

We evaluated the performance of two dif-
ferent implementations of real-time commu-
nication subsystems. We used two IBM
PC/AT compatible machines for the measure-
ments. Each machine has 166 MHz Intel Pen-
tium Processor, 32 Mega-bytes of memory, and
DEC DES500 Ethernet interface card for both
10 Mbps and 100 Mbps Ethernet. We used the
read time stamp count (RDTSC) instruction on
the Pentium processor. The machines were dis-
connected from other machines on the network,
so that there was no disturbance traffic. In this
section, we will show the evaluation results of
the network subsystems.

5.1 Basic Performance

We measured the round trip cost between
two hosts with 100 Mbps and 10 Mbps Ethernet.
The measurements were repeated 1000 times
and the averages were taken. To transferred
data between application programs running on
two machines, we used shared buffer interface
for the measurement of NPS, and sendto() and

Vol. 40 No. 1 Network Subsystem Architecture Alternatives for Distributed Real-time System 27
. Table 1 Evaluated network subsystems.
- Lites 4.4 BSD Lite Server
% 3 NPS Network Protocol Server (NPS)
£ libsockets.rt Real-time socket library
g2 . libsockets Original ‘socket library without
o | oo I threads wired
§ B R libsockets(W) | Original socket library with threads
& wired
. FreeBSD FreeBSD 2.2.1R
o 200 400 600 800 1000

Transfer Size(Bytes)
(a) 100MBps Ethernet

—--— -Lites
NI
libsockets_rt
s

- FreeBSD

Round Trip Time(milli seconds)
~
\
\

o 200 400 600 800 1000

Transfer Size(Bytes)
{b) 10MBps Ethernet

Fig. 3 Round trip cost.

NPs B2
n

210M
= 100M

Lites
FreeBSD

[20 40 80 80 100
Through Put (Mbps)

Fig. 4 Throughput.

recufrom() system calls for the others. The
result of the cost using 100 Mbps is shown in
Fig. 3 (a) and the result for 10 Mbps is shown
in Fig. 3 (b).

Figure 4 illustrates the throughput on both
100 Mbps and 10 Mbps Ethernet. We used ttcp
benchmark program for the measurement. The
packet size is 1024 bytes which is the default
value of the benchmark.

We evaluated real-time and non-real-time
network subsystems for comparisons, and they
are explained in Table 1. The difference be-
tween libsockets and libsockets(W) is that the
network input thread of libsockets(W) is wired
to a dedicated kernel thread while that of
libsockets is not. This means that the schedul-
ing operation between the network input thread
and a service thread involve two kernel threads
in libsockets(W).

In Fig.3, the difference between 100 Mbps
and 10 Mbps Ethernet is amplified by increas-
ing the transfer data size. This is caused by
the physical network performance. The over-
head in Lites comes from the cost of context
switching between Lites and the test program

and the synchronization cost in Lites. The dif-
ference between libsockets and libsockets(W) is
the difference between the cost of kernel threads
and user threads context switching which is ap-
proximately 40 us.

In Fig. 4, throughput of all protocol stacks is
approximately 9 Mbps over 10 Mbps Ethernet,
since the network capacity is saturated. Dif-
ferences can be found over 100 Mbps Ethernet,
and it reflects the result of the round trip cost
shown in Fig. 3.

The round trip time of FreeBSD is approx-
imately 175us faster than that of libsockets,
850 us faster than libsockets_rt,. and 1150 us
faster then NPS. These differences are constant
and do not depend on the network speed or
transfer size. This means that the overheads
depend only on architectural difference of the
network subsystems, and they affect the results
of the throughput shown in Fig. 4.

The round trip of NPS is approximately
900 pus slower than libsockets, and libsockets_rt
is about 600 us slower. The throughput of
NPS is 35Mbps lower, and libsockets_rt is
20 Mbps lower than that of libsockets over
100 Mbps Ethernet. This is because that NPS
and libsockets_rt use Real-Time Thread (RT-
Thread), which needs kernel interaction when
switching to another thread, while libsockets
uses C-Thread, a user-level thread package.
Another reason is the cost of synchronization
mechanism. libsockets uses spin-lock mecha-
nism, FreeBSD uses spl to change processor pri-
ority level, and NPS and libsockets_rt use real-
time synchronization mechanism. These thread
and synchronization costs cause the overhead of
NPS and libsockets_rt, however, these real-time
support facilities are important to solve the un-
bounded priority inversion problems. We ana-
lyzed the overheads in detail in the next sub-
section.

