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Group Protocol for Exchanging Multimedia Objects in a Group

Kenichi Shimamura,† Katsuya Tanaka† and Makoto Takizawa†

In distributed applications such as teleconferences and teleclassrooms, a group of multiple
processes cooperate, and messages exchanged among the objects are required to be causally
delivered. In addition, the processes exchange kinds of multimedia data. Multimedia messages
are longer than traditional messages and are structured. In this paper, we discuss new types
of causal precedence relations among multimedia messages. We also discuss how to exchange
multimedia messages in a group of multiple processes, and evaluate the protocol.

1. Introduction

In distributed applications, a group of multi-
ple processes cooperate. Various kinds of group
protocols 3),15) have been discussed in the liter-
ature. In group communication, a group is first
established among multiple processes and then
messages sent by the processes are causally or
totally delivered to the destination processes in
the group 3),8). A message m1 causally precedes
another message m2 if the sending event of m1

happens before (≺) the sending event of m2
6).

In totally ordered delivery, even messages that
one not causally preceded are delivered to ev-
ery common destination of the messages in the
same order. In the protocols, messages trans-
mitted at the network level are ordered inde-
pendently of the information that applications
include in the messages.
In distributed applications, not only tradi-

tional text data but also various kinds of mul-
timedia objects such as images and video se-
quences are exchanged among the processes in
the group. Multimedia objects are larger and
more complex and structured than the tra-
ditional data messages exchanged among the
processes. Several papers 1),2),18) discuss ∆-
causality, where ∆ is the maximum delay time
in the system. Tachikawa, et al. 16) define the
∆-ε causality among messages, where ∆st is the
maximum delay time which the application can
take and εst is the maximum ratio of messages
to be lost between every pair of processes ps and
pt. They discuss how to retransmit messages so
as to satisfy constraints such as ∆ and ε even
if some destination process fails to receive the
messages.
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The object o is decomposed into a sequence of
messages. A message is a unit of data transmit-
ted in the network. If a pair of objects o1 and o2

are transmitted by processes p1 and p2, respec-
tively, the messages of o1 and o2 are causally
delivered in every common destination process
p3 of o1 and o2 according to traditional group
protocols 3). In an application, the messages of
o1 can be delivered independently of o2, and o1

and o2 are manipulated independently. In an-
other application, the top message of o1 is re-
quired to be delivered before the top message of
o2, while the other messages can be delivered in
any order. Thus, we define new types of prece-
dence relations of messages based on the object
concept. According to the precedence relations,
the destination process delivers messages of ob-
jects to the application. A pair of messages that
are not ordered in the precedence relations can
be delivered in any order. We discuss a protocol
that supports the various types of causal prece-
dence relations, named the multimedia causally
ordered (MCO) protocol.
In Section 2, we present a system model. In

Section 3, types of causal precedence relations
among multimedia objects are discussed. In
Section 4, we present the MCO protocol for ex-
changing multimedia objects in a group of pro-
cesses. In Section 5, we evaluate of the MCO
protocol.

2. System Model

Distributed applications are realized by the
cooperation of a group of application processes
A1, . . . , An (n ≥ 1), which are interconnected
in a reliable synchronous network. Application
processes exchange messages including multi-
media data with the other processes in the
group by using the network. A unit of data ex-
changed among the processes is referred to as
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Fig. 1 Hierarchical structure of the system.

a message object, which use will fefer to simply
as an object.
An application process At is supported by a

system process pt (t = 1, . . . , n) as shown in
Fig. 1. A system process ps takes an object
from the application process As and then deliv-
ers the object to the system processes support-
ing the destination application processes by us-
ing the basic communication service supported
by the network. In the remainder of the pa-
per, we will use the term process to denote
a system process. A data unit exchanged by
the processes in the network is referred to as
a message. In our system, we assume that the
network supports processes with synchronous
communication. That is, messages are not lost
and the delay time between a pair of processes
is bounded in the network. An object is de-
composed into a sequence of messages and the
messages are delivered to the destination pro-
cesses. The destination process pt assembles
the messages received into an object and then
delivers the object to the application process
At. The cooperation of the processes support-
ing the group of the application processes is co-
ordinated by a group protocol which supports
the reliable, efficient communication service of
multimedia objects by making use of the net-
work service.
Multimedia objects are exchanged by the ap-

