TR X345] (P AR 4 D 2 FE RS

3P—=5

A Lock Monitor for a Shared Memory

Multiprocessor Operating System

Joe Uemura, Katsuhide Takahashi, Takashi Kan
Mitsubishi Electric Corporation
Computer & Information Systems Laboratory

1. Introduction

Hamessing the power provided by sharcd-memory
multiprocessors requires an operating system to service
multiple simultaneous user requests. Operating systems
with this capability are said to support symmetric
multiprocessing execution. Symmetric execution demands
the operating system to synchronize accesses to its data
structures. This synchronization is often implemented using
multiprocessor locks. Contention for locks and the delays
associated with lock events are potential performance
bottlenecks. Tools which help gain insight into the
execution characteristics of locks play an important role in
the analysis and tuning of symmetric multiprocessor
operating systems.

In this paper, we present a facility implemented to monitor
multiprocessor locks. The target system of this
implementation is a RISC based shared-memory
multiprocessor running the OSF/1! operating system.
Although the implementation takes into consideration
features of OSF/1, we believe that most of the descriptions
about our work can be applied to monitoring locks on other
symmetric operating systems as well. We are currently
using this monitor to analyse the OSF/1 kernel.

2. Design Considerations
2.1. Lock events

The lock attributes which we chose to investigate were lock
activity, contention, latency, and granularity. Previous lock
analysis work, including our own [Uemura91}, and the one
of Campbell et.al. [Campbell91] also focus on a similar sct
of attributes. An overview of these attributes follows:

1) lock activity: the number of times a lock is accessed
during a given load, giving an estimate of the overhead
incurred acquiring and releasing locks.

2) lock contention: taken every time a lock cannot be
acquired. This information is of particular interest for
performance tuning; a lock with a high ratio of
contention/acquisitions indicate a potential performance
problem.

3) lock latency: the amount of time spent waiting when a
lock contention occurs. With spin locks, the number of
spins is used; for blocking locks, the clapsed wall clock
time is recorded. Locks with high latency measurements
also suggest the existence of potential performance
bottlenecks.

4) lock granularity: a fine grain lock is one which protects
a small amount of shared data, whereas a coarse grain lock
protects several data structurcs with a single lock. A fine
grain lock will often have a higher activity rate, but lower
latency. On the other hand, a coarse grain lock might
require fewer accesses, thus minimizing access overhead.

10SF/1 is a trademark of the Open Software Foundation, Inc.

Performance analysis and tuning requires finding the right
tradeoffs among these lock attributes.

2.2. Global Measurements

As one of our goals, we were interested in characterizing
the overall behavior of the system. Particularly, we focused
on collecting data meaningful for global analysis. To
address this concern, we decided to collect data by lock
classes instead of by lock object. We grouped locks into
lock classes according to the data type associated with the
lock. We used these classes when monitoring lock events.
A global table was uscd to hold the statistics associated with
the lock classes. A pointer to the corresponding entry in this
table was added to each lock object. This greatly simplified
gathering the data for analysis since a single entry is
allocated for each lock class. This entry is used to hold the
collected statistics for all locks in the class, and it persists
even after the lock objects belonging to the class have been
deallocated. This table is statically allocated and thus
resides at a well-known location in the kernel address space.
Collecting the monitored data by user programs simply
involves reading this table. Furthermore, the data associated
with the lock classcs presents a summary of the locks
cxecution patterns, particularly useful for global analysis.
Figure 1 illustrates lock classcs.

lock object

lock class

multiple instance lock class

lock class table

Figure 1.
Lock class implementation.

2.3. Perturbation Effects

Software monitoring tools, though flexible in nature, are
intrusive, and often introduce perturbation effects which
affect the results of the computation being monitored.
Minimizing these effects is important, not only for
approximating correct execution, but also for wide
acceptance of the tool. Ideally, the perturbation effects
should be so minimal that users would constantly monitor
the system regardless of the overhead produced by
monitoring. We offer several levels of control which the
user can choose to exercise.

