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The RSA encryption system is a widely used cryptographic protocol, requiring the gener-
ation of several parameters. Boneh and Franklin proposed a protocol to efficiently generate
shared RSA parameters, but it needs a third party. Cocks, Poupard-Stern and Gilboa pro-
posed improvements of Boneh-Franklin’s protocol that do not need the help of a third party,
but their protocols have a large computational complexity. We propose a protocol for gener-
ating shared RSA parameters for two communicating parties. Our protocol does not need the
help of a third party and has less computational complexity than the protocols proposed by
Cocks, Poupard-Stern and Gilboa. We assume that before both parties execute the protocol,
they agree on the size of the modulus number which will be generated and the hash func-
tion that will be used. Our protocol generates a public modulus number without the parties
knowing the factors of that number. Although the encryption key is publicly known, each
party holds only a part of the key that is used to decrypt the received messages.

1. Introduction

The RSA encryption system is a widely used
cryptographic protocol requiring the generation
of three parameters: (1) a public modulus num-
ber N which is a product of two prime num-
bers p and q; (2) a public encryption key e;
and (3) a secret decryption key d. The two
prime numbers p and q are kept secret be-
tween the two communicating parties, and the
three parameters have the following relation:
(de ≡ 1 mod φ(N)), where φ(N) is the Euler
Totient Function of N . Using the public pa-
rameters, one party can encrypt any message
M (which is represented as a positive integer
less than N) as (E = Memod N), and the
other party can decrypt this encrypted mes-
sage E using his secret key d, using the formula
(D = Edmod N). This results in the decrypted
message D which is the same as the original
message M .
There are several cryptographic protocols

that require an RSA modulus number for which
none of the parties know the factorization, such
as Feige-Fiat-Shamir 3), Fiat-Shamir 4), Ohta-
Okamoto 5) and Ong-Schnorr 6). Thus it be-
comes necessary for the communicating par-
ties to jointly generate the modulus number N ,
while keeping the factors of N secret from the
communicating parties.
Boneh-Franklin 1), Cocks 2), Poupard-Stern 12)

and Gilboa 15) have proposed methods for gen-
erating these shared parameters. However,
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Boneh-Franklin’s method needs the help of
a third party. Cocks’, Poupard-Stern’s, and
Gilboa’s methods do not need the help of a
third party, but their computational complex-
ity is quite large and Cocks’ protocol needs to
produce several random numbers to secure each
party’s number.
We propose a protocol for generating shared

parameters that does not require the help of
a third party and also does not require pro-
ducing several random numbers to secure each
party’s number. This protocol consists of pro-
cedures for generating the modulus number and
the decryption keys, and also a procedure for
recovering the encrypted message. The param-
eters are generated based on a Basic Protocol.
Furthermore, although the encryption key e is
publicly known, the decryption key d itself is
shared among the communicating parties in a
way which enables threshold decryption. This
means that the decryption key d is split into two
parts dA and dB , and each party holds one or
the other. Thus, no party is able to recover the
original messageM from the encrypted message
E by itself.
This paper first describes the Basic Proto-

col. Section 3 describes our proposed proto-
col. Section 4 then analyzes our protocol in
terms of security. Section 5 discusses the pri-
mality test and compares our approach with
previous proposed protocols (such as those of
Boneh-Franklin 1), Cocks 2), Poupard-Stern 12)

and Gilboa 15)). Section 6 makes concluding re-
marks.
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2. The Basic Protocol

In this section, we describe first Gilboa’s
method 15) followed with the details of the Basic
Protocol which will be used in the procedures
for generating the shared RSA modulus number
and the shared decryption keys.

2.1 Gilboa’s Method
We first describe Gilboa’s method, since this

method is used in the Basic Protocol.
Gilboa’s method is a method for converting

additive shares and multiplicative shares into
multiplicative shares and additive shares re-
spectively. During the conversion, no parties
can obtain information of other parties’ addi-
tive or multiplicative shares. Suppose Alice has
a multiplicative share a and Bob has b, then us-
ing this method Alice and Bob can obtain the
additive shares x and y respectively, such that
x+ y = ab and vice versa.
Converting Multiplicative Shares into
Additive Shares
Suppose Alice holds multiplicative shares a and
Bob holds b. Then:
( 1 ) Bob selects independently and randomly

θ ring elements denoted by s0, . . . , sθ−1 ∈
R. R is a ring whose elements can be
encoded using θ bits (where θ = log |R|).
Bob then defines θ pairs using the ele-
ments in R: (t00, t10), . . . , (t0θ−1, t

1
θ−1). For

every i (0 < i < θ−1) Bob defines t0i = si
and t1i = 2ib+ si.

( 2 ) Let the binary representation of a be
a0, . . . , aθ−1. Alice and Bob execute θ
one out of two oblivious transfers 17). In
the i-th execution, Alice chooses tai

i from
the pair (t0i , t

1
i ).

( 3 ) Alice calculates (x =
∑θ−1

i=0 t
ai
i ) and Bob

calculates (y = −∑θ−1
i=0 si).

At the end of this protocol, Alice and Bob
hold the additive shares x and y respectively,
such that (x+ y = ab).
Converting Additive Shares into Multi-
plicative Shares
Suppose Alice and Bob holds additive shares x
and y respectively. Then:
( 1 ) Bob chooses at random r. Then Alice

and Bob invoke the protocol for con-
verting multiplicative shares into addi-
tive shares to perform (mA +mB = rx),
where mA and mB are held by Alice and
Bob respectively.

( 2 ) Bob sends (mB + ry) to Alice.

