
Vol. 42 No. 6 IPSJ Journal June 2001

Recommended Paper

Information Flow Control in Role-based Model for Distributed Objects

Masashi Yasuda,† Keiji Izaki,† Katsuya Tanaka†

and Makoto Takizawa†

Various kinds of distributed applications are realized by using object-oriented technologies.
Object-oriented systems are composed of multiple objects which cooperate to achieve some
objectives by passing messages. Object-oriented technologies are used to realize the interop-
erability among the applications. In addition to realizing the interoperability, it is essential
to make the system secure. The secure system is required to not only protect objects from
being illegally manipulated but also prevent illegal information flow among objects. In this
paper, we discuss role-based an access control model in the object-oriented systems and how
to resolve illegal information flow by using the roles.

1. Introduction

Various kinds of object-oriented systems
like object-oriented database systems 2) and
JAVA 11) are widely used to design and im-
plement applications. Object-oriented systems
are composed of multiple objects which cooper-
ate to achieve some objectives by passing mes-
sages. An object is an encapsulation of data
and methods for manipulating the data. The
Common Object Request Broker Architecture
(CORBA) 14) is now getting a standard frame-
work for realizing the interoperability among
various kinds of distributed applications. In
addition to realizing the interoperability, secure
systems are required to not only protect objects
from illegally being manipulated but also to
prevent illegal information flow 4),7),15) among
objects in the system.
In the basic access control model 12), an ac-

cess rule is specified in a form 〈s, o, t〉 which
means that a subject s is allowed to manipulate
an object o in an access type t. A pair 〈o, t〉 is
an access right granted to the subject s. Only
the access request which satisfies the authorized
access rules is accepted to be performed. How-
ever, the access control model implies the con-
finement problem 13), i.e., illegal information
flow may occur among subjects and objects. In
order to make every information flow legal in
the system, the mandatory lattice-based access
control model 1),4),15) is proposed. Here, objects
and subjects are classified into security classes.
The legal information flow is defined in terms of
the can-flow relation 4) between classes of ob-

† Department of Computers and Systems Engineer-
ing, Tokyo Denki University

jects and subjects. In the mandatory model,
the access rules are specified by the authorizer
so that only the legal information flow occurs.
For example, if a subject s reads an object o, in-
formation in o flows to s. Hence, s can read the
object o only if a can-flow relation from o to s is
specified. In the discretionary model 3),5),7), the
access rules are defined in a distributed manner
while the mandatory access rules are specified
only by the authorizer in a centralized manner.
For example, the access rules can be granted
to other subjects in the relational model 17). In
the role-based model 8),16),19), a role is defined
to be a collection of access rights, which shows a
job function in the enterprise. The access rule is
specified by granting subjects roles which show
jobs assigned to the subjects.
The traditional access control models discuss

what object can be manipulated by what sub-
ject in what access type. The authors 18),20)

newly propose a purpose-oriented model which
takes into account a purpose concept showing
why each subject manipulates objects in the
object-based system. The object-based system
is a restricted version of the object-oriented
system where inheritance hierarchy is not sup-
ported. The purpose concept is modeled to be
a method which invokes another method in the
object-based system. In the object-based sys-
tem, methods are invoked in a nested manner.
In this paper, we discuss how to incor-

porate the role concepts into the purpose-
oriented model in an object-oriented system

The initial version of this paper was presented at the
DPS workshop held on Dec. 1999, which was spon-
sored by SIGDPS. This paper was recommended to
be submitted to the Journal of IPSJ by the chair-
person of SIGDPS.

1715

1716 IPSJ Journal June 2001

where methods are invoked in the nested man-
ner. Then, we discuss information flow to occur
among objects if the objects are manipulated by
transactions with the roles. We define a safe
set of roles where no possible illegal information
flow occurs. In addition, we discuss an interpre-
tive algorithm to check if an illegal information
flow possibly occurs each time a method is is-
sued to an object.
In Section 2, we present the object-oriented

system. In Section 3, we discuss access rules
and roles in the object-oriented model. In Sec-
tion 4, we discuss how to resolve illegal infor-
mation flow by using the role concepts.

