T 2450 CP K 4 £ 8D 2 EAS

4—157

Open Nested Transactions®

4R—3

Shinji Yasuzawa and Makoto Takizawa !

Dept. of Computer Science and Systems Engineering
Tokyo Denki University *

1 Introduction

In order to develop new applications like groupware and
CAD, transactions are nested, i.e. composed of mod-
ules. In these applications, transactions manipulate more
objects for longer time than the conventional transac-
tions. Strict 2PL scheme is used in the conventional
system. Although it implies serializability and no- cas-
cading abort, transactions hold objects for longer time.
In this paper, we present new synchronization schemes
named open nested ones by which objects obtained can
be released during the transaction execution.

In section 2, we present our system model. In section 3,
synchronization mechanism is presented. In section 4, we
discuss how to abort transactions by using compensate
transactions.

2 System Model

A system M is composed of multiple objects. Each ob-
ject o provides two kinds of operations, primitive and
public operations to manipulate o. Users issue the pub-
lic operations to o in order to manipulate o. Each public
operation is realized by a sequence of public operations
on another objects and primitive operations on o. The
primitive operations manipulate directly o but do not
invoke another operations. A transaction is an atomic
sequence of operation invocations. Since each operation
may invoke another operations, transactions are repre-
sented in a tree, i.e. nested. In the transaction tree, the
leaves, non-leaves, the root denote primitive operations,
public operations, and the transaction, respectively.

Suppose that an operation op on an object o invokes n
(> 1) operations op,, ..., op, in this order [Fig.1]. The
execution of op is represented as a sequence { [op, op;,

.., 0p,, op] }, where [op and op] denote the begin and
end of op, respectively.

For two operations op, and op, in M, two transitve
relations — and => are defined as follows. op, — op, if
o0p, invokes 0p,. op; = op, if (1)op, — o0p,y, (2) op; —
ops, and op, and op, belong to the same object, or (3)
op; — 0p,, and op, and op, belong to the same object.
M is hierarchical iff for every public operation op of every
object o, all the operations which invoke op belong to the
same object and not op = op.

For each object o, a compatibility relation among the

*Open Nested Transactions
tShinji Yasuzawa and Makoto Takizawa
!Tokyo Denki University

op

0P 0Pn

Figure 1: Nested transaction

public operations is defined on the basis of the semantics
of 0. Let op, and op, be operations of o, and op, invoke
opi, ..., opix; (i=1, 2). If op, and op, are compatible,
any interleaving of op;; and opy; are allowed. This is
semantic serializability [6].

3 Synchronization

Let op be an operation on an object o, and invoke op,,
..., op, where each op; is an operation on an object o;
(if op; is public). Before executing op on o, o has to be
locked in a mode of op as follows.

[Locking scheme] (1) o is locked by op. [op is a lock
operation on o.

(2) opy, -- ., op, are executed, i.e. before executing each
op;, o; is tried to be locked if op; is public. O

One problem is how to release locks obtained in op.
One way to release objects is a famous two-phase locking
(2PL) scheme. In the strict 2PL, when all the operations
in T complete, i.e. T commits, all the locks obtained in T
are released as presented in (3-1). The execution scheme
is named a closed nested transaction [4]. It implies seri-
alizability and no cascading abort.

(3-1) When op,, ..., op, commit, if op is the root, all
the locks obtaind in op are released.

Another way is to release objects before T' commits.
There are two ways to realize op], i.e. when op,, ..., op,
commit,

(3-2) all the locks obtained by op; ..
(3-3) o is released.

In (3-2), it is noted that o is not released even if oy, ...,
o, obtained by opy, ..., op,, are released. On the other
hand, all the locks obtained in op are released when op
commits in (3-3). If op is an operation like print, the
printer can be released after printing out. Thus, (3-3) can
be used to execute operations which cannot be recovered.

., op,, are released.

4—158

Transactions obeying (3-2) and (3-3) are partially and
totally open, respectively. In this paper, the partially
open nested transaction are considered.

[Theorem] Every schedule obtained from partially open
transactions is semantically serializable in a hierarchical
system.