Message 1. Alice ✲ Bob: XAYA, F3

Alice and Bob convert (F1, yB , F2, xB) into

(ShA1, ShB1, ShA2, ShB2)

Message 2. Bob ✲ Alice: XBYB , F6, WA,

Alice and Bob convert (F4, yA, F5, xA) into

(ShA3, ShB3, ShA4, ShB4)

AliceMessage 3. ✲ Bob: WB , H(J)

Message 4. Bob ✲ Alice: H(J)

Fig. 1 The basic protocol.

( 3 ) Alice calculates (mA +mB + ry = r(x+
y)) and Bob calculates r−1.

At the end of this protocol, Alice holds (r(x+
y)) and Bob holds r−1 as their multiplicative
shares.

2.2 Details of the Basic Protocol
Suppose there are two communicating parties

Alice and Bob who intend to jointly calculate a
number which is a product of two prime num-
bers (J = (xA+xB)(yA+yB), where xA, yA are
Alice’s secret numbers, and xB, yB are Bob’s)
such that no party can obtain the factors of J .
Assuming that the size of J is agreed upon in
advance, they can realize this using the follow-
ing Basic Protocol (Fig. 1):
( 1 ) Alice chooses two large prime numbers

XA, YA (where the size of XAYA is a few
digits greater than the size of J), a num-
ber nA where 2 < nA < φ(XAYA) and a
number αA where (gcd(αA, XAYA) = 1).
She then chooses her secret numbers xA

and yA which will determine the number
J , and calculates:
• F1 ≡ (αAx

1−nA

A y−nA

A )mod XAYA.
• F2 ≡ (αAx

−nA

A y1−nA

A )mod XAYA.
• F3 ≡ (αAx

−nA

A y−nA

A )mod XAYA.
She sends F3 along with XAYA to Bob.

( 2 ) After receiving F3 and XAYA from Alice,
Bob chooses two large prime numbers
XB, YB (where the size of XBYB is a few
digits greater then the size of J), a num-
ber nB where 2 < nB < φ(XBYB) and a
number αB where (gcd(αB, XBYB) = 1).
He then chooses his secret numbers xB

and yB which will determine the modu-
lus number J . Bob then calculates:
• F4 ≡ (αBx

1−nB

B y−nB

B ) mod XBYB

• F5 ≡ (αBx
−nB

B y1−nB

B ) mod XBYB

• F6 ≡ (αBx
−nB

B y−nB

B ) mod XBYB
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( 3 ) Alice and Bob convert their multiplica-
tive shares F1 and yB into the additive
shares ShA1 and ShB1 such that:
(ShA1 + ShB1 ≡ F1yB mod XAYA). At
this point, Alice holds ShA1 and Bob
holds ShB1. They perform a similar pro-
cedure for converting their multiplicative
shares F2 and xB into the additive shares
ShA2 and ShB2 such that:
(ShA2 + ShB2 ≡ F2xB mod XAYA) and
Alice holds ShA2 and Bob holds ShB2.
Next, he calculates WA = (F3xByB +
ShB1+ShB2) mod XAYA and then sends
F6, WA and XBYB to Alice.

( 4 ) Alice and Bob, convert their multiplica-
tive shares F4 and yA into the additive
shares ShA3 and ShB3 using a method
similar to Step ( 3 ) such that Alice holds
ShA3 and Bob holds ShB3. They also
convert their multiplicative shares F5

and xA such that Alice holds ShA4 and
Bob holds ShB4 as their additive shares.

( 5 ) After receiving F6, WA and XBYB from
Bob, Alice calculates:
• WB = (F6xAyA+ShA3+ShA4) mod
XBYB

• J ≡ ([WA+ShA1+ShA2] mod XAYA

([(αA)−1 (xAyA)nA ] mod XAYA) +
(xAyA) mod XAYA

• H(J), where H is any hash function
that has been agreed upon by Alice
and Bob in advance

and sends H(J) and WB to Bob.
( 6 ) Bob calculates:

• J≡([WB+ShB3+ShB4]) mod XBYB

([(αB)−1(xByB)nB ]mod XBYB) +
(xByB) mod XBYB

• H(J)
and sends H(J) to Alice.

At this point, either Alice or Bob compares
the H(J) (where (J = (xA+xB)(yA+yB)) sent
by the other party and the H(J) he/she just
calculated. If the values are equivalent, then
both parties will agree on J as their jointly cal-
culated number. If the values are not equiva-
lent it means that one party did not calculate
the value of H(J) correctly since he/she does
not know the correct hash function H.

3. Proposed Protocol for Generating
Shared RSA Parameters

This section first gives an overview of our pro-
posed protocol, and then presents the details of
each procedure, i.e., the generation of a modu-

lus number, the generation of shared decryption
keys, and the recovery of encrypted messages.

3.1 Overview
Suppose that Alice and Bob wish to gener-

ate shared RSA parameters, which include the
RSA modulus number N , the encryption key e
and the decryption key d. After executing our
proposed protocol, N and e are public, while
d will be shared between Alice and Bob in a
way which enables threshold decryption. Alice
and Bob should be convinced that N is indeed
a product of two prime numbers, but neither
Alice nor Bob knows the factors of N .
The proposed protocol is based on the proce-

dures proposed by Boneh and Franklin 1), espe-
cially the primality test, which is used to check
that a generated modulus number is valid, and
the generation of the shared public/secret key.
However, we have extended their procedures
to improve computational efficiency without
weakening the protocol’s security.
The proposed protocol consists of the follow-

ing three procedures:
( 1 ) The generation of the RSA modulus

number N which is the product of two
prime numbers p and q. Neither Alice
nor Bob knows the factors of N .