2. System Model

An object-oriented system is composed of
classes and objects. A class is an encapsulation
of attributes and methods for manipulating the
attributes. Objects are created by giving values
to the attributes of the class. The objects are
instances of the class. A method of an object
is invoked by sending a request message to the
object. The method specified by the message is
performed on the object. On completion of the
method, the response is sent back to the sender
object of the message.
A new class s can be derived from an exist-

ing class c. The class s is a subclass of the class
c. The subclass s inherits attributes and meth-
ods of the class c. There is an is-a relation
from s to c. A subclass may override the at-
tributes and methods from the class. In Fig. 1,
a pair of classes Clock and Alarm are super-
classes of a class AlarmClock. AlarmClock in-
herits attributes time and setAlarm from Clock
and Alarm, respectively. AlarmClock also in-
herits the method show from Clock and the
other methods set and ring from Alarm.
In the object-oriented system, a subject shows

a user or an application program. A subject is
an active entity in the system, which can issue
access requests to objects. The subject manip-
ulates objects by invoking their methods. On
the other hand, an object is a passive entity. A
method is performed on an object only if the
method is invoked. The method invoked may
invoke further methods of other objects, i.e.,
invocation is nested. Thus, relation of subjects
and objects are relative. In object-oriented sys-
tems, everything is perceived to be an object.
An object which plays a role of subject is re-
ferred to as client object. An object which
plays a role of object is a server object. From

Clock

show

time : integer

inheritance

Alarm

set

setAlarm : boolean

ring
inheritance

 class class

subclass

AlarmClock

time : integer

setAlarm : boolean

show

set

ring

Fig. 1 Class hierarchy.

here, subjects mean client objects and object
indicate server objects.

3. Role-based Purpose-oriented Model

3.1 Roles
Each subject plays some role in an organiza-

tion, e.g., designer and clerk in a company. A
role represents a job function in the organiza-
tion. In the role-based model 8),16),19), a role
is modeled in a set of access rights. An access
right means an approval of a particular mode
of access, i.e., methods to an object in the sys-
tem. That is, a role is specified as a pair 〈o, t〉
of an object o and a method t meaning which
method t can be performed on which object o.
Only a subject s granted an access right 〈o, t〉
is allowed to manipulate the object o by issuing
the method t. A role r is a collection of access
rights.
Let R be a set of roles in the system. In

the role-based model, a subject s is granted a
role which shows its job function. On the other
hand, the subject s is granted access rights in
the access control model. Here a subject s is re-
ferred to as bound with the role r. The subject
s is also referred to as belong to the role r. This
means that the subject s can perform a method
t on an object o if 〈o, t〉 ∈ r. For example, a role
chief is {〈book, read〉, 〈book, enter〉} and clerk is
{〈book, read〉} in Fig. 2. A person A who works
as a chief in the company is granted the role
chief in the organization. A clerk B is granted
clerk. Thus, it is easy to grant access rights to
subjects in the role-based model.
In a role-based access control model, each

Vol. 42 No. 6 Information Flow Control in Role-based Model for Distributed Objects 1717

object
read
enter

permission

book

chief

object
read

permission
book

clerk

Fig. 2 Examples of roles.

subject

role

chief

clerk

object

read

write

permission

session
interaction

assignment

s

book

Fig. 3 Role-based access.

subject s can manipulate an object o by a
method t only if the subject s is granted a role
including an access right 〈o, t〉. The method is
performed on the object on receipt of the re-
quest message. If a subject s would like to ex-
ercise the authority of a role r which s belongs
to, the subject s establishes a session to the role
r. For example, an object book supports a pair
of methods read and write as shown in Fig. 3.
There are two roles clerk and chief shown in
Fig. 2. A subject s can perform write on the
object book while a session between s and a
role chief is established. Even if the subject s
belongs to chief, s cannot perform write on the
object book if a session between s and chief is
not established. The authority of a role r can
be exercised only while a subject s establishes
a session to the role r.