plication processes. Suppose an object o is com-
posed of three objects o1, o2, and o3, which
are referred to as component objects of o. The
object oi is also referred to as a part of o
(i = 1, 2, 3). The object o2 is further composed
of objects o21 and o22. Messages carrying the
object o finally include the lowest-level objects,
i.e., leaf objects o1, o21, o22, and o3. The hi-
erarchy of the objects in the part-of relation is
referred to as an object tree. Parent, child, de-
scendant, ancestor, root, and leaf in the object
tree are defined according to the convention of
the tree structure. Here, suppose the object

Scene

Background Car Tree Road

part-of

Fig. 2 Scene object.

o1 is required to be displayed before o2, and
that o2 is required to be displayed before o3.
Suppose o21 and o22 can be displayed in any
order. The leaf objects o1, o21, o22, and o3 are
ordered. The object o can be serialized into a
sequence of leaf objects 〈o1, o21, o22, o3〉 or 〈o1,
o22, o21, o3〉. The process takes the object o,
say the sequence 〈o1, o21, o22, o3〉, and decom-
poses it into messages to be transmitted in the
networks. We assume that each object is real-
ized by a sequence of one or more messages and
that each message includes data from at most
one object.
A multimedia object is carried by messages,

as explained in the preceding section. A mul-
timedia object is furthermore composed of ob-
jects. Thus, the multimedia objects are hierar-
chically structured as shown in Fig. 2. For ex-
ample, let us consider a scene of a video where
a car is moving along a road and trees are seen
from the car, as shown in Fig. 2. The scene
object is composed of four component objects:
car, road, tree, and background. In displaying
the scene object in an application, the road,
tree, and background objects are required to
be displayed before the car object is displayed.
Thus, the car object is preceded by the other
objects.

3. Causality of Multimedia Objects

3.1 Traditional Messages
The happen-before relation (≺) among events

occurring in a distributed system is defined
by Lamport 6). The causal precedence relation
among messages is defined as follows 6):
• A message m1 causally precedes another

message m2 iff a sending event of m1 hap-
pens before (≺) a sending event of m2.

Figure 3 shows three processes ps, pt, and
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Fig. 3 Causal precedence of messages.

pu exchanging messages. Process ps sends a
message m1 to pt and pu. Process pt sends a
message m2 to pu after receiving m1. Since the
sending event of m1 happens before the sending
event of m2, m1 causally precedes m2. Process
pu has to receive m1 before m2. In order to
causally order the messages, the vector clock 8)

is widely used in group protocols 3). Suppose
that there are n (>1) processes p1, . . . , pn in a
group G. Each process pt manipulates a vector
clock V = 〈V1, . . . , Vn〉, where each element Vv

is initially 0 for v = 1, . . . , n. When pt sends a
messagem, Vt := Vt+1 andm carries the vector
clock m.V (= V ). On receipt of a message m,
Vu := max(Vu, m.Vu) for u = 1, . . . , n. For
a pair of vectors A = 〈A1, . . . , An〉 and B =
〈B1, . . . , Bn〉, A < B iff Ai ≤ Bi for every i and
Aj < Bj for every j. A message m1 causally
precedes another message m2 iff m1.V < m2.V .
The process pu deliversm1 beforem2 ifm1.V <
m2.V .

3.2 Multimedia Objects
Suppose a group G is composed of of pro-

cesses p1, . . . , pn (n > 1). Suppose that a pro-
cess ps sends an object o to another process pt.
Since a multimedia object is larger than a tra-
ditional message, it takes longer to send and
receive the multimedia object. In order to in-
crease the throughput and reduce the response
time, the sending and receiving events of ob-
jects are interleaved if there is no precedent re-
lation among the objects. That is, a process
may send and receive messages of an object
while the process is sending and receiving other
objects.