5.2 Micro Analysis

We measure the microscopic cost in each layer
of the network subsystems to analyze the over-
head of real-time support. Figure 5 depicts the

28 Transactions of Information Processing Society of Japan

APIIaysf R

Kemel Interface § 024Bytes

m NPS 64

wlibsockets_rt 1024Bytes

ulibsockets_rt 64Bytes

w libsockets(W) 1024Bytes

m libsockets(W) 64Bytes

o 20 40 60 80 100 120 140 160 180
Time (micro seconds)

Kerne! Processing [

Network Interfaco [RRRRE

Network Interface G

Kemel Interface |&

@NPS 10248ytes

m NPS 64Bytes
mlibsockets_rt 1024Bytes
mlibsockets_rt 64Bytes
ibsockets(W) 1024Bytes
m libsockets(W) 64Bytes

120 140 160 180

0 80 100
Time (micro seconds)
(b) Sending Packet

Fig. 5 Micro analysis.

result of the analysis. We measured the cost of
sending and receiving 64 bytes and 1024 bytes of
data over 100 Mbps Ethernet to see the effect of
difference in transfer size.

There is an effect of the transfer data size
when the data is moved between the kernel-
space and user-space at kernel interface in Fig. 5.
The overhead of data transfer is approximately
20 us and this is due to the copying of the
data. The execution of IP layer in NPS is
approximately 140 us slower than that of the
others when receiving packets. In this figure,
the cost of switching the manager thread to
an input worker thread in NPS is included in
IP layer. Switching the manager thread to a
worker thread is expensive, since it needs to find
a proper priority worker and priority hand-off
to take place. We can eliminate this cost by
using the packet filter to dispatch packets from
microkernel to input worker threads. There is
approximately 20 us of overhead in the network
interface when sending packets. The reason is
that this version of NPS uses different kernel
interface when sending packets to the kernel.
This kernel interface involves additional over-
head at the network interface layer execution.

The overheads of the real-time network sub-
systems can be found in variety of the layers
in user-space execution. The reason is not only
the cost of context switching or priority hand-
off, because there is no such overhead necessary
in the execution of the UDP and IP for sending
packet and many other layers. Costs of the real-
time synchronization are considered the main
source of the overheads in each layer. In the
next subsection, we will describe the effect of

Jan. 1999

synchronization in detail.

5.3 Performance with Kernelized Mon-

itor

From the detailed evaluation of the real-time
network subsystems, we found that the domi-
nant cause of overhead in real-time network is
the costs of real-time synchronization. Thus, we
counted the number of synchronization calls to
send and receive a packet. NPS acquires locks
9 times when sending a packet, and 13 times
when receiving one. The protocol library ac-
quires locks 4 times when sending one packet,
15 times when receiving one. '

The cost of real-time synchronization is 15 us
for locking and unlocking where the cost of syn-
chronization in C-thread is 0.8 us. By using
real-time synchronization, there are additional
overheads of 312.4 us in NPS and 269.8 us in
libsockets_rt for sending and receiving data*.
We measured the duration of each critical re-
gion and found that 80% of the critical regions
are shorter than 3 us, 17% are between 3 us and
13 us, and the rest of the critical regions are
shorter than 30 us. There is no relation be-
tween the duration of the critical regions and
the packet size.

We implemented another version of NPS,
which uses kernelized monitor instead of calling
real-time synchronization. The kernelized mon-
itor is a mechanism to protect critical regions.
It disables and enables any context switching
when entering and exiting a critical region while
other real-time synchronizations allow switch-
ing to higher priority threads. Although, the
kernelized monitor does not allow any preemp-
tion during a critical region, the critical re-
gions in protocol stacks are short enough to be
protected by the kernelized monitor. Most of
the critical regions in the protocol stack bene-
fit from kernelized monitor, since the duration
of over 97% of the critical regions are shorter
than the cost of real-time synchronization. The
cost of kernelized monitor is 1.5 us, since it just
sets and resets a flag to disable and enable the
context switch, while real-time synchronization
needs to maintain a thread queue of waiting
threads for the priority inheritance protocol.
By replacing real-time synchronization with the
kernelized monitor, additional overheads can
expect to be reduced by 594 us in NPS and
513 ps in libsockets_rt.