3.2 Purpose-oriented Model
The purpose-oriented access control

model 18),20) newly introduces a purpose con-
cept to the access control model. A purpose
shows why each subject s manipulates an ob-
ject o by invoking a method t of the object
o. In the object-based system, methods are
invoked in the nested manner. Suppose that
a subject s invokes a method t1 of an object
o1 and then t1 invokes a method t2 of another
object o2. In the purpose-oriented model, the
purpose is modeled to be the method t1 in-
voking t2 of o2 while the access control model
specifies whether or not o1 can manipulate o2

by t2. For example, let us consider a person
s who would like to withdraw money from a
bank. In the access control model, a subject s
can withdraw money from bank if an access rule

house-keeping

drinking

withdraw

banks

: purpose

Fig. 4 Purpose-oriented model.

〈s, bank,withdraw〉 is authorized independently
of for what s spends the money. In our real life,
the subject s can get money from bank for pur-
pose of house-keeping but not for drinking. An
access rule 〈s: house-keeping, bank : withdraw〉
is specified where a method house-keeping of
the subject s shows the purpose for which s can
withdraw money from bank (Fig. 4). However,
〈s: drinking, bank : withdraw〉 is not authorized.
A role is specified in a collection of access

rights in the role-based model 8),16),19). We ex-
tend the purpose-oriented access control model
by incorporating the role concept. In the
object-oriented system, methods are invoked
in a nested manner. Here, suppose that a
subject s invokes a method t1 on an object
o1 and then t1 invokes another method t2 on
an object o2. Here, suppose the subject s is
granted an access right 〈o1, t1〉. In one way,
only if the subject s is granted an access right
〈o2, t2〉, the method t1 can invoke t2. However,
it is cumbersome for each object o to specify
which object can manipulate the object o. In
relational database systems 17), the ownership
chain method is adopted. Here, if the object
o2 has the same owner as the object o1 or the
subject s is granted an access right 〈o1, t1〉, the
method t1 can invoke the method t2 even if s
is not granted an access right 〈o2, t2〉. Other-
wise, the method t1 is allowed to invoke t2 only
if s is granted an access right 〈o2, t2〉. Suppose
the response of the method t2 carries some data
stored in the object o2. On receipt of the re-
sponse, the data carried by the response may be
stored in the persistent storage of the object o2

while the method t1 is being performed by using
the response. This means, information in the
object o2 flows to the object o1 through the in-
vocation. The data may be brought to other ob-
jects by other invocations. By using the owner-
ship chain method, illegal information flow may
occur. In this paper, we assume that the system
is composed of multiple autonomous objects,
that is, objects have different owners. Fur-
thermore, it is difficult, maybe impossible for
each autonomous object to grant access rights
to other objects since the objects are dynami-

1718 IPSJ Journal June 2001

cally autonomously changed. In this paper, we
take an object pairwise approach where access
rules are specified for a pair of autonomous ob-
jects.
Suppose an object oi supports a method ti

which invokes other methods. Each method
ti of an object oi is granted a role ri =
{〈oi1, ti1〉, . . . , 〈oihi

, tihi
〉}. This means, the

method ti is allowed to invoke a method tij
of an object oij (for j = 1, . . . , hi). In turn,
the method tij may be granted a role rij =
{〈oij1, tij1〉, . . . , 〈oijhij

, tijhij
〉}. The method tij

can invoke a method tijk of an object oijk if the
method tij is granted the role rij . An access
rule has to show in what role the method ti of
the object oi is bound to the role ri.
[Purpose-oriented Role-based Access
(POR) Rule] An access rule 〈r: oi: ti, ri〉
means that a method ti of an object oi is in-
voked in a role r and ti can invoke methods
specified in a role ri. ✷