Figure 4 shows three processes ps, pt, and
pu exchanging objects o1 and o2. In Fig. 4 (3),
the process pt starts to send messages of an ob-
ject o2 after receiving all the messages of an-
other object o1. According to the traditional
causality theory 8), o1 causally precedes o2. In
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Fig. 4 Types of precedence of objects.

Fig. 4 (1), pt starts to send a message of the
object o2 before receiving all the messages of
o1. Here, o1 does not causally precede o2. In
Fig. 4 (2), pt sends o2 while receiving o1. On
the other hand, pt sends o2 after receiving all
the messages of o1. Here, o1 does not causally
precede o2 either.
[Example 1] Let us consider an example of a
teleconference where the participants are dis-
tributed among three remote sites Ss, St, and
Su. The teleconference is realized by a group
of three processes ps, pt, and pu, which sup-
port the sites Ss, St, and Su, respectively, in
Fig. 4. Each process performs the communica-
tion functions for each site. Participants in the
conference share a virtual conference space C
composed of three subspaces Cs, Ct, and Cu,
each of which shows the participants attending
at sites Ss, St, and Su, respectively. The vir-
tual space C is displayed at each site. Each site
Si distributes its subspace object Ci, which in-
cludes an image of the site, the voices of partic-
ipants, and manuscripts to be handed out to all
the processes in the group (i = s, t, u). Suppose
that some participant supported by the process
ps expresses some opinion which is represented
by a voice and image object o1. The process ps

distributes messages of the object o1. After lis-
tening to the participant from ps, a participant
in pt expresses a counter-opinion to o1, which
is carried by a multimedia object o2. Here, the
process pu receives messages of the objects o1

and o2. The process pt starts to send o2 after
receiving all the messages of o1. Hence, pu has
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to receive o2 after o1, as shown in Fig. 4 (3).
Next, suppose that some participant sup-

ported by the process ps is expressing an opin-
ion that is represented by an object o1. While
listening to the participant from ps, a partici-
pant in pt is leaving the conference. An image
object o2 showing his leaving the conference is
distributed to the group. The process pu has to
start to deliver o2 after starting to deliver o1,
as shown in Fig. 4 (1).
Suppose that the process ps sends a music

object o1 which indicates that the conference
place will be closed soon. The music stops only
after every participant has left the conference.
The process pt sends an object showing the par-
ticipants. Hence, pu has to deliver o2 before
finishing delivering o1, as shown in Fig. 4 (2). ✷

Following this example, the objects o1 and o2

are interrelated with respect to when the trans-
mission of the messages is started in Fig. 4. We
discuss how a pair of objects o1 and o2 can be
causally preceded. Let sst(o) and est(o) denote
events where in pt starts to send an object o and
finishes sending o, respectively. Let srt(o) and
ert(o) denote events where in pt starts and fin-
ishes receiving the object o, respectively. A pair
of starting event sst(o) and ending event est(o)
for sending a traditional object o occur simul-
taneously, and a pair of receipt events srt(o)
and ert(o) also occur simultaneously in a pro-
cess. However, these events cannot be assumed
to occur simultaneously in the communication
of the multimedia objects.
[Definition] The following types of precedent
relations are defined for a pair of objects o1 and
o2 sent by processes ps and pt, respectively:
• o1 top-precedes o2 (o1 ⇀ o2) iff

� srt(o1) happens before (≺) sst(o2) if
ps �= pt.

� sss(o1) ≺ sst(o2) if ps = pt.
• o1 tail-precedes o2 (o1 ⇁ o2) iff

� ert(o1) ≺ est(o2) and sss(o1) ≺ ess(o2)
if ps �= pt.