* (9 + 13) [times] x 14.2[us] in NPS, (4 + 15) [times]
x 14.2[us] in libsockets_rt.

Vol. 40 No. 1

S

©

Round Trip Time(milli seconds)
~

200 400 600 800 1000
Transfer Size(Bytes)
(a) 100MBps Ethernet

»~

w

[}

[}

I
£
35
&
2
=}

1

1

\

AR

Round Trip Time(milli seconds)
IS
\
\

3

)

200 400 600 800 1000

Transfer Size(Bytes)
{b) 10MBps Ethernet

Fig. 6 Round trip cost with kernelized monitor.

NPS(K) Bz

NPS
libsockets_rt(K) ez
libsockets_rt fgzza
libsockets(w) |mms

mB10M
= 100M

——
[20 40 60 80 100
Through Put{Mbps)

Fig. 7 Throughput with kernelized monitor.

We evaluated NPS, which uses kernelized
monitor. We also modified libsockets_rt to
use kernelized monitor. Figures 6(a) and
(b) show the round trip time, Fig.7 shows
the throughput, and the micro analysis is de-
picted in Fig.8. In the figures, NPS(K) rep-
resents NPS with the kernelized monitor, and
libsockets_rt(K) indicates user-level socket li-
brary using kernelized monitor.

In Fig.6, NPS using the kernelized monitor
is approximately 650 us faster than that of us-
ing real-time synchronization. Replacing real-
time synchronization, which occurs 44 times*
in one round trip with the same number of ker-
nelized monitor, creates this performance im-
provement. The performance of libsockets_rt
was also improved by approximately 450 us us-
ing the kernelized monitor. In Fig.7, it is
shown that the kernelized monitor improves the
throughput from 17Mbps to 39 Mbps in NPS
and 30 Mbps to 47 Mbps in libsockets._rt.

Performance difference still exits when send-
ing data to NPS at API Layer in Fig.8(a).
This overhead is approximately 40 us. This is

* (9 + 13) [times] x 2

Network Subsystem Architecture Alternatives for Distributed Real-time System 29

AP! layer 1

U

P

Kemel Interface i NPS(K) 64Bytes

m NPS 64Bytes

m libsockets_ri(K) 64Bytes
m libsockets_rt 64Bytes

m libsockets(W) 64Bytes
! L

Kernel Processing

Network Interface

0 20 40 60 80 100 120 140 160 180
Time (micro seconds)
(a) Receiving Packet

@ NPS(K) 64Bytos

uNPS 64Bytes

W libsockets_rt(K) 64Bytes

1 fibsockets_rt 64Bytes

w libsockets(W) 64Bytes

60 80 100 120 140 160 180
Time (micro saconds)

(b) Sending Packet

Fig. 8 Micro analysis with kernelized monitor.

caused by local communication between NPS
and the application, and context switching.
When receiving data from NPS, in contrast,
NPS is faster than the others, since NPS is opti-
mized using continuation technique when send-
ing data to the applications. This optimization
counterbalances the cost of switching from NPS
to applications.

The difference of round trip time between
libsockets and NPS is approximately 300 us us-
ing the kernelized monitor while 975 us using
real-time synchronization. And the difference
between libsockets and libsockets_rt is reduced
from 615us to 170 us. The cost of real-time
support is reduced by over 70% using the ker-
nelized monitor.

5.4 Effect of Real-time Support

To show the effect of real-time support, we
created a benchmark program. Figure 9 il-
lustrates the benchmark. The benchmark con-
sists of two sets of client-server tasks. The first
task set is a real-time task set, which we ac-
tually want to bound the behavior. The real-
time client sends a request to the server, and
the server consumes 10 ms of computation time,
then sends back a reply to the client. Then,
the client computes 5ms. This activity is peri-
odically executed every 50 ms. The other task
sets are disturbance jobs of the real-time activ-
ity. A disturbance client sends a request, and
the server consumes 25 ms of CPU time, then
sends a reply back to the client. Then the client
computes 25 ms. It is executed cyclically with-
out sleeping. A disturbance job starts approxi-
mately 1 second after the start time of real-time
activity. The number of the disturbance job is
increased every 1 second to increase the system

30 Transactions of Information Processing Society of Japan

Client Machine Server Machine

Request
Real-Time Activity
Ei=®
— EE———

Disturbance Work

Fig. 9 Benchmark task set.

