WIS A0E (B 6 £48) 2EXS

4 —353

Fault-Tolerant Group Communication

Kenji Sima, Takahiro Kimura, Hiroya Mita, and Makoto Takizawa
Tokyo Denki University

6P—3

*

e-mail{sima,kimu,mita,taki}@takilab.k.dendai.ac.jp

1 Introduction

In distributed applications, a group of processes
have to be communicated. Multiple system processes
have to support the application processes with the
atomic and ordered delivery of messages by using the
network. By using the group communication sup-
ported by the system processes in the group, the appli-
cation processes can send messages to the others atom-
ically and in some delivery order. The distributed sys-
tems suffer from failures, i.e. system process and net-
work faults. In this paper, we discuss a fault-tolerance
group communication in the presence of process faults
including Byzantine fault. We assume that the net-
work is dependable, i.e. messages are delivered to all
the destinations atomically and in some specified or-
der in the presence of message loss. From here, let
processes mean system processes. Even if the pro-
cesses in the group fault, the group has to support
the application with the group communication.

In order to support the fault-tolerance group com-
munication in the presence of process faults, the pro-
cesses are replicated. That is, each process is realized
by a replica group which is a set of multiple replicas
of the process. Even if the replicas of the process
fault, if at least one replica is operational, the pro-
cess is considered to be operational. There are various
replication strategies, passive, active, and semi-active
replications [1]. In this paper, we present a hybrid
replication method for replicating processes in order
to support fault-tolerancy.

In section 2, we present a model of the system. In
section 3, we discuss kinds of replications. In section
4, we present how to construct a group of replicas.

2 System Model

A communication system is composed of application,
system, and network layers [Figure 1]. The network
layer provides system processes with reliable group
communication. That is, every system process re-
ceives every message sent without any message loss
in the same order [3, 4]. The system processes py, ...,
pn cooperate with each other to support fault-tolerant
group communication service for application processes
by using the underlying network service.

A logical group G is composed of logical system pro-
cesses, i.e. G = §p1, .. Pn). A physical group Pg of
G is composed of replicas of the system processes, i.e.
Pg = ({pll, e plml}y .. {pnh ety Pim }) HCI'C
pij is a replica of p; which is located in different pro-
cessor. {pi1, .-+ Pim,} is a replca group of p;. We
make no assumption on process fault, i.e. Byzantine
fault.

*Tr—=aAt LI AT EE
Ve MRE], AR B, = M, FER B
3501 v

application
process

i_gn

apphcatzon! l

layer v Sy 5;
/"\ /J'\
~— stern
system @ sy stem
layer process
. Nl - N-[Nn
TS d\/ /"Y\
network \ network
layer high-speed network SAP

Figure 1: System model
3 Replication

Each replica group p; is composed of replicas p;,
.-y Pim;- There are three kinds of replications [1].

active replication, passive replication, and
semi-active replication.
In the active replications, every replica p;; takes the
same input and outputs the same result. Even if some
replica of p; faults, the computation of p; can be con-
tinued as long as at least one replica is operational.
The computation of p; has to be deterministic because
every replica has to do the same computation.

In the passive replication, there is one replica named
a coordinator, say pi1. Pia, - - ., Pin &I€ participants. p;1
takes the input and outputs the result while any par-
ticipants do no computation. p;; takes the checkpoint
where p;; saves the local state Is;; in the stable stor-
age. Here, p;; sends ls;; to all the participants. On
receipt of Is;; from the coordinator, every p;; saves ls;;
as the checkpoint in the stable stora,ge and ilanges the
local state to Is;;. . has to roll back to the check-
point ck,J taken most recenl’.ly if the coordinator faults.
Then, a new coordinator is selected among the opera-
tional participants and restarts the computation from
the checkpoint. Hence, it takes some time for the repli-
cas to roll back and restart. The passive replication
can be adopted to the non-deterministic processes be-
cause only coordinator does the computation and the
others catch up with it by receiving the checkpoint.

In the semi-active replication, all the replicas take
the inputs and do computations while only the coordi-
nator outputs the results. Like the passive replication,
the coordinator p;; takes a checkpoint and sends the
local state Is;; taken in the checkpoint to all the partic-
ipants. On receipt of Is;;, each participant p;; changes
the local state to Ils;;. Even if the current state of
pi; is different from Is;y, pi; is changed to Is;;. The
processes may be non-deterministic.

In this paper, we assume that one replica fails at the
same time. In order to detect the coordinator fault,
each replica group includes at least three coordina-
tors which are actively replicated. If one coordinator
replica outputs results different from the others, it is
isolated as the fault process. Here, one replica has to

4 —354

be selected as a new coordinator replica. If the partic-
ipant replica selected is passively replicated, it takes
time to catch up with the current state of the coor-
dinator because it has to start from the most-recent
checkpoint. Therefore, some participants are semi-
actively replicated, i.e. they take the same input as
the coordinators but do not.output the results. They
are referred to as candidates. We propose a hybrid
replication where a group includes multiple active co-
ordinators, semi-active candidates, and passive partic-
ipants.