� ess(o1) ≺ sst(o2) if ps = pt.
• o1 fully precedes o2 (o1 ⇒ o2) iff

� ers(o1) ≺ sst(o2) if ps �= pt.
� ess(o1) ≺ sst(o2) if ps = pt. ✷

In Fig. 4, o1 ⇀ o2 in (1), o1 ⇁ o2 in (2),
and o1 ⇒ o2 in (3). The process pu is required
to deliver the messages of objects o1 and o2 so
that the causalities defined here are preserved.
An object o1 is interleaved with another object
o2 iff sst(o2) happens before ert(o1) and srt(o1)
happens before sst(o2) in a source process pt of

o2. Here, the process pt is receiving messages
of the object o1 and sending messages of o2 in
an interleaved manner.
• o1 partially precedes o2 (o1 → o2) iff o1 ⇀

o2, o1 ⇁ o2, and o1 is interleaved with o2

(Fig. 4 (4)).
The top, tail, fully, and partially precedent

relations are referred to as object-causally prece-
dent relations.
The following properties hold for the types of

the object causally precedent relations:
[Properties] The following relations on the ob-
jects o1, o2, and o3 hold:
• o1 ⇒ o3 if o1 ⇒ o2 and o2 ⇒ o3.
• o1 ⇀ o3 if o1 ⇀ o2 and o2 ⇀ o3.
• o1 ⇁ o3 if o1 ⇁ o2 and o2 ⇁ o3.
• o1 ⇒ o3 if o1 ⇒ o2 and o2 ⇀ o3.
• o1 ⇒ o3 if o1 ⇁ o2 and o2 ⇒ o3.
• o1 ⇀ o2 and o1 ⇁ o2 if o1 ⇒ o2.
• o1 ⇒ o2 if o1 → o2.
• o1 ⇀ o2 and o1 ⇁ o2 if o1 → o2. ✷

The precedent relations ⇒, ⇀, and ⇁ are
transitive according to the definitions. Discus-
sion is still continuing on whether or not the
partial precedent relation → is transitive. Sup-
pose that there are four processes ps, pt, pu, and
pv (Fig. 5). Suppose that the process ps sends
an object o1 to pt, pu, and pv, the process pt

sends o2 to pv while receiving o1, and the pro-
cess pu sends o3 to pv while receiving o2. Here,
suppose that o1 partially precedes o2 (o1 → o2)
and o2 → o3. The process pv receives o1 and
o2 in an interleaved manner and also receives
o2 and o3 in an interleaved manner. The prob-
lem is how the process pv receives the objects
o1 and o3. If o1 → o3, pv is required to receive
o1 and o3 in an interleaved manner. Otherwise,
pv can receive o3 after o1. Let us consider a
virtual conference including four remote sites
supported by four processes ps, pt, pu, and pv,
as shown in Fig. 5. Suppose a participant of ps

is giving a presentation to all the participants in
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Fig. 5 Partially precedent relation of objects.
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the conference. The presentation is realized by
a multimedia object o1 including voice, image,
and pictures. Here, suppose some participant of
pt leaves the conference and information on his
leaving is carried by an object o2. A participant
of pu, who finds out that the participant of pt

has left the conference, expresses some opinion
about his leaving to the chair of the conference
of pv. This proposal is carried by an object o3.
The chair of pv is required to start to receive the
object o3 while receiving the object o1. In this
example, o1 → o3, since o1 → o2 and o2 → o3;
i.e., → is transitive. Thus, it depends on the
applications whether or not the partially prece-
dent relation → is transitive.

4. MCO Protocol

We present a multimedia causally ordered
(MCO) protocol for supporting the object
causally ordered delivery of multimedia objects
for a group G which composed of multiple pro-
cesses p1, . . . , pn (n > 1).

4.1 Basic protocol
First, we discuss a basic protocol whereby

each process sends an object at a time. An
object o is decomposed into a sequence of mes-
sages. The first message in the sequence is re-
ferred to as the top message of the object o.
Messages are preceded in the object causally
precedent relations ⇀, ⇁, →, and ⇒ by us-
ing the vector clock V = 〈V1, . . . , Vn〉 with the
bitmap f = [f1, . . . , fn]. Each bit ft shows
whether or not a process pt is sending an object.
The vector clock V is manipulated in the same
way in Mattern 8). Each two elements Vt and
ft are defined for a process pt; initially, Vt = 0
and ft = 1 for t = 1, . . . , n.
Suppose that a process pt sends an object o.