4. Information Flow Control

4.1 Illegal Information Flow
In the role-based access control model, sub-

jects are allowed to manipulate objects based
on roles to which the subjects belong. However,
illegal information flow among objects may oc-
cur. For example, there are a pair of objects o1

and o2 each of which supports a pair of methods
read and write (Fig. 5). There are two roles r1

and r2, where r1 = {〈o1, read〉, 〈o2,write〉} and
r2 = {〈o2, read〉}. Suppose that a subject s1

invokes write on the object o2 after invoking
read on the object o1 by the authority of the
role r1. This means that the subject s1 may
write data obtained from o1 to o2. The subject
s2 can read data in o1 even if an access right
〈o1,write〉 is not authorized in a role r2. This is
the confinement problem 13) pointed out in the
basic access control model, i.e., illegal informa-
tion flow might occur. In addition, a subject
can be granted multiple roles in the role-based
model even if they can play only one role at the
same time. Suppose that a subject s belongs to
two roles r1 and r2. The subject s obtains in-
formation from o1 as the role r1 and then stores
some of the information into o2 as another role
r2. Here, information in o1 flows to o2.
As discussed here, write brings information

into an object while information in the object
flows out by performing read. Hence, we classify
each method t supported by each object oi with
respect to the following points:

session

s1 role r1

s2

read
o1

read

o2
write

role r2

session
assignment

Fig. 5 Illegal information flow.

1. whether or not a value of an object oi is
output by the method t.

2. whether or not a value of ai in oi with
input parameter is changed by the method
t.

The methods are classified into four types:
mR (out type), mW (into type), mRW (in-
out type), and mN (neutral). An mR method
t means that the method t outputs a value
but does not change the object oi. A display
method of a video object is an example of mR

type. AnmW method t means that the method
t does not output but changes the object oi. A
count-up method of a counter object is an ex-
ample of mW type. An mRW method outputs
a value and changes oi. A modify method is an
example of mRW type. The method mN nei-
ther outputs a value nor changes the object oi.
[Example 1] Let us consider a simple exam-
ple about information flow between a pair of
objects oi and oj as shown in Fig. 6. A role
r1 is {〈oi, t1i〉, 〈oj , t2j〉}. Other roles r2 and r3

are {〈oi, t2i〉} and {〈oj , t3j〉}, respectively. The
method types of t1i of the object oi is an mR

type. The methods t2i is mW . The method
t1j is mRW . The method t3j is mW . Each
object has an access list composed of tuples of
role, method, and method type. A subject s is
now in a session with a role ri. Here, the sub-
ject s can invoke a pair of methods t1i and t1j

classified into mR on the object oi and mW on
oj by the authority of the role r1i, respectively.
Suppose the subject s obtains information from
the object oi through the mR method t1i, e.g.
display. It is critical to discuss whether or not
the subject s can invoke the mW method t1j

on the object oj after the invocation of the mR

method t1i on the object oi in order to pre-

Vol. 42 No. 6 Information Flow Control in Role-based Model for Distributed Objects 1719

oi

ojAccess control list

mRWr1

 r3

s
role r1

Access control list

r1

r2

mR

mRW

mR

mRW

information flow

t

t

1j

3j

t

t

1i

2i

mW

Fig. 6 Information flow among objects.

vent illegal information flow. Here, the infor-
mation in the object oi flows into the object oj .
If the information flow from oi to oj does not
violate the other roles, the method t1j can be
performed. A subject playing the role r3 can
carry information to the object oj but cannot
derive information from oj . Hence, even if the
information flows from oi to oj , there is no sub-
ject who is granted an access right to derive
data from oj . ✷

We discuss whether a set of roles authorized
are safe or not, i.e., no illegal information oc-
curs. Let R(o) be a set of roles which include
access rights on an object o.
[Definition] Information in an object oi possi-
bly flows to another object oj in a role r (oi
r→ oj) iff
1. r ∈ R(oi)∩R(oj), 〈oi, ti〉 ∈ r, 〈oj , tj〉 ∈ r,

ti is mR or mRW type, and tj is mRW or
mW type.

