TP 236441 CPIR 4 AT 2 EA S

4—129

Implementation and Performance Evaluation of WAKASHI

2H—2

Guangyi Bai, Akifumi Makinouchi

Faculty of Engineering, Kyushu University

1 Introduction

We are now working for a project named ”Shusse-Uo (H}
#:4)” [Makinouchi 91} [Makinouchi 92] which is to develop
a system for the object-oriented and database (or persis-
tent) programming. The system is enhanced step. by step
by adding new functionality. The WAKASHI is the most
lean system, which provides C programmers with the most
primitive facilities to deal with distributed shared persistent
data.

WAKASHI is constructed on Mach Operating System us-
ing the virtual-memory-based approach. This approach is to
support persistent data in virtual memory by binding files
into virtual address space.

Through previous work on pexsistent heap [Bai 91} and
virtual-memory-based database [Bai 92], we have imple-
mented and evaluated a shared persistent heap on one site
and we came to the conclusion that virtual-memory-based
approach is adaptable to advanced data applications in new
computing environments such as distributed and parallel
computing systems. :

In this paper, we describe an implementation of the dis-
tributed shared persistent heap of WAKASHI using the
Mach Operating System, and present a performance eval-
wation of the persistent heap.

2 Implementation of WAKASHI using
the Mach OS

Mach Operating System provides EMMI (External Mem-
ory Management Interface) that allows users to define and
manage the content of memory object that may be mapped
into virtual address. Exporting this interface to the user pro-
graws simplifies the construction of complex virtual memory
applications and allows them to control sharing, consistency,
and secondary storage of their data without being embedded
in the operating system kernel.

Task:'s V§

I

Yask[s VS

| HEE

Nodeo

Task's VS
(zeu]
TS
R
Nodei

Nodea
Figure 1: Distributed Shared Persistent Heap

WAKASHI xR RUETIHE
B k- $HZA BEX
FURERE T8

We extended the Mach EMMI to implement a centralized
WAKASHI Server (i.e., an external pager) to support the
distributed shared persistent heap object that is a abstrac-
tion of distributed shared secondary storage.

As Figure 1 shows, the WAKASHI Server provides an dis-
tributed shared persistent heap object to clients on different
machines. Any number of clients may map the distributed
shared persistent heap object into their own virtual address
space to create a distributed shared persistent heap area.

Since, in the virtual-memory-based approach, a persistent
heap area is virtual address space, we may extend the dis-
tributed shared virtual memory techniques to implement the
distributed shared persistent heap. In a typical implementa-
tion of distributed shared virtual memory, a memory map-
ping routine in each processor maps the local memory onto
the shared virtual address space. Memory pages are paged
not only between a local physical memory and the local pag-
ing area om secondary storage, but also between physical
memories of different processors. Our implementation of the
distributed shared persistent heap is based on the distributed
shared virtual memory. The key idea is to replace the local
paging area on secondary storage by a user-specified file.

AN Persistent AN
— Heap Manager A4
Distributed Shared
Memory Manager
Clients Request Handler]

Figure 2: WAKASHI Server Structure

As Figure 2 shows, the WAKASHI Server is composed of:

The Client Request Handler ; This is the WAKASHI
Server’s interface (i.e. the extended EMMI) to clients
on the same machine or different machines. The clients
use this interface to ask either Persistent Heap Man-
ager or Distributed Shared Memory Manager to create
or destroy one or more than one distributed shared per-
sistent heap object, and control WAKASHI Server to
avoid unnecessary page-in and page-out. The interface
also handles all page accesses by the clients.

The Persistent Heap Manager ; This supports persis-
tence of data on the same machine. It implements pag-
ing between the physical memory and the files on the
same machine.

The Distributed Shared Memory Manager ; This
implements paging between remote physical memories
to guarantees data coherence on the same machine or
different machines. The Distributed Shared Memory
Manager uses a fairly simple page scheduling policy to
ensure that progress is made when more the one request
is outstanding for a given persistent page. The un-
derlying processor scheduling and network delays limit

4—130

the rate at which pages can be reclaimed and these
limitations effectively eliminate-thrashing. The Dis-
tributed Shared Memory Manager also handles multiple
page sizes and different data representations in order to
support sharing in heterogeneous distributed systems.

- To support multiple page sizes, the Distributed Shared
Memory Manager may provide data or make lock re-
quests in large units than the kernel’s page. To support
different data formats, it allows its clients to associate
data types with its persistent heap objects.