The variables V and f are manipulated in pt as
follows:
• Vt := Vt + 1;
• ft := 0.

Only the top message m of the object o carries
the vector V and f as m.V and the bitmap
m.f , respectively, to the destination processes
in the group G. The messages of the object o
do not carry V and f in order to reduce the
communication overhead. Vt is incremented by
1 each time pt starts to send an object. “ft = 0”
means that the process pt is now sending an
object. “ft = 1” shows that pt is not sending
any object.
When it has finished sending the object o, the

process pt manipulates the variables as follows:

• ft := 1 :
The last message m of the object o carries m.ft

(=1) to the destinations.
Next, suppose that a process pt receives a

message m of an object o from another process
ps. pt manipulates the vector clock V and the
bitmap f as follows:
• Vs := max (Vs, m.Vs)

(for s = 1, . . . , n, s �= t);
• fs := 0.
If the process pt receives the whole object o

from ps, i.e. the last message m of the object o,
pt changes the bitmap f as follows:
• ft := 1;
Let o.sf and o.ef show the bitmaps f which

are carried by the top message and the last mes-
sage of the object o, respectively. o.f is used to
show the current value of the bitmap f of the
object o. o.sfs = 1 and o.efs = 0 before the ob-
ject o is transmitted by a process ps. Let o.SV
and o.EV show the vectors carried by the top
and last messages of the object o, respectively.
By using the vector clock V and the bitmap f ,
a process pu orders the messages according to
the following theorem.
[Theorem] Suppose that a process ps sends an
object o1 and another process pt sends an object
o2 to the other processes.
• o1 ⇒ o2 if o1.SVv ≤ o2.SVv (v = 1, . . . , n,

v �= s), o1.SVs = o2.SVs, and o2.sfs = 1
• o1 ⇀ o2 if o1.SVv ≤ o2.SVv (v = 1, . . . , n,

v �= s) and o1.SVs = o2.SVs.
• o1 ⇁ o2 if o1.EVv ≤ o2.EVv (v = 1, . . . , n,

v �= s) and o2.efs = 1.
• o1 → o2 if o1.SVv ≤ o2.SVv (v = 1, . . . , n,

v �= s), o1.SVs = o2.SVs, and o2.sfs = 0.
　　 ✷

[Example 2] Figure 6 shows an example in
which three processes ps, pt, and pu send and
receive objects. Here, 〈. . .〉 and [. . .] show
the vector clock and the bitmap, respectively.

p p ps t u

<1,0,0>[011]

<1,0,0>[111]

<1,0,0>[011]
<1,1,0>[001]

<1,1,0>[101]
<1,1,0>[111]

<1,1,0>[101]

<1,1,0>[111]
<1,1,1>[110]
<1,1,1>[111]<1,1,1>[110]

<1,1,1>[111]

<0,0,0>[111] <0,0,0>[111] <0,0,0>[111]

o

o

o

1

2

3 time

Fig. 6 Transmission of multimedia objects.



202 IPSJ Journal Feb. 2001

First, ps starts sending an object o1 to pt and
pu, where o1.SV = 〈1, 0, 0〉 and o1.sf = [0 1 1].
Since ps is sending messages of the object o1

to pt and pu, o1.ft = o1.fu = 1. Process ps

sends o2.ef = [1 1 1] if ps finishes transmit-
ting the object o1. Process pt starts sending
an object o2 to pu before receiving all messages
of o1; i.e., o1 ⇀ o2. Here, o2.SV = 〈1, 1, 0〉
and o2.sf = [0 0 1]. Process pu sends an ob-
ject o3 after receiving o2; i.e., o2 ⇒ o3. Here,
o2.SV = 〈1, 1, 1〉 and o2.sf = [1 1 0]. ✷

In Example 2, o1 ⇒ o3, since o1 ⇀ o2 and
o2 ⇒ o3. Thus, this protocol can causally or-
der o1 and o2 if o1 is directly causally preceded
by o2. Even if o2 transitively precedes o1, the
protocol cannot order o1 and o2.

