
Vol. 42 No. 10 IPSJ Journal Oct. 2001

Regular Paper

An Alternative Analysis of Linear Probing Hashing with Buckets

Tsuyoshi Itokawa† and Ryozo Nakamura†

In this paper, we propose a mathematical analysis of average search cost of linear probing
hashing for external searching on secondary storage devices in consideration of both the bucket
size and the frequency of access on each key. Then we propose the formulae to evaluate exactly
the average and variance of the search cost and show some results of the numerical tests.

1. Introduction

Hashing method is an important and useful
technique for implementing dictionaries, which
requires constant time for inserting, searching
and deleting a record on the average. The key,
which uniquely identifies its record, is mapped
into the hash table by using a hash function.
In this case, there will probably be two or more
keys hashed to one identical location of the ta-
ble. Such an occurrence is called a collision.
The techniques for handling the collision are
chiefly classified into two categories: chaining
technique and open addressing technique. Lin-
ear probing hashing is the simplest form of open
addressing techniques.
Hashing is also widely used to provide fast

access to information stored on external sec-
ondary storage devices as well as main mem-
ory. Thus separate chaining and linear probing
hashing techniques lend themselves well to ex-
ternal searching on secondary storage devices
such as disks and drums. When we consider
the differences in access characteristics between
main memory and external storage devices,it
is the nature of secondary storage devices that
the time to find a block and read it into main
memory is very large compared with the time
to process the data in that block. Therefore in
the proposed analysis, the number of probes de-
notes only the number of accesses in the same
way as the traditional analyses did 1),3).
Here we review the history of analysis of

the linear probing hashing algorithm. In 1962,
Schay and Spruth first proposed an approxi-
mate analysis based on the assumption that the
number of records stored in a bucket is 1 and
all keys are uniformly accessed. In 1973, Knuth
proposed the exact analysis based on the same

† Department of Computer Science, Faculty of Engi-
neering, Kumamoto University

assumption as Schay and Spruth did and also
proposed the approximate analysis for exter-
nal searching on secondary storage devices. In
1998, Viola and Poblete have proposed an alter-
native analysis for external searching in consid-
eration of the bucket size 4). This analysis was
based on the Robin Hood collision resolution in
which the collided records are rearranged, but
it had not been considered the frequency of ac-
cess on each key.
By the way, the time required to solve a prob-

lem is one of the most important measures in
evaluating an algorithm. The search cost is de-
fined generally as the product of the number
of probes and the frequency of access on a key.
Provided that the frequency of access is uni-
form, the average search cost of linear probing
hashing is independent of the order of inserting
keys. However if the frequency of access on each
key is not uniform, the inserting order plays a
crucial role.
As mentioned above, the traditional analyses

are unable to evaluate the search cost even if
the probability of the frequency of access on a
key is given. Taking account of the frequency
of access on a key, it is necessary to clarify the
relationship between the inserting order of a key
and its locating position.
Therefore, in this paper we present an exact

discrete analysis of the average search cost in
successful search for linear probing hashing for
external searching on secondary storage devices
in consideration of both the bucket size and the
frequency of access on each key. Then we pro-
pose the formulae to evaluate the average and
variance of the search cost in a successful search
and show some results of the numerical tests.
Before we get into analyzing the search algo-

rithm of linear probing hashing, we will try to
look more closely linear probing hashing model.
On the generalized model each position of the
hash table, called bucket, contains some records

2423

2424 IPSJ Journal Oct. 2001

which are accessed in unit time, and an each
area in the bucket for storing each record is
called a slot, the number of slots in a bucket
is called bucket size.
For analyzing linear probing hashing algo-

rithm, at first we assume the following three
items.
(1) The hash table size is M and the bucket

size is b, where the table with size M
is indexed by positions 0 toM − 1. The
records are grouped into buckets, so that
b records are accessed from the external
memory each time. Here the maximum
size of b is dependent of operating sys-
tems, but 4,096 bytes is typical.