( 2 ) The generation of dA and dB of the secret
decryption key d, for a given encryption
key e.

( 3 ) The recovery of an encrypted message.
3.2 Generating Modulus Number N
The RSA modulus numberN must be a prod-

uct of two prime numbers p and q. Our pro-
posed protocol determines N based on a set of
secret numbers that Alice and Bob has. Alice
and Bob each has two secret numbers (pA, qA
for Alice and pB, qB for Bob), and the two
prime numbers are defined as p = pA + pB and
q = qA + qB.
The procedure for generating the modulus

number consists of two sub-procedures:
( 1 ) Trial generation of the RSA modulus

number N from both parties’ numbers
pA, qA, pB, and qB.

( 2 ) Primality testing of N .
After generating a number N , both parties have
to test the primality of this number. If N is
not a product of two prime numbers, then the
parties have to repeat the two sub-procedures
until they find an N that satisfies the primality
test. The rest of this subsection describes the
two subprocedures.
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3.2.1 Trial Generation of N
The generation of N is based on the Ba-

sic Protocol, where J, xA, yA, xB, yB are sub-
stituted with N, pA, qA, pB, qB, respectively.
There are a few conditions put on the Basic
Protocol. When Alice chooses pA and qA (i.e.,
xA and yA) in Step ( 1 ) of the Basic Protocol,
we assume that pA and qA are congruent to
(3 mod 4). Also, when Bob chooses pB and qB
(i.e., xB and yB) in Step ( 2 ), pB and qB should
be congruent to (0 mod 4), so that the result-
ing modulus number N will be a Blum num-
ber 11), which is a number that is congruent to
(3 mod 4). The modulus number N should be
a Blum number because we will use a primality
test which is best suited for Blum numbers 1). If
a non-Blum number is used, the test may leak a
few bits of information depending on the power
of two dividing lcm(p− 1, q − 1) 1).
Appendix shows that the resulting N is the

product of p and q. However, N may or may
not be the product of two prime numbers, and
thus the primality test is executed next.

3.2.2 The Primality Test
The primality test is an extension of the test

proposed by Boneh and Franklin 1), and con-
sists of three subtests:
• Base test.
• Test I.
• Test II.

The Base Test and Test I are the same as the
ones given by Boneh and Franklin, except Test
I uses our Basic Protocol for computation.
The three subtests are executed as shown in

Fig. 2. Test I is executed because the Base Test
allows a few invalid numbers to pass. Similarly,
Test II is executed because Test I rejects a few
valid numbers. If a number does not pass this
primality test, another number N must be gen-
erated and the primality test is administered
again.

Base Test
( 1 ) Alice and Bob agree on a number g,

where the Jacobi symbol of g over N or
(g/N) must be 1, i.e., (g/N) = 1.

( 2 ) Alice calculates (tA = g(N−pA−qA+1)/4

mod N) and Bob calculates (tB =
g(pB+qB)/4 mod N), and they exchange
their results. They verify that:
tA ≡ ±tB mod N

If this is FALSE, N is not a valid num-
ber. If this is TRUE, N may be a valid
number.

Base Test
��✠ ❅❅❘

Test I

YN

Not Valid
��✠ ❅❅❘

Test II

NY

Valid
��✠ ❅❅❘

Valid

YN

Not Valid

Fig. 2 Primality test.

Test I
If we consider N = pq where:
• p = rd1

1

• q = rd2
2

• q ≡ 1 mod (rd1−1
1 )

the two steps in the Base Test will pass in-
correctly, i.e., the equation in the Base Test
Step ( 2 ) is TRUE even though N is not valid.
We thus have to further check whether N sat-
isfies the following expression 1):
gcd(p+ q − 1, N) > 1

If this expression is FALSE, N is a valid num-
ber, otherwise N may not be a valid number.
We realize this test by first calculating:
z ≡ R(p+ q − 1) mod N

where R = rA + rB (rA and rB are random
numbers chosen by Alice and Bob respectively,
whose sizes are less then half of N ’s). This is
jointly generated by both parties using the Ba-
sic Protocol.
z ≡ [(rA + rB)(p+ q − 1)] mod N
≡ [(rA + rB)(pA + pB + qA +
qB − 1) mod N ]

where xA, yA, xB, yB in the Basic Proto-
col is substituted with (rA mod N), ((pA +
qA) mod N), (rB mod N), ((pB + qB −
1) mod N).
By assuming that gcd((rA + rB), N) = 1

(since N is a very large integer, the probability
that gcd((rA + rB), N) �= 1 is very low) then:
gcd(p+q−1, N) = gcd((rA+rB)(p+q−1), N)
According to Boneh-Franklin 1)

gcd((rA + rB)(p+ q − 1), N) = gcd(z,N)
Thus, if gcd(z,N) > 1, they will reject this
number.
Test II
Unfortunately, Test I will also eliminate a few
valid numbers, i.e., moduli N = pq where
p, q are prime and (q = 1 mod p). To
check whether N is a valid prime number, we



2072 IPSJ Journal Aug. 2000

Message 1. Alice ✲Bob: g(q2
A
−qA) mod Nmod N , gqA mod N mod N

Message 2. Bob ✲ Alice: g(q2
B
−qB) mod Nmod N , gqB mod N mod N

g(2qAqB) mod Nmod N , OK/N-OK

AliceMessage 3. ✲Bob: OK/N-OK

Fig. 3 Protocol for Test II.

check ((q2 − q) mod N ≡ 0 mod N) or
(g(q

2−q) mod N mod N ≡ 1 mod N) using
Test II. If this expression is TRUE then N is
a valid modulus number, otherwise it should be
eliminated.
Test II is executed as follows (Fig. 3):

( 1 ) Alice calculates (g(q
2
A−qA) mod Nmod N)

and (gqA mod N mod N). Then she sends
these values to Bob. We can use the value
of g used in the Base Test.