1) configuration parameter: at build time, the kemel
developer can specify if the monitor code should be

presentation data

control |O ene g
@ rest T

lock hits misses mis% spins
v_lock 5292 28189 0.04 2714

@ default filter program

(D lock functions

Figure 3.
Main components of the lock monitor facility are (1) lock functions, (2) psendo device driver and (3) default filter program.

compiled with the rest of the kernel. This is accomplished
by simply toggling a built time option.

2) user control: for kemels built with the lock monitor,
users can enable/disable monitoring at execution time
giving them control of when to incur the monitoring costs.
Options to enable different types of monitoring are also
available. Users can balance the amount of information
collected against the cost of obtaining it.

3) sampling rates: to support finer control over the amount
of perturbation, a sampling rate parameter is provided.
Users can, at run time, specify the sampling rates of the
events being recorded. A sample rate of ten means that one
out of ten events is actually monitored. Figure 2 illustrates
how different rates help minimize the performance
degradation due to monitoring.

0.88

4
0.86
0.84 _: —_—— Wwrile

4 —e— read
0.62 o com
0.80 -
0.78 T T T v 1 4

fully enabled 2 10 50

Figure 2.
The horizontal axis displays the sample rates. A fully enabled monitor has a
sample rate of one (every event is monitored). The vertical axis displays the
relative performance compared to running the same load with the monitor
disabled. We ran a file J/O program which rcads, writes, and copy a file with
various sampling rates. The results show that higher sampling rates can reduce the
pertubation effects by several percentage points.

3. Monitor Structure

The overall structure of the lock monitor facility is shown in
figure 3. The major components are:

« modified lock functions: existing functions have been
modified to acquire lock data. These functions store the data
in a set of buffers which are rcad and updated by the pseudo
device driver.

« pseudo device driver: a pscudo device driver is used as the
interface between user programs and the monitor. The
driver also allows users to control how monitoring takes
place. User programs, using the driver, can enable/disable
monitoring, reset internal buffers, and specify various
thresholds. The pseudo driver has several minor devices.
Extracting data and controlling the monitor is accomplished
by accessing the associated minor device. For cxample, we
currently associated one minor device with spin locks, and

another with blocking locks.

« default filter program: this program runs in user mode
and is used to control the monitor, and collect, reduce, and
present data. Various forms of data reduction are supported
such as sorting and filtering of uninteresting data. Other
data manipulations are also performed at this level such as
computing ratios between various clements of the
monitored data. This program can also be used to pass data
to other more specialized filters. These filters can present
data in different forms such as graphics outputs, or in even
more specialized views of the data.

4. Conclusion

The events and delays associated with locks used to
guarantee correct execution of multiprocessor operating
systems play an important role in the analysis and tuning of
these systems. Tools which help developers gain insight
into the execution characteristics of locks are highly helpful.
Addressing this need, we have developed a lock monitor
tool. Making this tool fulfill its potential required us to
design it with several considerations in mind. To present a
summary of the locks execution pattern, we classified the
existing locks, and used these classes to summarize the
collected data. Minimizing pertubation effects required us
to design an implementation with several levels of user
control. Code portability requirements were also met by
localizing changes. Finally, flexible and expandable user
interfaces were implemented.

Several developers are currently using the monitor. Besides
analysing the various interactions of locks, other current
usages include evaluating the overhead incurred acquiring
and releasing locks. Under certain loads, this overhead
seems higher than originally expected. Several devclopers
are using the monitor to find the reasons why this occurs.

References

[Accetta86] M. Acceta, R. Baron, D. Gollub, R. Rashid, A.
Tevanian, M. Young. MACH: A New Kemel
Foundation for UNIX Development. Proc. Summer
1986 Usenix Technical Conference. Usenix
Association, 1986.

[Campbell91] M. Campbell, R. Holt, J. Slice. Lock
Granularity Tuning Mechanisms in SVR4/MP. Proc.
of 2nd. Distributed & Multiprocessor Systems
Workshop. Usenix Association, 1991.

[Uemura91] J. Uemura, T. Sakakura, T. Kan. An Empirical
Investigation of Multiprocessor Synchronization
Mechanisms in the MACH Kemcl. Proc. of SWooP
Ohnuma91. 1991.