(2) The keys are uniformly mapped into the
hash table from position 0 to position
M − 1 by using a hash function h(K)
for a given key K. Thus assume that
when n keys are inserted into the ta-
ble by the hash function h, Mn hash
address sequences are generated equally
likely. Namely we assume that each of
the Mn hash address sequences

a1 a2 · · · ai · · · an,

(0 ≤ ai < M)

is equally likely, where ai denotes the ini-
tial hash address of the i-th key inserted
into the table.

(3) Linear probing hashing uses the cyclic
probe sequence as follows,

h(K), h(K) − 1, h(K) − 2, . . .

. . . , 0, M − 1, . . . , h(K) + 1.

The above probe sequence denotes a per-
mutation of positions 〈0, 1, 2, · · · , M − 1〉.

For example, inserting a record whose key
value is K, at first position h(K) in the hash
table is decided, which ranges from 0 to M − 1.
If position h(K) has one or more empty slots,
then the record will be stored there. However,
if there is no empty slot in position h(K), then
position h(K) − 1 will be probed for the next
candidate to put it. If there are one or more
empty slots in the position, the record will be
stored. But if there is no empty slot in position
h(K) − 1 then the same procedure is repeated
until either finding empty slot or finding the
table to be full.
Next we define two functions to analyze the

algorithm under assumption that n keys are
uniformly scattered to the hash table. First
let fb(M, n) be the number of hash address se-
quences such that position 0 of the table will
have at least one empty slot after n keys have

been scattered, secondly let gb(M, n, h) be the
number of hash address sequences such that po-
sition 0 of the table has at least one empty
slot, positions 1 through h occupied and po-
sition h + 1 has at least one empty slot after n
keys have been scattered. The above mentions
are argued, provided that the circular symme-
try of linear probing implies that position 0 is
empty just as often as any other position.

2. Traditional Analysis

In the traditional analysis 1) the bucket size b
is fixed to 1, and f1(M, n) has been derived as
follows,

f1(M, n) = Mn(1 − n

M
),

(M ≥ n > 0), (1)
and from the relationship between the function
f1 and the function g1, g1(M, n, h) has been
given by the following formula

g1(M, n, h) =
(

n

h

)
f1(h + 1, h)

×f1(M − h − 1, n − h),

(M ≥ n ≥ h ≥ 0). (2)

Here let Pn,k be the probability that exactly
k+1 probes will be needed when the (n+1) st
key is inserted. Using the function g1, Pn,k has
been derived as follows,

Pn,k =
1

Mn

(
g1(M, n, k)

+g1(M, n, k + 1) + · · · + g1(M, n, n)
)
,

(M ≥ n ≥ k ≥ 0). (3)

In search algorithm, the probe sequence for
searching key K traces the same probe sequence
that the insertion algorithm examined when key
K was inserted. It is also evident that the keys
searched by k probes are ones inserted by just
k probes among (n − k + 1) keys on and after
the k-th key inserted.
In the analysis of considering the frequency

of access on each key, we let ρi be the probabil-
ity that the i-th key inserted will be retrieved,
where

∑n
i=1 ρi = 1. Therefore the probability

that exactly k probes will be needed for search-
ing a key after all n keys are scattered in the
table is given as follows 2),

ρkPk−1,k−1 +ρk+1Pk,k−1 + · · ·
· · · + ρnPn−1,k−1,

(k = 1, 2, . . . , n). (4)
Finally the average and variance of the suc-

cessful search cost can be expressed by the fol-
lowing formulae 2), where the search cost is de-

Vol. 42 No. 10 An Alternative Analysis of Linear Probing Hashing with Buckets 2425

fined as the product of the number of probes
and the frequency of access on a key.

Sn =
n−1∑
k=0

(k + 1)

n−1∑
j=k

ρj+1Pj,k (5)

Vn =
n−1∑
k=0

(k + 1)2
n−1∑
j=k

ρj+1Pj,k − Sn
2 (6)

3. Proposed Analysis

In the traditional analysis, provided that the
bucket size is one, both the function f1 and the
function g1 have been simply derived, and the
exact analysis of the algorithm has been pro-
posed for internal searching on main memory.
But under the consideration of the bucket size
b as a parameter, neither function fb nor gb are
derived completely.
In this section we will derive the functions fb

and gb taking account of the bucket size b, and
then propose the exact analysis of the average
search cost of linear probing hashing for exter-
nal searching on secondary storage devices in
consideration of both the bucket size and the
frequency of access of a key.