4.2 Modified protocol
Next, we discuss a modified protocol whereby

each process can send multiple objects at a
time and objects can be transitively preceded.
Two vectors of variables V = 〈V1, . . . , Vn〉 and
A = 〈A1, . . . , An〉 instead of bitmaps are ma-
nipulated in a process. V is the vector clock.
A is used to precede objects. Each pair of ele-
ments Vt and At are used for a process pt. Each
element At takes a integer value, not bit. Let
o.SA denote the value of A when the transmis-
sion of an object o is started, and let o.EA show
the value of A when the transmission of the ob-
ject o.
Initially, V = 〈0, . . . , 0〉 and A = 〈0, . . . , 0〉.

V and A are manipulated in a process pt as
follows each time pt sends an object o:
• Vt := Vt + 1;
• At := At + 1.
The variable A is also incremented by 1 when

pt finishes sending the object o.
• At := At + 1;

However, Vt is not changed.
On receiving the top message of an object o

from a process ps, the process pt manipulates
the variables V and A as follows:
• Vs := max(Vs, o.SVs)

(s = 1, . . . , n, �= t);
• As := max(As, o.SAs)

(s = 1, . . . , n, �= t).
The following theorem holds from the defini-

tions.
[Theorem] Suppose that a process ps sends an
object o1 and another process pt sends an object
o2 to the other processes.
• o1 ⇒ o2 iff o1.EAv ≤ o2.SAv

(v = 1, . . . , n, v �= s).
• o1 ⇀ o2 iff o1.SVv ≤ o2.SVv

p p ps t u

<1,0,0>[1,0,0]

<1,0,0>[2,0,0]

<1,0,0>[1,0,0]

<1,1,0>[1,1,0]

<1,1,0>[2,1,0]

<1,1,0>[2,2,0]

<1,1,0>[1,1,0]

<1,1,1>[2,2,1]
<1,1,1>[1,1,1]

<1,1,1>[2,2,2]<1,1,1>[2,2,1]

<1,1,1>[2,2,2]

<0,0,0>[0,0,0] <0,0,0>[0,0,0] <0,0,0>[0,0,0]

time

o

o

o
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2
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Fig. 7 Modified protocol.
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<0,0,0>[0,0,0] <0,0,0>[0,0,0]
<1,0,0>[1,0,0]

<2,0,0>[2,0,0]
<1,0,0>[3,0,0]

<2,0,0>[4,0,0]

1

2

s t

<1,0,0>[1,0,0]

<2,0,0>[2,0,0]

<2,0,0>[3,0,0]

<2,0,0>[4,0,0]

Fig. 8 Interleaving objects.

(v = 1, . . . , n, v �= s).
• o1 ⇁ o2 iff o1.EAv ≤ o2.EAv

(v = 1, . . . , n, v �= s).
• o1 → o2 iff o1.EAv ≥ o2.SAv,

o1.EAv < o2.EAv, and o1.SVv ≤ o2.SVv

(v = 1, . . . , n, v �= s). ✷

The objects received are ordered by using the
vectors V and A according to the rules on the
vectors presented in the theorem.
[Example 3] Figure 7 shows three processes
ps, pt, and pu which are exchanging objects
o1, o2, and o3. First, ps starts to send o1

to pt and pu. Here, o1.SV = 〈1, 0, 0〉 and
o1.SA = [1, 0, 0]. The process pt starts send-
ing o2 while pt is receiving the object o1 from
ps, i.e. o1 ⇀ o2. Here, o2.SV = 〈1, 1, 0〉 and
o2.SA = [1, 1, 0]. o1.SV < o2.SV . Then, the
process pu starts to send an object o3 while re-
ceiving the object o2. Here, o3.SV = 〈1, 1, 1〉
and o3.SA = [1, 1, 1]. Since o1.SV < o3.SV ,
o1 ⇀ o3. ✷