300 530
250 § 260
= 200 Em
g 150 g 150
100 E 100
i i
o o
° " Time (sosonds) 8 ‘ " Time (seonds) ° *
(a) Nbsockets_rt(K) {b) NPS(K}
& 300 & %0
% 260 § 250
i 20 H 200
E 1680 E 150
= 100 i a 100
Fol— Fol—a
o o
T tima (sefonde) 3 4 1 Time (sadonds) 3 M
(c) Hbsocketa(W) (d)Lites
& 00
§=
= 200
£
g 150
% 100 I
o IRV P
£ WA

0

o 3 4

' Time (sadonds)
(#) FreeBSD

Fig. 10 Benchmark result.

load on both of the server and client machines.

For the measurement of real-time periodic ac-
tivity of Lites, libsockets_rt, and NPS, we used
periodic threads provided by RT-Mach. Since
the original socket library libsockets is not com-
patible with periodic threads, we used high res-
olution timer?V), also provided by RT-Mach,
to create periodic activities. Both client and
server programs of the real-time activity have
the highest priority, and the disturbance jobs
have lower priority on RT-Mach. The schedul-
ing policy was set to fixed priority. For the
measurement of FreeBSD, we used setitimer()
system call for periodic alarm signal. The pri-
ority of the real-time activity is bumped up by
setpriority() system call.

We measured the interval time of the real-
time activity and the results are shown in
Fig.10. In the figures, there is no jitter in
the beginning in all of the cases, since there is
no disturbance work running. In libsockets and
Lites, jitter begins after the disturbance tasks
start. The threads, which are executing proto-
col stack in Lites and the network thread in the
socket library, have the same priority as the dis-
turbance threads. Therefore, they compete for

Jan. 1999

CPU resulting to jitters in the figures. The pro-
tocol stack of FreeBSD is kernelized and it can
preempt the real-time activity when requests of
the disturbance tasks come from the network,
and the jitter occurs. The result shows that we
can manage the interval time of the real-time
activity in both libsockets.rt and NPS.

5.5 Evaluation Summary

RT-Mach provides many protocol stacks im-
plemented with different architectures. The
performance of Lites is the worst in our evalua-
tion. The round trip time of Lites is three times
longer than that of libsockets, and its through-
put is 30% lower. However, if applications use
many select system call, or open-and close sock-
ets frequently, Lites is better than libsockets
socket are managed in Lites. libsockets needs to
communicate with Lites when application use
select, close, and select system calls for sockets.
For example, the cost of creating and closing a
socket is 2.2ms in Lites, while libsockets takes
4.4ms. For real-time system, RT-Mach pro-
vides libsockets_rt and NPS. The performance
of libsockets_rt is better than that of NPS. The
round trip time of libsocketsrt is 15% bet-
ter than that of NPS, and the throughput of
libsockets_rt is 20% better. However, the per-
formance of network subsystems is only one cri-
teria for selecting network subsystems. In the
next section, we discuss the tradeoff between
the server and library network subsystems form
many aspects.

6. Discussion

In this section, we discuss the tradeoff of pro-
tocol stacks implemented with different archi-
tectures for real-time environment. We focus
not only on performance, but also other aspects
such as flexibility, resource management, and
security.

6.1 Performance Tradeoff

Implementing a protocol stack in a user-level
server is believed to be slower than implement-
ing it in user-level library. The communication
cost between a protocol server and application
program actually exists, but the difference is
very small. From our evaluation results, the
overhead of NPS is approximately 10% higher
than that of libsockets_rt. NPS and libsockets_rt
currently use RT-Thread, which is provided
by the RT-Mach microkernel. The context
switching cost of RT-Thread is high compared
with that of threads implemented in user-space.
RTC-Thread??) incorporates the performance

Vol. 406 No. 1

of user-level threads and the functionalities of
RT-Thread. By using RTC-Thread, the perfor-
mance of both NPS and libsockets_rt can be im-
proved. Moreover, by implementing a locking
mechanism with RT'C-Thread, it can reduce the
lock and unlock costs without affecting other
tasks in the system. This mechanism just dis-
ables the context switch to the threads within
the same task, while the kernelized monitor dis-
ables switching to any threads in the machine.
This locking mechanism may also reduce the
security risk.