( 2 ) After receiving Alice’s message, Bob cal-
culates:
• g(2qAqB) mod Nmod N
• g(q2

B−qB) mod Nmod N
• gqB mod N mod N

and sends these values to Alice. Bob also
calculates:

ρ ≡ [g(q
2
A−qA) mod Nmod N ]

[g(q
2
B−qB) mod Nmod N ]

[g(2qAqB) mod Nmod N ]

≡ g((qA+qB)2−(qA+qB))mod N mod N
(1)

and sends Alice “OK” if the value of ρ is
1, otherwise she will send Bob “N-OK”.

( 3 ) Finally, Alice calculates ρ and sends Bob
“OK” if the value of ρ is 1 or “N-OK” if
the value of ρ is not equal to 1.

“OK” means that the modulus number N is
valid. “N-OK” means that N is not valid. Sec-
tion 5.1 gives the proof for this test.

3.3 The Generation of Shared Decryp-
tion Keys

We generate the shared decryption keys
based on Gilboa’s 15) and Boneh-Franklin’s
methods.
We now describe the procedure for gener-

ating public/secret keys. After both parties
have successfully calculated N , they will gen-
erate decryption keys dA and dB such that
(dA +dB = d) and (d = e−1 mod φ(N)) (where
φ(N) is the Euler Totient Function of N) for
some agreed upon value of e. Each party will

have one of these decryption keys. We will use
the combination of the methods proposed by
Boneh-Franklin 1) and Gilboa 15). Our method
though will not need the help of a third party.
Since N = pq, p = pA +pB, and q = qA + qB :
φ(N) = (p− 1)(q − 1) = N − p− q + 1

= N − pA − pB − qA − qB + 1
Suppose:

φ(N)A = N − pA − qA + 1
φ(N)B = −pB − qB

Then, we can consider φ(N) = φ(N)A+φ(N)B
as a sharing of φ(N) between Alice and Bob.
Recall that (d = e−1mod φ(N)). Thus, to cal-
culate d both parties need the value of φ(N),
but φ(N) is shared between both parties in a
way that they have to jointly calculate φ(N)
in order to use it. Therefore, in order to cal-
culate (e−1mod φ(N)) without first calculating
φ(N), we use an inversion algorithm of Boneh-
Franklin as follows:
( 1 ) Choose e, where gcd(e, φ(N)) = 1, i.e., e

is odd.
( 2 ) Calculate γ = −(φ(N))−1 mod e.
( 3 ) Calculate (E = 1 + γφ(N)) and observe

that (E ≡ 0 mod e).
( 4 ) Since (de ≡ 0 mod e) then we can set

de = E. Hence, d = E/e and d =
e−1mod φ(N).

To realize this inversion algorithm, we use the
following procedure:
( 1 ) Alice and Bob picks a random number lA

and lB respectively, where lA, lB ∈ Ze.
We define Ze as a set {0, . . . , e − 1},
equipped with two operations, + and −.

( 2 ) Both parties jointly calculate (Ψ = (lA +
lB)(φA+φB) mod e) using the Basic Pro-
tocol. Alice holds φA, lA and Bob holds
φB, lB, where (φA = (N − pA − qA +
1) mod e) and (φB = (−pB−qB) mod e).

( 3 ) Each party calculates (Ψ−1 mod e).
( 4 ) Alice calculates (εA = lAΨ−1 mod e) and

(εB = lBΨ−1 mod e) such that
−(εA + εB) = −φ(N)−1mod e

Since (−φ(N)−1mod e) should be hid-
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den, then they will perform the next step
instead of broadcasting the values of εA
and εB .

( 5 ) Both parties choose an arbitrary odd in-
teger P (> 2N2e).

( 6 ) Alice and Bob convert the additive shar-
ing ((−εA − εB) mod P ) into multiplica-
tive sharing using Gilboa’s method. At
this point Alice and Bob holds TA and
TB respectively, where
TATB ≡ −(εA + εB) mod P

( 7 ) Alice calculates (TAφA) and both parties
share wA and wB using Gilboa’s method,
such that
wA + wB ≡ TAφATB mod P

( 8 ) Similarly, Bob calculates (TBφB), and
they share vA and vB using Gilboa’s
method 15) such that
vA + vB ≡ TBφBTA mod P

( 9 ) At this point (vA + wA + vB + wB + 1)
can be divided by e since

(vA + vB + wA + wB) + 1
= (TAφATB + TBφBTA) + 1
= TATB(φA + φB) + 1
= − (εA + εB)(φA + φB) + 1
= − (φ(N)−1φ(N)) + 1
≡ 0 mod e

We define :
de = (vA + vB + wA + wB) + 1

Thus, the decryption key d is as follows:

d =
(vA + vB + wA + wB) + 1

e
Since the decryption key d has to be shared

between Alice and Bob, suppose we set d =
dA +dB where dA is Alice’s decryption key and
dB is Bob’s. Alice can calculate her decryption
key dA as follows:

dA =
⌊
(vA + wA) + 1

e

⌋
(2)

while Bob can calculate his decryption key dB
as follows:

dB =
⌈
(vB + wB)

e

⌉
(3)

3.4 Recovery of an Encrypted Mes-
sage

Suppose Alice sends Bob a message M
encrypted with e which is equal to (y =
Me mod N). Alice cannot send just this mes-
sage, since Bob also needs Alice’s decryption
key to decrypt the message. Therefore, Alice
sends Bob y and (J1 = ydA mod N). Bob can
now decrypt the message sent by Alice by first
calculating (J2 = ydBmod N) and obtainingM

by calculating (J1J2 mod N).
If a third party is authorized to obtain the

decryption of y, then Alice and Bob have to
send the third party J1 and J2. The third party
may obtain M by calculating the product of J1
and J2.