3.1 Function fb

In this section, we will derive the function
fb(M, n) mentioned previously. Now let ki be
the total number of keys scattered in positions 0
through i of the table under the condition that
position 0 has at least one empty slot. Thus,
the number of keys scattered in position 0 is
represented by k0, and the number of keys in
positions 0 and 1 is k1, and so on. Therefore
ki − ki−1 means the number of keys stored in
position i.
Here we consider the number of ways of scat-

tering n keys to a hash table of size M with
the bucket size b, where Mb > n. In the first,
the number of ways of choosing k0 keys from
n keys is

(
n
k0

)
, in this case k0 takes the value

from 0 to b−1, since position 0 of the table has
at least one empty slot. Therefore the number
of ways to distribute the keys in position 0 is∑b−1

k0=0

(
n
k0

)
. Next, k1 − k0 keys chosen from the

remaining n−k0 keys are distributed to position
1 of the table. If both the positions 0 and 1 of
the table are occupied by the keys except only
one empty slot in position 0, then k1 becomes
equal to 2b−1. Therefore the number of ways to
distribute the keys in position 1 of the table is∑2b−1

k1=k0

(
n−k0
k1−k0

)
, and so on up to position λ− 1,

where λ = �n/b	 means min{λ|λ ≥ n/b, integerλ}.

Here when position 0 has just one empty slot,
there are bλ−1−kλ−1 empty slots in positions
0 through λ− 1, since the total number of keys
scattered from position 0 to position λ − 1 in
the table is kλ−1.
Consequently, even if the remaining n−kλ−1

keys are scattered at random to positions which
follow position λ − 1 of the table, the number
of the overflow keys after position λ is at most
n − kλ−1 − b, and it is less than or equal to
bλ−1−kλ−1. The above arguments prove that
position 0 of the table has at least one empty
slot. Therefore the number of ways in which
n− kλ−1 keys can be scattered arbitrarily after
position λ − 1 of the table is (M − λ)n−kλ−1 .
From the above discussion, the predefined

function fb(M, n) can be expressed by

fb(M, n) =
b−1∑

k0=0

2b−1∑
k1=k0

· · ·
λb−1∑

kλ−1=kλ−2

(
n

k0

)

×
(

n − k0

k1 − k0

)
· · ·

(
n − kλ−2

kλ−1 − kλ−2

)

×(M − λ)n−kλ−1

=
b−1∑

k0=0

2b−1∑
k1=k0

· · ·
λb−1∑

kλ−1=kλ−2

n!(M − λ)n−kλ−1

/{
k0!(k1 − k0)! · · · (kλ−1 − kλ−2)!

×(n − kλ−1)!
}
. (7)

3.2 Function gb

In the traditional analysis, assumed that the
bucket size is 1, and the function g1 has been ex-
pressed in a simple form as Eq. (2). In this sec-
tion we shall derive the function gb(M, n, h) de-
fined previously in consideration of the bucket
size b. Therefore whenever any position of the
table has empty, we need to consider all the
cases from only one empty slot to b empty slots.
At first we consider the case that position 0

has an empty slot, and positions 1 through h−
1 occupied and position h has an empty slot.
Here let w denote the total number of keys be
capable of storing in positions from 0 to h − 1.
Then w takes the value from (h − 1)b to hb −
1. Furthermore, let ik be the number of keys
scattered from position k to position h − 1.
Under the above assumption that an overflow

from position h to position h−1 can not occur,
ih−1 at position h − 1 can take the value from
b to w. If ih−1 will be b, no key overflows from
position h− 1 to position h− 2, but when ih−1

will take w, the keys distributed in position h−1
fill up all positions from position 1 to position

2426 IPSJ Journal Oct. 2001

h − 1. Thus the number of ways to distribute
the keys in position h − 1 is

∑w

ih−1=b

(
w

ih−1

)
.