[Proof] Suppose that op; on o invokes op;; on 0;; (1=1,2,
j=1, ..., k;). If op, and op, are compatible, any inter-
leaving sequence of op;; is allowed. Hence, let us consider
a case that op, and op, are incompatible. Suppose that
op, is first executed and then op,. While op; holds o,
op, cannot use o. Hence, opi1, ..., 0p1x, are executed
before opyy, ..., 0pa,. O

4 Compensation

In order to abort an operation op on o, a compensate op-
eration 6p is invoked. &p is an operation on o such that
for every system state s, p(op(s)) = op(dp(s)). Let p =
{opy, ..., 0p,) be an execution sequence. p is compen-
sated by (0p,, ..., 0p;). In the partially open transac-
tions, when an operation op commits, objects obtained
by op,, ..., op, are released. Hence, the transaction
T is represented as a sequence { [T, opy, ..., 0p,._1,
[0Pmy OPm1s - -+ [0Pmk,..., [0Pmk..n) Where T invokes op,,
.., 0p,., 0p, invokes 0p_.i, ... 0Pk OPmi inVOkes ...
0Ppuk..hy 304 0P, is the current operation. The oper-
ations without [like op, means ones which commit. In
order to abort T, the compensate sequence { [op,,, 4, .-,
OPm1s [OPmy OPm—1, - - -» 0P1, [T) is executed.

5 Deadlock

Since compensate operations might require objects which
are not held by the transaction, deadlock might occur by
executing them. Uncompensatable deadlock in the close
nested transactions is discussed in [4]. A system state is
represented in a well-known wait-for graph. The wait-
for graph is extended to include the precedence relation
among operations in each transaction. An operation op,
depends on op, (op, — op,) iff (1) op; waits for op,, (2)
op, precedes o0p, in the same transaction, or {3) for some
op3, 0p, — 0py ++ 0p,. An eztended wait-for (EWF)
graph is a directed graph whose nodes represent opera-
tions, and whose directed edge from op; to op, denotes
op: +> opa. op is deadlocked iff op is included in a di-
rected cycle, i.e. op — op.

Suppose that a transaction T is compensated by exe-
cuting ¢ in Fig.2. Suppose that ¢ invokes f and f waits
for w. Further, U is compensated by W, @ invokes y,
and y waits for 5. This is deadlock. Suppose that U is
selected and @ is compensated. Then, w is compensated
again by @. The same deadlock state is obtained. This
is uncompensatable deadlock.

[Theorem] No uncompensatble deadlock occurs in the
hierarchical system.

Figure 2: Uncompensatable deadlock

[Proof] In Fig.2, f never waits for operations v and w.
If so, f and w are at the same level, y and b are at the
same level, y is lower than w, and f is lower than b. It
is contradiction. O

6 Concluding Remarks

In this paper, we have discussed new execution schemes
of nested transactions on multiple objects, i.e. partially
and totally open transactions. Since the objects can be
released before the transaction commits, more concur-
rency can be obtained.

Further problem is how to resolve the cascading abort[1,

2.

References

[1] Garcia-Molina, H. and Salem, K., ”Sagas,” Proc. of
the ACM SIGMOD, 1987, pp.249-259.

[2] Korth, H. F., Levy,E., and Silberschalz, A., ” A For-
mal Approach to Recovery by Compensating trans-
actions,” Proc. of the VLDB, 1990, pp.95-106.

[3] Moss, J. E., "Nested Transactions: An Approach to
Reliable Distributed Computing,” The MIT Press
Series in Information Systems, 1985.

[4] Takizawa, M. and Deen, S, M., "Lock Mode Based
Resolution of Uncompensatable Deadlock in Com-
pensating Nested Transaction,” Proc. of the 2nd
Far-East Workshop on Future Database Systems,
1992, pp.168-175.

[5] Traiger, I L., ”Trends in System Aspects
of Database Management,” Proc. of the 2nd
International Conf. on Database (ICOD-2), 1983,
pp.1-21.

[6] Weihl, W. E., "Local Atomicity Properties: Mod-
ular Concurrency Control for Abstract Data
Types,” ACM Trans. on Programming Language
and Systems, Vol.11, No.2, 1989, pp.249-283.