3 Performance Evaluation

To see if the WAKASHI Server can serve as the storage
manager with reasonable performance for both the remote
RDBMSs and the remote OODBMSs, we developed sim-
ple simulation programs in C that simulats the Wisconsin
Benchmark and the Engineering Database Benchmark. The
programs run under Mach 2.5 on a OMRON LUNA-88K
workstation. The machine has 3 M88100CPU (25Mhz) pro-
cessors and 32 Mbytes physical memory. The measurement
was performed in a-single-user environment. To simplify the
simulation programs, a persistent pointer of data contains
offset address of the data location in the file. Therefor, trans-
formation from a persistent pointer to a volatile pointer is
simpler than the one that would be needed to implement
rcal DBMSs. However, we think that CPU time increase
which would be expected when using table look-up might be
negligible. (We plan another simulation for this, though.)
As a by-product of this simulation, we found that program-
ming dealing with persistent data, called ”persistent pro-
gramming”, is much easier than expected.

Wisconsin Benchmark : We created a remote relation
file and an index file for the Wisconsin Benchmark
test. The remote relation file contains a relational table
whose tuple length is 208 bytes. In the measurement,
tuples increase from 10000 up to 200000. The index
file is for indexing the table. - The index is a binary
tree whose nodes points to tuples of the table. Using
the binary tree instead of the B-tree simplifies the pro-
gramming.

We measured the following two operations:

(1) Selection with 10% selectivity factor without index.
(2) Selection with 10% selectivity factor with index.
Figure 3 shows the execution time of the first opera-
tion. As the Figure 3 shows, in the ”Cold” cases, every
page in the file are paged-in once and only once during
the operation. In the »Warm” cases, for a database
enough small to be cached on the physical memory,
the performance is as good as the one of the Main-
Memory Database. When it becomes large, some pages
are paged-out. Hence, after that point, the performance
is similar to the Cold cases.

The second operation requires small work space, so the
performance is much better than the first operation.

Engineering Database Benchmark A remote database
of ”parts” with unique part-id is created. The part-id
is actually represented by byte offset in the file. A part
connects itself to three other parts. The size of a part

is 28 bytes. We measured the following two operations:
(1) Lookup: Looking up objects.

(2) Traversal: Following connections between objects
The program maps the remote ” parts” database file into
its own virtual address space. The in-memory parts in
the persistent heap area have the same format as in-disk
parts stored in the file. A part is pointed by part-id.
The part-id is the byte offset of the part in the file.
When a part is accessed by the program, it must be ac-
cessed using its virtual address. Transformation from
the part-id to its virtual address in the persistent heap
area is done by adding its byte offset to starting address
of the persistent heap area.

v ¥
:' Colad
©»
1004 .
Warm
¢ 1

2
Number of Tuples [x10')

Figure 3: Selection without index

4 Conclusions and Future Works

WAKASHI gives the C programmers the uniform address
space to handle distributed persistent data as well as volatile
data. The centralized WAKASHI Server is constructed on
the Mach Operating System using virtual-memory-based ap-
proach. The WAKASHI Server is designed for use in dis-
tributed database system designer or other data intensive ap-
plications that perform complex and high-performance ma-
nipulation of distributed persistent data.

Such a centralized solution has several drawbacks. The
server may become a bottleneck and proximity of a client to
the sexver may affect its performance. In addition, the server
host performs an unfair amount of computation, possibly de-
grading other tasks on that host, and so on. Therefor, we
are now designing a distributed WAKASHI Server that can
allocate any number of servers on any number machines is
more usable.

References

[Makinouchi 91] Akifumi Makinouchi and Masayoshi Arit-
sugi, >The Object-Oriented Persistent Programming Lan-
guages for Multimedia Databases”, Technical Report
CSCE-91-C04, March 1991.

[Makinouchi 92] Akifumi Makinouchi, ”Shusse-Uo Project”,
Proc. of 44th IPSJ conf, 2H-1, 1992.

[Bai 91] Guangyi Bai, Masayoshi Aritsugi, and Akifumi Maki-
nouchi, ” Implementation of the Persistent Heap”, Proc.
of 43th IPSJ conf, 11-7, 1991 [in Japanese].

[Bai 92] Guangyi Bai, and Akifumi Makinouchi, ”Implemen-
tation and Evaluation of a New Approach to Storage
Management for Persistent Data - Towards Virtual-Memory
Databases - ”, Second Far-East Workshop on Future
Database, Kyoto Japan, 1992.