[Example 4] In Fig. 8, a process ps sends ob-
jects o1 and o2 to pt in an interleaved manner.
When ps starts sending o1, o1.SV = 〈1, 0, 0〉
and o1.SA = [1, 0, 0]. Then, ps starts send-
ing o2, where o2.SV = 〈2, 0, 0〉 and o2.SA =
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[2, 0, 0]. When ps finishes sending o1, o1.EV =
〈1, 0, 0〉 and o1.EA = [3, 0, 0]. Process ps fin-
ishes sending o2, where o2.EV = 〈2, 0, 0〉 and
o2.EA = [4, 0, 0]. Process pt receives o1 and
o2 from ps. o1 → o2, since o1.EA > o2.SA,
o1.EA < o2.EA, and o1.SV < o2.SV . ✷

5. Evaluation

We evaluate the MCO group protocol dis-
cussed here in terms of the number of network-
level messages to be causally ordered by com-
paring it with the traditional network-level
causality. A process pt sends messages to the
processes and receives messages from the pre-
cesses in the group. Suppose that a process
pt receives messages m21, . . . ,m2l after sending
m1 and before sending m2 (Fig. 9). Here, each
message m2i is said to as properly causally pre-
cede m2 (i = 1, . . . , l) since there is no message
that pt sends after receiving m2i sending before
m2. Let dt(m) be a set of messages that prop-
erly causally precede a message m in a process
pt. dt(m2) = {m21, . . . ,m2l} in Fig. 9. In the
multimedia group protocol, there is no causal
precedence between m2 and m2i unless m2 or
m2j is the top or last message of an object.
Let Mt(m) be a set of messages which prop-
erly causally precede m and are to be ordered
in the MCO protocol. NG and NOG denote the
communication overheads. The larger NG and
NOG are, the longer it takes to deliver messages.
Let NG be the average number of |dt(m)| and
NOG be the average number of |Mt(m)| for ev-
ery message m. NG and NOG are measured by
simulation.
We make the following assumptions regarding

the evaluation:
1. There are n (> 1) processes p1, . . . , pn.
2. Each process pt sends one object at a time

and sends a total of 1000 objects.
3. Each object is sent to all the other pro-

cesses.
4. Each object is decomposed into h mes-

sages.
5. Each process sends one message every τ

time units. τ is a random variable be-
tween mint and maxt. The average inter-
message time τ̄ is (mint+maxt)/2.

6. It takes δ time units for a message to ar-
rive at the destination.

Figure 10 shows the ratio of NOG to NG for
the number n of the processes in the group G.
δ/τ̄ = 0.25 shows a situation in which work-
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Fig. 9 Proper precedence.
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stations are interconnected in a local area net-
work. The larger δ/τ̄ is, the more distant a pair
of processes are. Here, each object is transmit-
ted by twenty messages (h = 20). The ratio
NOG/NO is almost independent of the size n
of the group. For example, NOG/NO is about
0.35; that is, only 35% of the messages are han-
dled to be causally ordered in the MCO pro-
tocol for δ/τ̄ = 0.25. δ/τ̄ = 0.10 indicates a
wide area network in which about 55% of the
messages are ordered in the MCO protocol.
NOG/NG shows how much the multimedia

group protocol can reduce the computation and
communication overheads. Figure 11 shows
NOG/NG for the number h of messages of an ob-
ject where δ/τ̄ = 0.25, δ/τ̄ = 0.1, and n = 10.
h denotes the size of each object. The larger
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an object, the lower the ratio of the number
of messages that are causally preceded in the
MCO protocol to the number in the traditional
one.

6. Concluding Remarks

This paper has discussed a group protocol
named the MCO protocol in which multiple
processes exchange multimedia objects in a
group of the processes. We defined novel types
of causally precedent relations among multime-
dia objects, i.e. top (⇀), tail (⇁), partially
(→), and fully (⇒) precedent relations. We also
designed the protocol to support the ordered
delivery of objects in the types of the causal-
ities. The MCO protocol is now being imple-
mented on Unix. We discussed how the multi-
media group protocol can reduce the number of
network-level messages to be causally preceded
through simulation. We are now extending the
MCO protocol so as to satisfy the precedence
relation among component objects.
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