Further performance improvement idea for
NPS is eliminating the cost of switching from
the manager thread to an input work thread.
We estimate this cost is approximately 70 us
from Fig.8. It can be eliminated using the
extended packet filter described in Section 4.
The packet filter in the microkernel sends mes-
sage directly to the worker thread with priority
handoff. Then the cost of the manager thread
can be eliminated, and the latency of NPS and
libsockets.rt may become equivalent. The com-
munication through put is almost proportional
to the latency from our evaluation result. If the
round trip time becomes short, then through
put will be increased. Even in current imple-
mentation, the through put is the same, as long
as we are using 10 Mbps Ethernet, which is the
world’s most popular local area network media.
From our experiments, the performance may
not be a major issue any more for distributed
real-time system with proper optimized proto-
col stacks.

6.2 Server vs. Library for Real-time

Network

Although the server and library architecture
does not affect the performance, there are some
other aspects such as flexibility, security, and
resource allocation, which need to be discussed
for building distributed real-time systems.

Both the server and library architecture pro-
vide flexible protocol stacks compared to in-
kernel protocol stacks. However, if there are ap-
plications with various characteristics running
on a machine, the library architecture provides
better flexibility. Multiple protocols for special
purpose may co-exist on a machine and provide
different services by using library architecture.
These protocols can be easily added, extended,
adapted, and specially optimized for applica-
tion demands without affecting other program
running on the same machine. In addition,
rapid prototyping and debugging favor the self-

Network Subsystem Architecture Alternatives for Distributed Real-time System 31

contained protocol stack library.

To coordinate with resource reservation such
as CPU-reserves'®) and VM-reserves'?), the li-
brary architecture is more suitable than the
server architecture, since the resources for the
execution of protocol stacks are associated with
threads or tasks. Using the server architec-
ture, such resources are charged to the protocol
server, but not to threads or tasks which use
the protocol server. If the server architecture is
used with the reservation schemes, the system
designer must estimate all traffic going through
the protocol server. Otherwise, higher prior-
ity threads of which execution time should be
bounded may suffer from the unpredictable pro-
tocol execution of unestimated lower priority
traffic. All such resources, however, are charged
to the thread itself, by using protocol stack in
library. The activities of lower priority threads
may not affect the resources of higher priority
threads.

Security needs to be considered for network
subsystems if there are untrusted applications
in systems. Thekkath, et al.?>) addressed the
security issue of protocol stack libraries. They
described two aspects to protection. First,
only entities that are authorized to communi-
cate with each other should be able to com-

. municate. Second, entities should not be able

to impersonate others. They solved the issues
by using a trusted registry server and header
matching of incoming and outgoing packets.
In real-time systems, however, these protection
schemes are not sufficient. For example, the
abuse of the kernelized monitor may cause seri-
ous system failure. Any thread can disable pre-
emption. Then, all threads in the system, ex-
cept the thread in the kernelized monitor, are .
suspended. The kernelized monitor, however,
needs to be exported to users, which use the
library architecture for better performance. If
we consider security, the server architecture is
superior to the library architecture.

7. Conclusion

In this paper, we first present the user-level
network stack models, and described two real-
time network subsystems, which are imple-
mented on RT-Mach. One is NPS which im-
plements protocol stacks as a user-level server.
The other is real-time socket library using
the in-kernel packet filter. We evaluated the
real-time network subsystems, and the results
showed that there are many overheads to sup-

32 Transactions of Information Processing Society of Japan

port real-time communication. From our de-
tailed analysis of the network subsystems, we
found that the dominant overheads are the syn-
chronization cost. Using kernelized monitor im-
proves the performance of the network subsys-
tem. The performance of the library archi-
tecture is better than that of server architec-
ture, however, the difference is very close even
though their architectures are different. In ad-
dition, the both subsystems can eliminate un-
bounded priority inversion in real-time system.