2. oi
r→ ok

r→ oj for some object ok. ✷

The relation “oi
r→ oj” means that informa-

tion derived from the object oi may flow into
another object oj if some subject is bounded
with the role r. “oi → oj” if there is some role
r such that oi

r→ oj .
[Definition] A flow relation “oi

r→ oj” is safe
for a pair of objects oi and oj iff for every role
r′ in R(oj) such that 〈oj , tj〉 ∈ r′ and tj is mR

or mRW (Fig. 7),
1. r′ /∈ R(oi).
2. 〈oi, ti〉 ∈ r′ and ti is mR or mRW . ✷

Suppose some subject s is bounded with a
role r such that oi

r→ oj . If s manipulates an
object oj by an mRW method after manipulat-
ing another object oi by an mR method, infor-
mation in oi flows into oj . If “oi

r→ oj” is not
safe, there is such a role r′ that oj can be ma-

r r’

s

o

o

s’

i

j

t i

r r’

s

o

o

s’

i

j

t i

t j

1 2

Fig. 7 Safe role.

r r’

s

o

o

s’

i

j

Fig. 8 Unsafe role.

nipulated by an mR method but oi cannot be
manipulated by an mR method in r′ (Fig. 8).
Hence, if another subject s′ is bounded with
the role r′, s′ can get information derived from
the object oi by manipulating the object oj al-
though s cannot access to oj .
[Definition] A role r is safe iff oi

r→ oj is safe
for every pair of objects oi and oj in the role r.

✷

It is straightforward for the following theorem
to hold from the definitions.
[Theorem] If every role is safe, there is no il-
legal information flow. ✷

4.2 Safe Roles
In the mandatory model, every role is de-

fined so as to be safe when the role is defined
by the authorizer. In the discretionary model,
roles are defined by subjects who are granted
an access right to define the roles. Hence, roles
are dynamically created and dropped. We con-
sider an approach for the discretionary where
each request is checked if illegal information
flow possibly occurs by performing the method
t. Let AL(o) be an access list {〈r, t, type〉}
given for an object o, where r is a role, t is
a method, and type is a type of the method t,
i.e., type ∈ {mR, mW , mRW , mN}. An access
list AL(o) is maintained for each object o. For
example, a tuple 〈r, t, type〉 is added to the ac-
cess list AL(o) of an object o if an access right
〈o, t〉 is added in a role r.
Variables AL and OL are manipulated for

each subject s as follows:
1. Initially, AL = φ and OL = φ.
2. If the subject s issues a method t to an

1720 IPSJ Journal June 2001

object o, the access list AL(o) is obtained
from the object o and AL := AL ∪ AL(o).

3. The object o is appended in the tail of the
list OL.

4. By using the safeness condition to be
discussed later, it is checked if illegal infor-
mation flow might occur after the method t
is performed. If no illegal information flow
occurs, the method t is performed and the
object o is appended into the list OL. Oth-
erwise, t is rejected.

The list OL shows a sequence of objects to
which the subject s issues methods. OL is
named object list. Here, if an object oi is stored
before oj in the list OL, oi is referred to as
precede oj in OL. By using the object list OL,
the method t is performed on the object o if the
following condition is satisfied.
[Safeness condition] For every object oi in
the object list OL, the relation “oi

r→ o” is safe
for every role r which includes access rights on
the object oi and o. ✷

If the safeness condition is satisfied at step
4, the method t is performed on the object o.
Otherwise, t is rejected since there might occur
illegal information flow from some object in OL
to the object o after the method t is performed.
Even if some subject derives information from
the object oj , the subject cannot obtain infor-
mation of oi unless the subject is granted an ac-
cess right to manipulate oi. In this algorithm,
the safeness condition is checked for a subject s
each time the subject s issues a method. It de-
pends on a sequence of methods, i.e., the object
list OL whether or not the safeness condition is
satisfied. For example, suppose the subject s
performs an mW method t1j on an object oj

before an mR method t1i on another object oi.
Suppose there is a role r′ including an access
right 〈oj , tj〉 where tj is an mR method. Here,
a flow relation “oi

r→ oj” is not safe accord-
ing to the definition because there is a possibil-
ity that the illegal information flow occurs as
shown in Fig. 9 (1). However, there is no infor-
mation flow from oi to oj since smanipulates oj

before oi (Fig. 9 (2)). Thus, even if some role is
not safe, illegal information flow does not occur
if every method is performed according to the
algorithm.
It is straightforward for the following theorem

to hold from the definitions.
[Theorem] If every method is performed ac-
cording to the algorithm, no illegal information

s

o

o

i

j

(1) (2)