Next at position h − 2, (ih−2 − ih−1) keys
are chosen from (w − ih−1) keys. At this time,
since ih−1−b keys overflow from position h−1,
the number of (ih−2 − ih−1) keys which will be
scattered in position h−2 will be the value from
b − (ih−1 − b) to w − ih−1, as the result, ih−2

has the value from 2b to w. Thus the number
of ways to distribute the keys to both position
h − 2 and position h − 1 is

w∑
ih−2=2b

w∑
ih−1=b

(
w − ih−1

ih−2 − ih−1

)(
w

ih−1

)
.

Such process will be repeated till position 1.
Here we let tb(h, w) be the number of hash ad-

dress sequences such that there are some empty
slots in position 0, and positions 1 through h−1
occupied when w keys have been stored in po-
sitions from 0 to h − 1, then tb(h, w) can be
presented as follows,

tb(h, w) =
w∑

i1=(h−1)b

w∑
i2=(h−2)b

· · ·
w∑

ih−1=b

(
w − i2
i1 − i2

)

×
(

w − i3
i2 − i3

)
· · ·

(
w − ih−1

ih−2 − ih−1

)(
w

ih−1

)

=
w∑

i1=(h−1)b

w∑
i2=(h−2)b

· · ·
w∑

ih−1=b

w!

/{
(w − i1)!(i1 − i2)! · · ·

· · · (ih−2 − ih−1)! ih−1!
}

(h > 1, hb − 1 ≥ w ≥ (h − 1)b), (8)
provided that if h = 1, tb(1, w) = 1 (0 ≤ w ≤
b − 1).
The function gb already mentioned, which is

the number of hash address sequences such that
there are some empty slots in position 0 and
positions 1 through h are occupied and there
are some empty slots in position h + 1 after n
keys have been scattered, is given as follows,

gb(M, n, h) =
b−1∑
i=0

(
n

hb + i

)
tb(h + 1, hb + i)

×fb(M − h − 1, n − hb − i)

(Mb > n ≥ hb ≥ 0). (9)
For example, when n = 3 keys will be in-

serted by order a1, a2, a3 in the table of size
M = 3 and the bucket size b = 2, the above
arguments are shown concretely in Table 1.
At first, Mn(= 33) hash address sequences are
shown in second column from the left side. The

column denoted Table shows the situation that
3 keys (a1, a2, a3) are stored in each position of
the hash table. The rightmost column shows
the each case of the function g2, which is cal-
culated by t2 and f2 denoted in the second and
third columns from the right side.

3.3 Average Search Cost
In consideration of the bucket size b, the prob-

ability Pn,k of Eq. (3) is rewritten as follows,

Pn,k =
1

Mn
(gb(M, n, k) + gb(M, n, k + 1) + · · ·

· · · + gb(M, n, n)). (10)
For example, when inserting the fourth key

into the hash table of size 3 with the bucket
size 2, the probabilities P3,0,P3,1 and P3,2 are
calculated by the result of Table 1 as follows.

P3,0 =
1

33
(g2(3, 3, 0) + g2(3, 3, 1)

+g2(3, 3, 2) + g2(3, 3, 3))

=
20

33

P3,1 =
1

33
(g2(3, 3, 1) + g2(3, 3, 2) + g2(3, 3, 3))

=
7

33

P3,2 =
1

33
(g2(3, 3, 2) + g2(3, 3, 3)) = 0

Now we consider both the bucket size b and
the frequency of access on each key ρi, (i =
1, 2, . . . , n), in this case the keys searched by k
probes are ones inserted by just k probes on and
after the ((k−1)b+1) st key inserted. Therefore
Eq. (4) could be rewritten as follows,

ρ(k−1)b+1P(k−1)b,k−1 +ρ(k−1)b+2P(k−1)b+1,k−1

+ · · · + ρnPn−1,k−1

(k = 1, 2, · · · , �n/b). (11)
Finally we consider the number of access

(probes) as a random variable and its probabil-
ity distribution in order to derive the evaluation
formulae of the search cost. Then we can derive
the average search cost Sn and the variance Vn

as follows.