4. Security Analysis

This section analyzes the ability of calculat-
ing the factors of modulus number N during
the procedure of calculating the modulus num-
ber and the shared decryption key, obtaining
the factors through the mathematical view and
also summarizes security requirements.

4.1 Finding Factors of N During the
Generation of the Modulus Num-
ber

This section will analyze how far the messages
which Alice and Bob obtained will leak informa-
tion for obtaining both parties’ secret numbers
during the execution of the Basic Protocol and
Test II. We use Lemma 1 and Lemma 2 for an-
alyzing the Basic Protocol and Test II respec-
tively.
The following lemma informally means that

at the end of the protocol, both parties learn
nothing more than the value of N .
Before discussing lemma 1, we first define:
• V iew1: Alice’s view when she interacts

with Bob.
• V iew2: Alice’s view when she guesses all

of Bob’s secret numbers (during the simu-
lation).

• V iew3: Alice’s view when Bob’s actual se-
cret numbers are used.

Lemma 1 Given their own private data,
Bob and Alice can each simulate the tran-
script of the Basic Protocol or the protocol
is perfectly zero-knowledge 18). This means
that the distribution of the view when they
interact with each other is indistinguishable
from the distribution that can be computed
from the simulation i.e., the following ex-
pression holds:∑

V iew3∈V

|Prob(V iew1 = V iew3)−

Prob(V iew2 = V iew3)| ≤ |x|−c

where |x| is the size of the random input,
c > 0 and V is the set of all values for
V iew3.

Proof. We show how Alice’s view can be sim-
ulated or said to be perfectly zero-knowledge,
but the same proof holds for Bob. We define
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the view of Alice to be everything she sees dur-
ing the execution of the protocol.
To simulate the basic protocol, we have to

perform the following procedure:
• Let Alice have the string RPA in her ran-

dom tape and she picks x′B, y′B, X ′
B, Y ′

B ,
α′B, n′B which is a substring of RPA.

• She also has an extra inputHS which is the
history of previous interactions that Alice
is trying to use to get knowledge from Bob.

• Put the variables xA, yA, XA, YA, αA, nA,
in her private input tape.

We prove Lemma 1 by calculating the follow-
ing probabilities:
( 1 ) Probability of V iew1 = V iew3.
( 2 ) Probability of V iew2 = V iew3.
( 3 ) Comparing the above two probabilities.

If they are equal, then according to
Goldwasser, et al. 14), V iew1 and V iew2
are indistinguishable, i.e., Alice cannot
use Bob’s message to obtain his actual
secret numbers.

The above three steps are also carried out for
the cases when Bob guesses Alice’s secret num-
bers.
Each view of Alice depends on Alice’s random

input RPA and the history HS. We denote
V iew1 as follows:
V iew1 = V iewA(RPA, HS)

Suppose Alice guesses Bob’s chosen numbers
to be x′B , y

′
B, X ′

B, Y
′
B , α′B , n

′
B, then:

V iew2 = V iew′
A(RPA, HS)

Furthermore, Alice’s view when Bob’s actual
chosen numbers are x′′B,y′′B ,X ′′

B,Y ′′
B ,α′′B ,n′′B is de-

noted as:
V iew3 = V iew′′

A(RPA, HS)
According to Goldwasser, et al. 14) we can say

that the value of V iew1 during the simulation
is equal to

(H(N), RPA, HS, F3, F6,WA,WB)
i.e., the concatenation of the seven parameters.
The value of Alice’s V iew2 is equal to:

(H(N), RPA, HS, F3, F
′
6,W

′
A,W

′
B)

Similarly, the value of V iew3 is
(H(N), RPA, HS, F3, F

′′
6 ,W

′′
A,W

′′
B)

We do not include the variable written in
Alice’s private tape, since it would make no dif-
ferenc 14). Let one value of N have at most one
value ofH(N). Since Alice’s private values such
as RPA, HS, xA, yA, XA, YA, nA and αA are
fixed, Alice’s functions which depend on these
values such as F1, F2 and F3 are also fixed. Fur-
thermore, the probability of obtaining a certain
value of Alice’s view depends on the probability

of finding F6, WB and WA.
We now analyze the probability distribution

of F6, WA, H(N), WB as follows:
• Since (F6 ≡ αB(xByB)−nB mod XBYB),

the number of possible values for F6 de-
pends on the number of possible values
of (αB mod XBYB) and ((xByB)−nB

mod XBYB). The number of possible val-
ues for (αB mod XBYB) is (φ(XBYB))
(where (φ(XBYB)) is the Euler Totient
Function of (XBYB)) because (αB and
XBYB) are relatively prime. Furthermore,
since (xByB) and (XBYB) are relatively
prime, the number of possible values for
((xByB)−nBmod XBYB) is (λ(XBYB)− 1)
(where (λ(XBYB) = lcm(φ(XB), φ(YB)))
and is also called the Charmichael Func-
tion 19)). Thus, there are ((λ(XBYB) −
1)(φ(XBYB))) possible values for F6. How-
ever, since ((λ(XBYB) − 1)(φ(XBYB))) is
greater than (XBYB), the number of pos-
sible values for F6 is (XBYB). This hap-
pens because the value of F6 cannot exceed
XBYB . In this case, the probability of ob-
taining the value of (F6 is 1/(XBYB)).