4 Replica Groups

Each replica group p; is composed of three kinds of
replicas, i.e. coordinators ¢y, ..., cit; (t; > 1), coor-
~ dinator candidates a;y, .. (u; > 0), and partici-
pants s;y, ..

oy Qi
o Sivg (‘U{ > 1)
4.1 Coordinators

The coordinators ¢;y, ..., ¢, are realized by the ac-
tive replications. Each coordinator ¢;; takes the check-
point, where the local state ls;; is saved in the stable
storage. Each c;; sends the local state ls;; to all the
participants s;1, ..., siy, and candidates a1, ..., Giy,.
On receipt of Is;; from the coordinators, the partici-
pants and candidates change the states.

In order to synchronize the computations of the
coordinators, the protocol similar to the two-phase
commitment (2PC) one is adopted. Since every co-
ordinator replica must do the same computation, if
same c;; disagrees with the others, the coordinators
consider that c;; faults. Let majority(S) give a value
which a majority of S takes for a set S of values.
{Checkpoint procedure]

(1) If ¢;; would like to take a checkpoint, ¢;; sends

CReq message to all the coordinations ofJP,'.

(2) On receipt of CReg, c;; takes a temporary check-
point tc;;. If ¢;; succeeds in taking tc;j, ¢;; sends
Yes with te;; to all the coordinators. Otherwise,
¢;j sends No to all the coordinators.

(3) Each c;; receives the reply r;s, i.e. Yes or No
from every coordinators. If majority(riy, ...,
ri4;) = Yes, ¢;; sends Chk to all the coordinators
which send Yes, and considers that coordinators
which send No fault. Otherwise, c;; sends Abort
to all the coordinators which send Yes.

(4) On receipt of Chk from all the coordinators
which ¢;; thinks to be operational, ¢;; changes
tci; to be permanent.

(5) On receipt of Abort from someone sending Yes,
cij removes tc;; and tries to take the checkpoint
again. O

The group communication has to support the delivery
of messages to all the processes in the group. In each
replica group of p;, message m sent to p; have to be
delivered to c;1, ..., cim,. Here, the replies are carried
back by the messages.

[Atomic delivery]

(1) Bach c¢;; sends message to all the coordinator
replicas in the group G.

(2) On receipt of m from cin, cij sends Yes as the
reply rm;; to all the coordinators in G. If ¢;;
fails to receive m, c;; sends No.

(3) Each c;j collects the replies rmyy, ..., Mg, for
each px. If majority(rmuy, ..., Tmr,) = Yes, cij
considers that m is received by p;. Otherwise,

px fails to receive m. In either case, c;; considers
that replicas sending the reply different from the
majority fault and isolates them from G. O

4.2 Candidates

Each replica group »; includes the candidates aj,
...y Giy;, Which could be a coordinator if some coordi-
nator faults. In order for some a;; to take over the fault
coordinator, the candidates are realized by the semi-
active replication. Each a;; takes the same inputs as
the coordinators, but does not output any result. a;;
listens to the communication in G but does not send
message to G. a;; collects the checkpoints from all the
coordinators. In the same way as the coordinators, a;;
obeys the majority of the checkpoints ls;y, ..., Is;y,.

4.3 Participants

The participant replicas s;1, ..., $;y, are passively
replicated. Each s;; neither takes inputs, outputs re-
sults, nor does the computation. On receipt of the
checkpoint, Is;; from c;x, the participants change the
local state to ls;x. Each time s;; receives the check-
point, s;; catches up with the coordinator.

4.4 Promotions and recovery

If a coordinator ¢;; of p; faults, one a;; of the co-
ordinator is selected to be the coordinator. Since the
candidates are semi-active replicated, every candidate
has the same state as the coordinator. Hence, a;; takes
OVer ¢;; as soon as c;; is detected to be fault by start-
ing to output the results. At the same time a;; takes
over c;x, one s;;, is selected to be a coordinator. s;; can
start the computation from the most recent checkpoint
tk;,. Since the current state Is;; of a;; might be differ-
ent from tk;p, s;p has to catch up with the ls;;. Each
time a coordinator faults, the coordinators invoke the
checkpoint procedure and send the local states to all
the candidates. A procedure where candidates get co-
ordinators and participants get candidates is referred
to as promotion. If a fault replica recovers, the replica
gets a participant.

5 Concluding Remarks

In this paper, we have discussed how to make the
group communication more fault-tolerant by duplicat-
ing the protocol processes. The hybrid replication has
been proposed as the replication in order to support
the robustness for the Byzantine fault of the process
and fail-safeness.

Reference

[1] Powell, D., Barrett, P.,, Bonn, G., Chereque,
M., Seaton, D., and Verissimo, P., “The Delta-
4 Distributed Fault-Tolerant Architecture,” in
Readings in Disitributed Computing Systems,
IEEE COMPUTER SOCIETY PRESS 1994,
pp.223-248.

[2] Birman, K. P., Schiper, A., and Stephenson, P.,
“Lightweight Causal and Atomic Group Multi-
cast,” ACM Trans. on Computer Systems, Vol.9,
No.3, 1991, pp.272-314.

[3] Nakamura, A. and Takizawa, M., “Reliable
Broadcast Protocol for Selectively Ordering
PDUs,” Proc. of the 11th IEEE ICDCS 1991,
pPp.239-246.

[4] Nakamura, A. and Takizawa, M., “Priority-Based
Total and Semi-Total Ordering Broadcast Pro-
tocols,” Proc. of the 12th IEEE ICDCS, 1992,
pp.178-185.