Sn =
λ−1∑
k=0

(k + 1)

n−1∑
j=kb

ρj+1Pj,k (12)

Vn =
λ−1∑
k=0

(k + 1)2
n−1∑
j=kb

ρj+1Pj,k − Sn
2 (13)

here λ = �n/b�.
4. Numerical Tests

With the proposed Formulae (12) and (13) we
can evaluate the average search cost in accor-
dance with any probability distribution of the
frequency of access on a key.

Vol. 42 No. 10 An Alternative Analysis of Linear Probing Hashing with Buckets 2427

Table 1 Feature that 3 keys of insertion order a1 a2 a3 are mapped into
the hash table (M = 3, b = 2, n = 3).

No. Hash address Table t2(h, w) f2(M, n) g2(M, n, h)
sequence 0 1 2

1 0 0 0 a1a2 a3

2 1 1 1 a3 a1a2 t2(2, 3) f2(1, 0) g2(3, 3, 1)
3 2 2 2 a3 a1a2 t2(1, 0) f2(2, 3) g2(3, 3, 0)
4 0 0 1 a1a2 a3

5 0 0 2 a1a2 a3

6 0 1 0 a1a3 a2

7 0 2 0 a1a3 a2

8 1 0 0 a2a3 a1

9 2 0 0 a2a3 a1

10 1 1 0 a3 a1a2 t2(2, 3) f2(1, 0) g2(3, 3, 1)
11 1 1 2 a1a2 a3 t2(2, 2) f2(1, 1) g2(3, 3, 1)
12 1 0 1 a2 a1a3 t2(2, 3) f2(1, 0) g2(3, 3, 1)
13 1 2 1 a1a3 a2 t2(2, 2) f2(1, 1) g2(3, 3, 1)
14 0 1 1 a1 a2a3 t2(2, 3) f2(1, 0) g2(3, 3, 1)
15 2 1 1 a2a3 a1 t2(2, 2) f2(1, 1) g2(3, 3, 1)
16 2 2 0 a3 a1a2 t2(1, 1) f2(2, 2) g2(3, 3, 0)
17 2 2 1 a3 a1a2 t2(1, 0) f2(2, 3) g2(3, 3, 0)
18 2 0 2 a2 a1a3 t2(1, 1) f2(2, 2) g2(3, 3, 0)
19 2 1 2 a2 a1a3 t2(1, 0) f2(2, 3) g2(3, 3, 0)
20 0 2 2 a1 a2a3 t2(1, 1) f2(2, 2) g2(3, 3, 0)
21 1 2 2 a1 a2a3 t2(1, 0) f2(2, 3) g2(3, 3, 0)
22 0 1 2 a1 a2 a3 t2(1, 1) f2(2, 2) g2(3, 3, 0)
23 0 2 1 a1 a3 a2 t2(1, 1) f2(2, 2) g2(3, 3, 0)
24 1 0 2 a2 a1 a3 t2(1, 1) f2(2, 2) g2(3, 3, 0)
25 2 0 1 a2 a3 a1 t2(1, 1) f2(2, 2) g2(3, 3, 0)
26 1 2 0 a3 a1 a2 t2(1, 1) f2(2, 2) g2(3, 3, 0)
27 2 1 0 a3 a2 a1 t2(1, 1) f2(2, 2) g2(3, 3, 0)

In the numerical tests let us assume the fol-
lowing two probability distributions of the fre-
quency of access on a key.
(1) The probability of the frequency of ac-

cess on each key is equally likely, called
“Uniform”, the probability ρi holds the
relation ρi = 1/n (i = 1, 2, . . . , n).

(2) The probability of the frequency of ac-
cess on a key is reduced harmonically ac-
cording to the order of inserting a key,
typically called “Zipf’s law”, the prob-
ability ρi holds the relation ρi = Cn/i
(i = 1, 2, . . . , n), where Cn = 1/Hn and
Hn is a harmonic number.