• Recall that (WB ≡ (ShA3 + ShA4 +
F6pBqB) mod XBYB). Since (ShA3 +
ShA4+F6pBqB) can be congruent with any
values less than (XBYB), the number of
possible values forWB is (XBYB). In other
words, the probability for obtaining a cer-
tain value of WB is (1/(XBYB)). Similar
discussion also holds for WA, such that the
probability for obtaining a certain value of
(WA is 1/(XAYA)).

• Suppose the size of N is |N | bits, thus the
probability for obtaining a certain value of
H(N) is (1/2|N|).

Let P (X) denote the probability of X.
From the above discussion, we know or can
determine that the probability of obtaining
a certain value for the view of Alice is
1/[(XBYB)2(XAYA)(2|N|)]. Thus, the prob-
ability of (V iew1 = V iew3) (i.e., the view
of Alice taking the same certain value) is
1/[(XBYB)2(XAYA)(2|N|)], and the following
two equations hold:

P (V iew1 = V iew3)
= 1/[(XBYB)2(XAYA)(2|N|)]

P (V iew2 = V iew3)
= 1/[(XBYB)2(XAYA)(2|N|)]

Thus,
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|P (V iew1 = V iew3)−
P (V iew2 = V iew3) | = 0 (4)

Since the difference between the two proba-
bilities in Eq. (4) is equal to 0, according to
Goldwasser, et al. 14), the view of Alice dur-
ing the simulation is indistinguishable from the
view of Alice when she actually interacts with
Bob. Since these are indistinguishable, the pro-
tocol is said to be perfectly zero-knowledge. A
similar proof also holds true for Bob.
The following lemma informally means that

at the end of the protocol, both parties learn
nothing more than the value of ρ.
Before discussing Lemma 2, we first define:
• V iew4: Alice’s view when she interacts

with Bob.
• V iew5: Alice’s view when she guesses all

of Bob’s secret numbers (during the simu-
lation).

• V iew6: Alice’s view when Bob’s actual se-
cret numbers are used.

Lemma 2 Given N, Alice’s and Bob’s
own private data, Bob and Alice can each
simulate the transcript of the protocol for
Test II or the protocol is perfectly zero-
knowledge. This means that the distribu-
tion of the view when they interact with
each other is indistinguishable from the
distribution that can be computed from
the simulation i.e., the following expression
holds, ∑

V iew6∈V I

|Prob(V iew4 = V iew6)−

Prob(V iew5 = V iew6)| ≤ |x|−c

where |x| is the size of the random input,
c > 0 and V I is the set of the values of
V iew6.

Proof. For simplicity, let (QA1 = (q2A −
qA) mod N), (QA2 = qA mod N), (QA3 =
2qAqB mod N), (QB1 = (q2B − qB) mod N),
(QB2 = qB mod N).
To simulate the Protocol II, we have to per-

form the following procedure:
• Let Alice have the string RTA in her ran-

dom tape and she picks q′B which is a sub-
string of RTA.

• She also has an extra input HST which
is the history of previous interactions that
Alice is trying to use to get knowledge from
Bob.

• Put the variables qA, in her private input
tape.

We prove Lemma 2 in a fashion similar to
Lemma 1:
( 1 ) Calculate the following two probabilities:
( 2 ) Probability of V iew4 = V iew6.
( 3 ) Probability of V iew5 = V iew6.
( 4 ) Compare the above two probabilities.

If they are equal, then according to
Goldwasser, et al. 14), V iew4 and V iew5
are indistinguishable, i.e., Alice cannot
use Bob’s message to obtain his actual
secret numbers.

The view of Alice depends on the input writ-
ten in the random tape RTA and HST . We can
denote V iew4 as follows:
V iew4 = V iewA(RTA, HST )

Suppose Alice guesses that Bob chose q′B, then:
V iew5 = V iew′

A(RTA, HST ) (5)
When Bob’s actual chosen number is q′′B ,

Alice’s view is:
V iew6 = V iew′′

A(RTA, HST ) (6)
According to Goldwasser, et al. 14) we can say

from Fig. 3 that the value of Alice’s view when
she interacts with Bob (V iew4) is:

(RTA, g
QB1 mod N, gQB2 mod N,

gQA3mod N, ρ, HST )

(i.e., the concatenation of the six variables).
Note that (ρ ≡ gq2−q mod N mod N). Simi-
larly, the values of V iew5 and V iew6 are re-
spectively:

(RTA, g
Q′

B1 mod N, gQ
′
B2 mod N,

gQ
′
A3 mod N, ρ, HST )

(RTA, g
Q′′

B1 mod N, gQ
′′
B2 mod N,

gQ
′′
A3 mod N, ρ,HST )