From our evaluations and discussions, we
concluded that the selection of the network sub-
system architecture depends on application re-
quirements. To build a distributed real-time
system efficiently, consideration should be made
for flexibility, resource management, security
requirement, and implementation of applica-
tions. The library architecture is flexible than
the server architecture, and it is easy to op-
timize to obtain better performance and coor-
dinate with local resource reservation scheme.
The server architecture provides better security
over the library architecture, and easy to con-
trol network resource in user-space. Real-time
system designer should select the architecture,
which is suitable for the characteristics of their
applications.

References

1) Bershad, B., Savage, S., Pardyak, P., Sirer,
E., Fiuczynski, M., Becker, D., Chambers, C.
and Eggers, S.: Extensibility, Safety and Per-
formance in the SPIN Operating System, Proc.
15th Symposium on Operating Systems Princi-
ples (1995).

2) Braun, T. and Diot, C.: Protocol Implemen-
tation Using Integrated layer Processing, Proc.
SIGCOMM 96 Symposium (1996).

3) Cheriton, D.R.: VMTP: Versatile Message
Transaction Protocol Specification, RFC 1045,
Stanford University (1988).

4) Cooper, E.C. and Drabes, R.P.: C threads,
Technical Report CMU-CS-88-154, Carnegie
Mellon University (1987).

5) Druschel, P. and Banga, G.: Lazy Receiver
Processing (LRP): A Network Subsystem Ar-
chitecture for Server Systems, Proc. USENIX
2nd Symposium on OS Design and Implemen-
tation (OSDI ’96) (1996).

6) Druschel, P., Peterson, L.L. and Davie, B.S.:
Experiences with a High-Speed Network Adap-
tor: A Software Perspective, Proc. SIGCOMM
’94 Symposium (1994).

7) Edwards, A. and Muir, S.: Experiences im-

Jan. 1999

plementing a high performance TCP in user-
space, Proc.SIGCOMM ’95 Symposium (1995).

8) Golub, D., Dean, R., Forin, A. and Rashid, R..:
Unix as an Application Program, Proc.Summer
USENIX Conference (1990).

9) Helander, J.: Unix under Mach, The Lites
Server, Master’s Thesis, Helsinki University of
Technology (1994).

10) Hutchinson, N.C. and Peterson, L.L.. The
z-Kernel: An Architecture for Implementing
Network Protocols, IEEE Trans. Softw. Eng.,
Vol.17, No.1, pp.64-76 (1991).

11) Kitayama, T., Miyoshi, A., Saito, T. and
Tokuda, H.: Real-Time Communication in Dis-
tributed Environment — Real-Time Packet Fil-
ter Approach, Proc. 4th International Work-
shop on Real-Time Computing Systems and
Applications (1997).

12) Kitayama, T., Nakajima, T. and Tokuda, H.:
RT-IPC: An IPC Extension for Real-Time
Mach, Proc. USENIX Symposium on Microker-
nel and Other Kernel Architectures (1993).

13) Lee, C., Yoshida, K., Mercer, C. and
Rajkumar, R.: Predictable Communication
Protocol Processing in Real-Time Mach, Proc.
IEEE Real-time Technology and Applications
Symposium (1996).

14) Maeda, C. and Bershad, B.N.: Protocol Ser-
vice Decomposition for High-Performance Net-
working, Proc. 14th Symposium on Operating
Systems Principles (1993).

15) McCanne, S. and Jacobson, V.. The BSD
Packet Filter: A New Architecture for User-
level Packet Capture, Proc. 1993 Winter
USENIX Conference (1993).

16) Mercer, C.W., Savage, S. and Tokuda, H.:
Processor Capacity Reserves: An Abstraction
for Managing Processor Usage, Proc. Fourth
Workshop on Workstation Operating Systems
(WWOS-IV) (1993).

17) Mogul, J., Rashid, R. and Accetta, M.: The
Packet Filter: An Efficient Mechanism for User-
Level Network Code, Proc. 11th Symposium on
Operating Systems Principles (1987).

~ 18) Nakajima, T. and Tokuda, H.: User-level Real-

Time Network System on Real-Time Mach,
Proc. 4th International Workshop on Parallel
and Distributed Real-Time System (1996).

19) Nakajima, T. and Tezuka, H.: Virtual Memory
Management for Interactive Continuous Media
Applications, Proc. IEEE International Con-
ference on Multimedia Computing and Systems
(ICMCS97) (1997).