Figures 1 and 2 show the average search
costs obtained by the proposed Formula (12),
with uniform and Zipf’s law probability distri-
butions for the frequency of access on a key, re-
spectively. Two graphs in each figure are shown
to account for the influence of bucket size. Thus
the dotted line shows the case of the table size
M = 60 and the bucket size b = 5, and the solid
line shows the case of M = 30 and b = 10.
We can see the property of linear probing

hashing that the average search cost is indeed
satisfactory unless the table has gotten very
full, but it becomes rapidly worse when the load

1

1.2

1.4

1.6

1.8

2

0 0.5 1

A
ve

ra
ge

 S
ea

rc
h

C
os

t

b=10, M=30

b=5, M=60

 Load Factor (= n/Mb) α
0.1 0.2 0.3 0.4 0.6 0.7 0.8 0.9

Fig. 1 The average search cost for uniform probing.

factor α is close to 1. And we can also see that
if the load factor α is fixed where α = n/Mb,
as the bucket size b becomes larger, the average
search cost becomes smaller.

2428 IPSJ Journal Oct. 2001

1

1.2

1.4

1.6

1.8

2

0 1

A
ve

ra
ge

 S
ea

rc
h

C
os

t

b=10, M=30

b=5, M=60

Load Factor (= n/Mb)α
0.50.1 0.2 0.3 0.4 0.6 0.7 0.8 0.9

Fig. 2 The average search cost for Zipf’s Law.

5. Conclusion

We have analyzed mathematically the aver-
age behavior of linear probing hashing for ex-
ternal searching in consideration of both bucket
size and the frequency of access on a key.
In the proposed analysis at first when n

keys have been scattered into the hash table
with size M we have derived both the func-
tion fb(M, n) be the number of the hash ad-
dress sequences such that position 0 of the ta-
ble has at least one empty slot, and the function
gb(M, n, h) be the number of the hash address
sequences such that position 0 of the table has
at least one empty slot, positions 1 through h
occupied and position h + 1 has at least one
empty slot, in consideration of the bucket size
b.
Finally we have proposed the formulae to ex-

actly evaluate the average search cost and its
variance of linear probing hashing algorithm for
external searching on secondary storage devices
in consideration of both the bucket size and the
frequency of access on a key, and have shown
some numerical results from the proposed for-
mulae.

Acknowledgments The authors would
like to thank the anonymous referees for their
valuable comments to improve the clarity of this
paper.

References

1) Knuth, D.E.: The Art of Computer Program-
ming, Vol.3, Sorting and Searching, Second
Edition, pp.513–558, Addison-Wesley, Read-
ing, Mass (1998).

2) Nakamura, R. and Matsuyama, K.: Consider-
ations of the Number of Probes Deliberating
the Probability Distribution for the Frequency
of Probes, J. IPS Japan, Vol.24, No.4, pp.505–
512 (1983).

3) Nakamura, R., Sun, N. and Nakashima, T.:
A New Analysis of Hashing Algorithm for Ex-
ternal Searching, J. IPS Japan, Vol.37, No.12,
pp.2276–2283 (1996).

4) Viola, A. and Poblete, P.V.: The Analysis of
Linear Probing Hashing with Buckets, Algo-
rithmica, Vol.21, pp.37–71 (1998).

(Received October 16, 2000)
(Accepted July 2, 2001)

Tsuyoshi Itokawa received
the B.E. degree from Kumamoto
University in 1993. From
1993 to 1994 he joined Fu-
jitsu Kyushu System Engineer-
ing LTD., and received the M.E.
degree from Kumamoto Univer-

sity in 1997. He is presently a research associate
in Department of Computer Science. His cur-
rent research interests include the design and
analysis of algorithms and data structures.

Ryozo Nakamura received
the M.E. degree from Ku-
mamoto University in 1968 and
the D.E. degree in computer
science from Kyushu University
in 1985. From 1968 to 1974,
he joined Chubu Electric Power

Company. Since 1975 he has joined in Faculty
of Engineering of Kumamoto University, and is
presently a professor in Department of Com-
puter Science. His current research interests
include the design and analysis of algorithms
and data structures.