Since we simulate Alice’s view, Alice’s pri-
vate values such as QA1 and QA2 are fixed.
Thus, the probability of obtaining a certain
value of Alice’s view depends on the probabil-
ity of finding (gQA3 mod N), (gQB1 mod N)
and (gQB2 mod N). Since these three func-
tions are modular exponentiation functions and
(gcd(g,N) = 1), the numbers of possible values
for each function are equal and they are equal
to λ(N)−1 (where λ(N) = lcm(φ(p), φ(q))−1).
Hence, the number of possible values for Alice’s
view is ((lcm(φ(p), φ(q))−1)3). Finally, we ob-
tain that the probability for obtaining a cer-
tain value of Alice’s view (for example V iew6)
is (1/(lcm(φ(p), φ(q))− 1)3).
Furthermore, the following two equations

hold:
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P (V iew4 = V iew6) = 1/(lcm(φ(p), φ(q))− 1)3
P (V iew5 = V iew6) = 1/(lcm(φ(p), φ(q))− 1)3
Thus,

|P (V iew4 = V iew6)−
P (V iew5 = V iew6)| = 0 (7)

Since the difference between the two probabil-
ities in Eq. (7) is equal to zero, according to
Goldwasser, et al. 14), the view of Alice dur-
ing the simulation is indistinguishable from the
view of Alice when they interact with each
other. Since these are indistinguishable, Alice
cannot use the values sent from Bob to obtain
the actual qB , i.e., Alice learns nothing about
these values.
A similar proof also holds true for Bob. Thus,

the transcript is perfectly simulatable.
4.2 Finding Factors of N During

Shared Decryption Keys Genera-
tion

Recently, Susilo, et al. 16) proposed a method
(called Miller-Bach algorithm) to find the fac-
tors of a number N which has at least two dis-
tinct prime factors. The factors of N can be
found if one party or both of them know a mul-
tiple of the Euler Totient Function φ(N) and N
itself.
We can say that a protocol is secure against

Miller-Bach Algorithm, if both parties cannot
obtain the multiple of φ(N). This section shows
that our procedure for generating shared de-
cryption keys is secure against the Miller-Bach
algorithm.

Lemma 3 In the protocol for generat-
ing the shared decryption key, each party
does not gain any knowledge concerning
the multiple of φ(N).

Proof. Since Alice and Bob can find the fac-
tors of the modulus number N if both par-
ties know a multiple of φ(N) 16), we first check
whether both parties can obtain a multiple of
φ(N).
According to the inversion algorithm pro-

posed by Boneh-Franklin 1), both parties can
calculate the shared decryption key if they can
calculate ([−(φ(N) mod e)(φ(N)−1 mod e)] +
1) which is a multiple of (φ(N) + 1). To pro-
tect from an attack based on Miller-Bach algo-
rithm, the shared decryption key needs to be
calculated without the parties having to calcu-
late ([−(φ(N) mod e)(φ(N)−1 mod e)] + 1).
As mentioned before, according to Gilboa’s

method, both parties never broadcast or ex-
change their additive and multiplicative shares

directly, but through oblivious transfer. Thus,
since our proposed protocol uses Gilboa’s
method, Alice and Bob can calculate their
shared decryption keys without calculating
([−(φ(N) mod e)(φ(N)−1 mod e)] + 1). In-
stead of exchanging their shared Euler Totient
function (φ(N)A mod e) and (φ(N)B mod e)
each party only sends the other party random
numbers and pairs of numbers which indirectly
include the shared Euler Totient Function (see
Section 3.3) using oblivious transfers. This
means it is not possible for each party to obtain
the other party’s shared Euler Totient Function
and calculate a multiple of φ(N), since the mul-
tiple of φ(N) can be obtained only by calculat-
ing ([−(φ(N) mod e)× (φ(N)−1 mod e)] + 1).

4.3 Obtaining Factors of N Using a
Mathematical Method

This section will discuss how far either Alice
or Bob can obtain the value of the other party’s
secret numbers using a mathematical method.
Suppose Bob intends to obtain the secret

numbers of Alice. He can obtain Alice’s secret
numbers if he can determine F1 and F2 since
F−1

3 F1 mod XAYA = pA mod XAYA

and
F−1

3 F2 mod XAYA = qA mod XAYA

However, since Bob only has the additive
shares of F1qB (ShA1) and F2pB (ShA2) in-
stead of the values of F1 and F2, there is no
possibility for Bob to obtain the values of F1

and F2 although he can find the multiplicative
inverse of F3. Thus, there is no possibility for
Bob to obtain Alice’s secret numbers. Similar
discussion holds true for obtaining Bob’s secret
numbers by Alice.

4.4 Security Requirements
Based on the above discussion, there are a

few conditions that need to be satisfied to keep
the factors of modulus number N secret. These
conditions can be summarized as follows:
• Alice and Bob have to agree on the length

of the modulus number N in advance.
• Either Alice or Bob has to choose the

length of XAYA or XBYB to be a few digits
longer than the length of N .

• Alice has to choose pA and qA such that
the length of pAqA is about the length of
N . The same holds for Bob.

• Either Alice or Bob has to choose αA or αB

which is an odd number.
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5. Discussion

5.1 Primality Test
Among the three subtests in the primality

test, the Base Test and Test I are the same as
the ones used by Boneh and Franklin. They
have already proven the validity of their pri-
mality test. They, however, have noted that
when (N = pq, q = 1 mod p), a valid N will
be rejected. Our Test II makes these Ns valid.
We will next prove the validity of Test II.

Lemma 4 If

g((qA+qB)2−(qA+qB)) mod N mod N

is congruent to (1 mod N) then the number
N is valid (i.e., N is a product of two prime
numbers p and q where q ≡ 1 mod p and
q = qA + qB).