1

2

s

o

o

j

i

1

2

Fig. 9 Information flow.

flow occurs. ✷

In the algorithm presented here, an access list
AL and object list OL are manipulated to check
the safeness condition each time a method is
performed on an object. The more number of
methods a subject s performs, the larger AL
and OL are getting. This implies larger com-
putation overhead. On the other hand, some
methods are allowed to be performed according
to the algorithm even if a set of roles are not safe
as shown in the theorem. Thus, more number
of methods can be performed by using the algo-
rithm. There is some tradeoff between number
of methods which can be performed and the
performance overhead. We are now evaluating
the performance of the algorithm and would like
to present it in another paper.

5. Concluding Remarks

This paper presented an access control model
for object-oriented systems with role concepts.
Roles are higher level representation of access
control models. We defined a role concept to
mean what method can be performed on which
object. Roles are incorporated in the purpose-
oriented model. Furthermore, we discussed how
to control information flow through roles. We
defined a set of safe roles where no illegal infor-
mation flow possibly occurs. We presented the
safeness condition to decide whether the roles
are safe or not. We also presented the interpre-
tive algorithm to check if each method could be
performed, i.e., illegal information flow possi-
bly occurs after the method is performed. By
using the algorithm, some methods can be per-
formed depending on in which order a subject
performs the methods even if the methods are
not allowed to be performed due to the unsafe-
ness of the roles. We are at present evaluating
the algorithm presented in this paper.

Acknowledgments This research is par-
tially supported by the Research Institute for
Technology, Tokyo Denki University.

Vol. 42 No. 6 Information Flow Control in Role-based Model for Distributed Objects 1721

References

1) Bell, D.E. and LaPadula, L.J.: Secure Com-
puter Systems: Mathematical Foundations and
Model, Mitre Corp. Report, No.M74–244, Bed-
ford, MA (1975).

2) Bertino, E. and Martino, L.: Object-Oriented
Database Management Systems: Concepts and
Issues, IEEE Computer, Vol.24, No.4, pp.33–47
(1991).

3) Castano, S., Fugini, M., Matella, G. and
Samarati, P.: Database Security, Addison-
Wesley (1995).

4) Denning, D.E.: A Lattice Model of Secure In-
formation Flow, Comm. ACM, Vol.19, No.5,
pp.236–243 (1976).

5) Denning, D.E. and Denning, P.J.: Cryptogra-
phy and Data Security, Addison-Wesley (1982).

6) Fausto, R., Elisa, B., Won, K. and Darrell, W.:
A Model of Authorization for Next-Generation
Database Systems, ACM Trans. Database Sys-
tems, Vol.16, No.1, pp.88–131 (1991).

7) Ferrai, E., Samarati, P., Bertino, E. and
Jajodia, S.: Providing Flexibility in Informa-
tion Flow Control for Object-Oriented Sys-
tems, Proc. 1997 IEEE Symp. on Security and
Privacy, pp.130–140 (1997).

8) Ferraiolo, D. and Kuhn, R.: Role-Based Ac-
cess Controls, Proc. 15th NIST-NCSC Nat’l
Computer Security Conf., pp.554–563 (1992).

9) Harrison, M.A., Ruzzo, W.L. and Ullman,
J.D.: Protection in Operating Systems, Comm.
ACM, Vol.19, No.8, pp.461–471 (1976).

10) Izaki, K., Tanaka, K. and Takizawa, M.: Au-
thorization Model in Object-Oriented Systems,
Proc. IFIP Database Security (2000).

11) Gosling, J. and McGilton, H.: The Java Lan-
guage Environment, Sun Microsystems (1996).

12) Lampson, B.W.: Protection, Proc. 5th Prince-
ton Symp. on Information Sciences and Sys-
tems, pp.437–443 (1971). Also in ACM Oper-
ating Systems Review, Vol.8, No.1, pp.18–24
(1974).