20) Oikawa, S. and Tokuda, H.: Efficient Tim-
ing Management for User-Level Real-Time
Threads, Proc. 1995 IEEE Real-Time Technol-
ogy and Applications Symposium (1995).

Vol. 40 No. 1

21) Savage, S. and Tokuda, H.: RT-Mach Timers:
Exporting Time to the User, Proc. USENIX 3rd
Mach Symposium (1993).

22) Seltzer, M.1., Endo, Y., Small, C. and Smith,
K.A.: Dealing With Disaster: Surviving Misbe-
haved Kernel Extensions, Proc. USENIX 2nd
Symposium on OS Design and Implementation
(OSDI ’96) (1996).

23) Sha, L., Rajkumar, R. and Lehoczky, J.P.:
Priority Inheritance Protocols: An Approach to
Real-Time Synchronization, Technical Report
CMU-CS-87-181, Carnegie Mellon University
(1987).

24) Strayer, W.T., Dempsey, B.J. and Weaver,
A.C.. XTP: The Xpress Transfer Protocol,
Addison Wesley (1993).

25) Thekkath, C.A., Nguyen, T.D., Moy, E. and

Lazowska, E.D.: Implementing Network Proto-
cols at User Level, Proc. SIGCOMM 93 Sym-
posium (1993).

26) Tokuda, H. and Mercer, C.W.: ARTS: A dis-
tributed real-time kernel, ACM Operating Sys-
tems Review, Vol.23, No.3 (1989).

27) Tokuda, H., Mercer, C.W., Ishikawa, Y. and
Marchok, T.E.: Priority inversions in real-time
communication, Proc. 10th IEEE Real-Time
Systems Symposium (1989).

28) Tokuda, H., Nakajima, T. and Rao, P.: Real-
Time Mach: Towards a Predictable Real-Time
System, Proc. USENIX 1st Mach Workshop
(1990).

29) von Eicken, T., Basu, A. and Vogels, W.: U-
Net: A User-Level Network Interface for Par-
allel and Distributed Computing, Proc. 15th
Symposium on Operating Systems Principles
(1995).

30) Zhang, L., Deering, S., Estrin, D., Shenker,
S. and Zappala, D.: RSVP: A New Resource
ReSerVation Protocol, IEEE Network (1993).

(Received May 8, 1998)
(Accepted October 2, 1998)

Takuro Kitayama is cur-
rently a research staff at Keio
Research Institute at SFC, Keio
University. His research inter-
ests are operating systems, real-
time systems, and distributed

: system. He is a member of
ACM, USENIX, and IPSJ.

Network Subsystem Architecture Alternatives for Distributed Real-time System 33

Tatsuo Nakajima is an As-
sociate Professor of Center for
Information Science at Japan
Advanced Institute of Science
and Technology, where he is em-
ployed since 1993. He received
his Ph.D. from Keio University
in 1990 in distributed reliable computing. His
research interests are operating systems for
multimedia, high performance operating sys-
tems, reliable communications, and object-
oriented languages. He is a member of ACM,
USENIX, IPSJ, and Japan Society for Software
Science and Technology.

Shuichi Oikawa is a Post
Doctoral Fellow in Computer
Science Department at Carnegie
Mellon University. He received
his Ph.D. from Keio Univer-
sity in 1996. His research in-
terests are Operating Systems,
Distributed Systems, Real-Time Systems, and
Multimedia Systems. He is a member of ACM,
IEEE, IPSJ, and Japan Society for Software
Science and Technology.

Hideyuki Tokuda received
his B.S. and M.S. degrees from
Keio University in 1975 and
1977 and a Ph.D. degree in Com-
puter Science from the Univer-
sity of Waterloo in 1983. He
is currently an Executive Vice
President and a Professor in the Faculty of
Environmental Information, Keio University.
His research interests include distributed real-
time systems, multimedia systems, mobile sys-
tems, communication protocols, massively par-
allel/distributed systems, and embedded sys-
tems. He has created many operating systems
and software tools such as Real-Time Mach, the
ARTS Kernel, Shoshin, Scheduler 1-2-3, and
ARM (Advanced Real-Time Monitor). He is
a member of IEEE, ACM, IPSJ, and Japan
Society for Software Science and Technology
(JSSST). He is currently the chair of SIGOS
in IPSJ and the executive board member of
JSSST.