Proof. Suppose N = pq and q ≡ 1 mod p.
Then q = kp+ 1 where k is an integer. Thus:

q2 = q(kp+ 1)
= kpq + q
= kN + q

(q2 − q) = kN (8)

Since q = qA + qB, Eq. (8) will be as follows:

(qA + qB)2 − (qA + qB) = kN
≡ 0 mod N (9)

This means that g((qA+qB)2−(qA+qB))modN mod
N or ρ (see Eq. (1)) is congruent to (g0 mod N)
or (1 mod N)
Thus, the Base Test, Test I and Test II have

been shown to be valid, and we conclude that
only valid Ns will remain after the execution of
the Primality Test.

5.2 Comparison with Other Protocols
Protocols have been proposed for jointly gen-

erating RSA parameters, such as those pro-
posed by Boneh-Franklin 1), Cocks 2), Poupard-
Stern 12) and Gilboa 15). Our protocol is an im-
provement over all four protocols.
First, Boneh-Franklin’s protocol needs a

third party to help both parties calculate the
modulus number N . As shown in Section 2,
none of the steps in our protocol needs the help
of a third party. As for correctness ofN , assum-
ing that both parties are honest and correctly
carries out our protocol, Appendix shows that
N (= pq) can be correctly generated, and Sec-
tion 5.1 shows that the primality test will cor-
rectly filter out any invalidN that has been gen-
erated. Thus, both parties can obtain the cor-
rect value of N without the help a third party.

Second, Cocks’ protocol requires the decryp-
tion of “3K” messages to calculate the modu-
lus number N . This means that both parties
have to perform 3K modular exponentiations.
Suppose the size of N is 1024 bits. Then ac-
cording to Cocks 2), K will be 433 (where (3K)!

(K!)3

must exceed N2), i.e., both parties will need to
perform 1299 modular exponentiations, while
our proposed protocol needs only 9 modular ex-
ponentiations. Thus our protocol can reduce
the time to generate the modulus number by
9/1299. Since our protocol does not depend on
the size of N , this reduction will become larger
as the size of N becomes larger.
Third, our protocol needs less modular ex-

ponentiations compared with Poupard-Stern’s
and Gilboa’s. Since Poupard and Stern 12) use
the ANDOS protocol 13), where for generating
modulus numberN each party needs to perform
at least t modular exponentiations (where t is
the size of each party’s secret numbers pAorB

and qAorB). Suppose the size of pAorB and
qAorB is |N |/2 (where |N | is the size of N), then
each party needs to perform |N |/2 modular ex-
ponentiations. If the size of N is about 300 bits,
then it means that each party has to perform
150 modular exponentiations. Gilboa’s method
needs about (h+ 3− h′/2) modular exponenti-
ations (where h and h′ can be obtained from a
table in Gilboa 15)) for generating one modulus
number N . According to this table, for a 1024-
bits N , h = 133 and h′ = 76. This means that
for generating 1024 bits of N Gilboa’s method
needs 98 modular exponentiations.
Thus, using our proposed protocol each party

indeed needs less modular exponentiations than
both Poupard-Stern’s and Gilboa’s.

6. Conclusion

We have proposed a protocol for jointly gen-
erating parameters in RSA encryption. Our
protocol does not need the help of a third party,
and it needs less time to generate the modulus
number compared to previous protocols.
Future work includes a protocol for generat-

ing RSA parameters among more than two par-
ties and security against malicious party.
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Appendix: Calculation of N

This appendix shows why the N calculated
by Alice using the Basic Protocol is correct, i.e.,
N = pq. We first review the messages sent by
each party in the Basic Protocol:

In the first message Alice sends:
F3 = (αA)(pA)−nA(qA)−nAmod XAYA

Then, Alice and Bob execute Gilboa’s method
for converting their multiplicative shares (F1

and qB) into additive shares (ShA1 and ShB1),
such that:
ShA1 + ShB1 ≡ F1qB mod XAYA

At this point Alice holds ShA1 and Bob holds
ShB1.
Using the similar method, they convert their

multiplicative inverse F2 and qB into their ad-
ditive shares ShA2 and ShB2.
After executing Gilboa’s method for con-

verting their multiplicative shares into additive
shares, Bob calculates:
WA = (F3pBqB + ShB1 + ShB2) mod XAYA

= (αA)((pA)−nA(qA)−nA(pBqB mod XAYA

+ ShB1 + ShB2) mod XAYA

After receiving the second message, Alice cal-
culates N as follows:
N = [(WA +ShA1 +ShA2) mod XAYA][(pA)nA

(qA)nA(α)−1] + (pAqA) mod XAYA

= [(F3pBqB + ShB1 + ShB2 + ShA1 + ShA2)
modXAYA][((pA)nA(qA)nA)(αA)−1modXAYA]
+ pAqA mod XAYA

= [(F1qB + F2pB + F3pBqB) mod XAYA]
[((pA)nA(qA)nA)(αA)−1 mod XAYA] + pAqA
mod XAYA

= [αA(pA)1−nA(qA)−nAqB mod XAYA + αA

(pA)−nA(qA)1−nApB mod XAYA + αA (pA)−nA

(qA)−nApBqB mod XAYA][(pA)nA

(qA)nA(αA)−1mod XAYA]+(pAqA) mod XAYA

= [pAqB + pBqA + pBqB ] mod XAYA +
[(pAqA) mod XAYA]
= (pAqB + pBqA + pBqB + pAqA) mod XAYA

As described in Sectiion 2.2, Alice has to
choose (XAYA) to be a few digits greater than
the size of N , which means that N should
be the residue of ([pAqB + qApB + pBqB +
pAqA] mod XAYA). From the residue of the
above equation Alice may obtain: N = [pAqB+
qApB+pBqB+pAqA] orN = (pA+pB)(qA+qB).
This method can also be applied for calculating
N by Bob.
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