13) Lampson, B.W.: A Note on the Confinement
Problem, Comm. ACM, Vol.16, No.10, pp.613–
615 (1973).

14) Object Management Group Inc.: The Com-
mon Object Request Broker : Architecture and
Specification, Rev. 2.1 (1997).

15) Sandhu, R.S.: Lattice-Based Access Control
Models, IEEE Computer, Vol.26, No.11, pp.9–
19 (1993).

16) Sandhu, R.S., Coyne, E.J., Feinstein, H.L.
and Youman, C.E.: Role-Based Access Control
Models, IEEE Computer, Vol.29, No.2, pp.38–
47 (1996).

17) Sybase, Inc.: Sybase Adaptive Server Enter-

prise Security Administration (1997).
18) Tachikawa, T., Yasuda, M. and Takizawa, M.:

A Purpose-oriented Access Control Model in
Object-based Systems, Trans. IPSJ, Vol.38,
No.11, pp.2362–2369 (1997).

19) Tari, Z. and Chan, S.W.: A Role-Based Ac-
cess Control for Intranet Security, IEEE Inter-
net Computing, Vol.1, No.5, pp.24–34 (1997).

20) Yasuda, M., Higaki, H. and Takizawa, M.: A
Purpose-Oriented Access Control Model for In-
formation Flow Management, Proc. 14th IFIP
Int’l Information Security Conf. (SEC’98),
pp.230–239 (1998).

(Received November 10, 2000)
(Accepted March 9, 2001)

Editor’s Recommendation

The authors propose a novel role-based ac-
cess control model in the object-oriented sys-
tems. Using the proposed access control model,
not only the interoperability among the applica-
tions but also the system secure can be realized,
because this access control mechanism prevents
the illegal information flow among objects. The
model is of wide application and useful for many
members.

(Chairman of SIGDPS Hiroshi Miyabe)

Masashi Yasuda was born
in 1974. He received his B.E. de-
gree in computers and systems
engineering from Tokyo Denki
University, Japan in 1997. Cur-
rently, he works NS Solutions
Corporation. His research in-

terests include secure distributed systems and
computer networks.

Keiji Izaki was born in 1978.
He received his B.E. degree in
computers and systems engi-
neering from Tokyo Denki Univ.,
Japan in 2000. He is now a
graduate student of the master
course in the Dept. of Comput-

ers and Systems Engineering, Tokyo Denki
Univ. His research interests include distributed
database systems and security. He is a student
member of IPSJ.

1722 IPSJ Journal June 2001

Katsuya Tanaka was born
in 1971. He received his B.E.
and M.E. degrees in Computers
and Systems Engineering from
Tokyo Denki University, Japan
in 1995 and 1997, respectively.
From 1997 to 1999, he worked

for NTT Data Corporation. Currently, he is an
assistant in the Department of Computers and
Systems Engineering, Tokyo Denki University.
He received the D.E. degree from Dept. of Com-
puters and Systems Engineering, Tokyo Denki
University, Japan, in 2000. His research in-
terests include distributed systems, transaction
management, recovery protocols, and computer
network protocols. He is a member of IEEE CS
and IPSJ.

Makoto Takizawa was born
in 1950. He received his B.E.
and M.E. degrees in Applied
Physics from Tohoku Univ.,
Japan, in 1973 and 1975, respec-
tively. He received his D.E. in
Computer Science from Tohoku

Univ. in 1983. From 1975 to 1986, he worked
for Japan Information Processing Developing
Center (JIPDEC) supported by the MITI. He
is currently a Professor of the Dept. of Com-
puters and Systems Engineering, Tokyo Denki
Univ. since 1986. From 1989 to 1990, he was a
visiting professor of the GMD-IPSI, Germany.
He is also a regular visiting professor of Keele
Univ., England since 1990. He was a program
co-char of IEEE ICDCS-18, 1998 and serves on
the program committees of many international
conferences. He chaired SIGDPS of IPSJ from
1997 to 1999. He is IPSJ fellow. His research in-
terests include communication protocols, group
communication, distributed database systems,
transaction management, and security. He is a
member of IEEE, ACM, and IPSJ.

