TR 2 AO0R PR 2 SERi) EE AL

919

A Requirement Analysis for A Portable Window System

3J—-1

on Top of Common Lisp

Masayuki Idat!, Takashi Kosakal?, Keisuke Tanakal!, Katsuhiko Yuuraf3,
Eij Shiot_a’f‘l, Haruyuki Kawabe®5, Atsushi Atarashif®, Keiji Hashimoto!?, Noritoshi Rokujot8

Acknowledgement

The main framework of this research was born in
the discussions under the 1988 Jeida Common Lisp
Committee Secretariat meetings. The authors would
like to express their gratitude to all the members of
JCLC.

1 Background 1. — Needs for a window sys-
tem in Common Lisp —

There are several Window Systems and UIMS
for various Common Lisp implementations. But
they have different functionalities. With this reason,
though the portability of Common Lisp is proven, lots
of interactive and/or graphical applications can not be
ported to different implementations easily.

From 1984 on, there have been several Common
Lisp based standardization efforts including window
systems. In the beginning, the Common Windows
of Intellicorp was one of the candidate for standard
but was not adopted. At that time, Symbolics Lisp
machine did provide the Dynamic Window which fea-
tures the presentation system. Common Windows it-
self grew and several dialects of it were introduced.

We made surveys and got a sketch as follows:

1) Trial to integrate several existing window sys-
tems into one is required. It should be independent
from any existing windows but should have a bridge
from them.

2) Consultation with the current technology is re-
quired. At least, X-window and it’s friends, Common
Windows, Genera, and PC-based windows should be
investigated.

3) Public acceptance of the superiority of Dynamic
Windows feature should be checked.

4) Good environment needs large memory. Is it
affordable 7 Say, a full function programming envi-
ronment may occupy 20 M bytes or more.

5) As a workstation, needs much more functionality
on Japanese character handling in every text handling.

2 Background 2. — CLOS and object oriented
approach —
Recently it is quite common to integrate a window-
ing stuffs using object oriented idea. This trend has
a firm technical background. Smalltalk is one exam-

1 Aoyama Gakuin University, 1?Aoyama Gakuin University/CSK
Corp., t®Hitachi Ltd., 1*Nihon Symbolics*Corp. t*Nihon Unisys
Ltd. **NEC Corp. 1"CEC Ltd. t®Fujitsu Ltd.

ple. In the Lisp world, Flavors is used as a kernel
technology for Symbolics Genera Window system.

Recent development of CLOS (Common Lisp Ob-
ject System), and its adoption as a part of X3J13
Common Lisp, place Common Lisp among the family
of object oriented languages. Since CLOS (chapter 1
and 2) was established in 1988, there are not so much
experience reported.

Lots of existing window systems for Common Lisp
lack of object oriented approach since they were born
before CLOS was invented. To CLOSify a portable
window system is the must.

3 Requirement Issues and their analysis
3.1 Issue 1. Single Process or Multi Process

> discussions: Related questions are whether each
window is assigned an independent process or is as-
signed to a window of native window system or no.
t> conclusions:
1) Place a root window at initialization. Each window
is a child of it.
2) Each window can be assigned a process.
3) Keyboard and Mouse events should be correctly
and promptly handled.
4) ”Pure Multi Process” is not needed. (Each window
is not needed to be independently executed)

3.2 Issue 2. Object-Oriented Style

b discussions: CLOS is the must from the back-
ground requirement.

> conclusion:
1) User interface and window handling should be
CLOS based both.
2) Window can be dynamically defined.
3) Try to evaluate the CLOS power. Try to check
whether Meta Object Protocol give us a solution or
not.
4) Migration path from other object oriented window-
ing tools is needed.

3.3 Issue 3. What is the displayed output.

p> discussions: We discussed about what is the ma-
jor advantage of Genera window system. One thing
to prove is whether presentation system is affordable.
In Genera, output is recorded as much memory as ex-
ists. (user can clear the history freely). Is infinite
recording really necessary considering the space con-
sumption and redisplay speed. Should all the object

920

be mouse sensitive items? Context dependent mouse
sensitivity is affordable or no.

> conclusions:
1) Must install output recording mechanism. Should
provide a constant which has the maximum numbers
of lines/items. (we all agree with the output recording
feature is useful though it is heavy. need some purg-
ing mechanism)
2) Presentation type is very important. Prepare the
facility to get user defined presentation type. A new
definition using CLOS is introduced.
3) sensitivity control considering the mouse speed
should be needed.

3.4 Issue 4. Font and Multi national charac-
ter presentation

P discussions: Japanese characters should be han-
dled. Can display several fonts in the window or no.
D conclusion:
1) Provide multi font ability, though font itself is im-
plementation dependent. The mechanism for it can
be standardized.
2) Must consider the provision for dynamic adjust-
ment of displayed characters with various fonts.

3.5 Issue 5. Widgets or Accessories

> discussions: Lots of window systems have lots
of widgets/gadgets and independent styles.

B> conclusion:
1) Too much consideration for style guiding is not
needed.
2) Coordination with Existing Styles or the styles of
native window systems.

3.6 Issue 6. Input Editor

©> discussions: We discussed about the needs for
input fron-end processor (in a broader sense), Input
Editing and Japanese character input mechanism as
an example. Wnn (egg), or commercial fron-end pack-
age, can co-exist with our new window.

B conclusion: There must be a common way to ac-
cess the stream internal buffer to alternate the char-
acter already inputted to that input stream.

3.7 Issue 7. Graphics Functions

b discussions: Rich functionality with proper
Graphics display model. 3D model is needed ? Color
handling is needed ?

B conclusion: The Lisp window system we are
thinking doesn’t provide high level graphic tools, but
a typical level ones. Must provide color capability.

3.8 Issue 8. Implementation Model

& discussions: Is network oriented implementation
needed ?

B> conclusion: We don’t need to specify the model
details, since the target machines have much variety.

3.9 Issue 9. A new window system or a tool
kit on top of other windows

b discussions: Creating a new window system is
attractive solution for the above. On the other hand, if
we start to develop a new window system from scratch,
we might need to develop every codes which should
cope with the same functionality as other window will
have in every minutes.

We want to share the progress of window technol-
ogy as a user of other window systems.

B> conclusion: We will design and provide a window
tool kit or user interface management system on top
of various general purpose window systems.

4 Conclusion — Yy Window Tool Kit —

Yy Window Tool Kit is the goal of our analysis
and is an output of our research works. As a summary,
Yy is a CLOS based window tool kit with our scheme
of output recording. We design the Yy as a three
layered tool kit.

There are three layers: NWSI, YYWS, and YYAPI.

NWSI: Native Window System Interface Module

YYWS: Yy window system

YYAPI: Yy Application Program Interface

NWSI depends on a native window system. The
NWSI for the YyonXis X-window dependent module.
YYWS is a native window independent window sys-
tem. The interface between YYWS and NWSI is de-
fined to be independent from various underlying win-
dow systems as possible. YYAPI[1] is an Application
Program Interface and is used by the users.

We already succeeded to implement a pilot of Yy
on top of X-window, which is called YyonX [2]. Us-
ing YyonX , we continue to improve the Yy design.

<; Application Software>

b

YYAPI: YY Application Program Interface

v 1
YYWS : YY Window System
v 1

NWSI : Native Window System Interface Module

4

C;Iative Window System >

Figure 1. Yy Layered Model

References

1. M.Ida: YYAPI External Specification Manual
v1.0 1989 Dec. ,
2. M.Ida, T.Kosaka, K.Tanaka: “Design of YyonX »
IPSJ, march 1990

