
Vol. 43 No. 2 IPSJ Journal Feb. 2002

Regular Paper

Content-independent EPSS

with Automatic Context Sensing on the Web

Yuko Ikehata,† Toshio Souya†† and Yoshinori Hijikata†††

An EPSS is an Electronic Performance Support System that provides users with integrated,
on-demand access to information for the purpose of job performance enhancement. We pro-
pose a framework, called WebAttendant, upon which a “content-independent EPSS” can be
developed. WebAttendant automatically tracks and analyzes a user’s operational behavior
(“automatic context sensing”) on the Web, and provides individual instructions in the form
of helpful interventions, according to a set of rules, such as guidance windows and balloon
help messages. As a result, WebAttendant can be managed independently from the Web sites,
and the EPSS can be reused or added without changing the Web content itself. In order to
verify the usefulness and efficacy of WebAttendant, we carried out several experiments. The
experiments show that WebAttendant is effective as a platform for a content-independent
EPSS on the Web.

1. Introduction

Use of Internet for things like online shop-
ping at “amazon.com1)”, online reservations or
online selling of items at “Ebay2)”, has dras-
tically increased in recent years and continues
to grow everyday. People carrying out these
online activities need to complete some tasks
on the websites. For example, they need to lo-
gin or register on the websites, search the web
sites, click on right links and submit or com-
plete their task by clicking on the appropriate
buttons. Web sites of these types are consid-
ered “task-oriented Web sites”.
We believe that there are two problems with

existing “task-oriented Web sites”:
• If the Web content is not organized well
structurally, the website users may not eas-
ily understand how to use the website,

• If the users are not skilled enough to use
Web, they will have significant difficulty us-
ing the task-oriented Web sites.

If users face any of the above problems they
may repeatedly scroll up and down in order to
find their way to what they are planning to ac-
complish on a Web page. If they think they ac-
cessed the wrong page, unrelated to their task,
they may go back to the previous page trying to
get to the link that may lead them to the target
page. Unnecessary scrolling up and down and

† IBM Tokyo Research Laboratory
†† IBM e-business Wireless Consulting
††† Department of Systems and Human Sciences,

Graduate School of Engineering Sciences, Osaka
University

moving into and out of task-unrelated pages
may result in a longer time for a given task
completion.
The above problems exist mainly because of

the gap between the knowledge level of the users
and the knowledge level a Web site requires
users to have in order to carry out tasks on that
specific Web site. For example, if a large num-
ber of first-time users, more than anticipated,
visit the Web site at the same time, they may
find the Web site too difficult to use. It is im-
portant to bridge the gaps between the knowl-
edge level that a Web site requires of its users
and the actual knowledge levels of the users who
visit the site.
One solution to the problems that task-

oriented Web sites are facing is attempting to
add an Electronic Performance Support System
(EPSS3)) to the Web site.
Web-based EPSS is designed using methods

to modify the composition of Web content. For
example, by embedding help functions in the
content and adding detailed explanations for
the content on the Web page.
Almost every existing Web-based EPSS is a

“built-in EPSS”, i.e., they have been developed
for specific Web content and the service is part
of the content. Here are some problems with
built-in EPSS:
• It is difficult to reuse a specific website’s
built-in EPSS for another Web content be-
cause the composition of any specific Web
content is different from another Web con-
tent, and the skills of different Web site
users are also different.

616

Vol. 43 No. 2 Content-independent EPSS with Automatic Context Sensing on the Web 617

Fig. 1 Content-independent EPSS by
WebAttendant.

• Various versions of a built-in EPSS are re-
quired for a specific Web site to support
users with various skill levels. Development
and maintenance of various versions of a
built-in EPSS is costly and time consum-
ing.

To resolve the shortcomings of the built-in
EPSS, we propose the framework of a content-
independent EPSS on the Web called WebAt-
tendant. As shown in Fig. 1, WebAttendant
is built independent of the Web content. We-
bAttendant tracks user’s DOM (Document Ob-
ject Model) event on the Web page, automat-
ically records and analyzes a user’s operation
logs (“automatic context sensing”), and pro-
vides users with specific instructions. Instruc-
tions are in the form of helpful interventions by
guidance window(s) beside the Web page and
balloon help message pointing to the target ob-
ject on a Web page. Processes such as DOM
event tracking, users’ operation logs recording
and analysis, and execution of the rules can be
managed individually and independently of the
Web sites. The features of WebAttendant are
as follows:
• WebAttendant’s EPSS can be reused for
Web sites with different contents just by
changing the rules. This will reduce the
cost of development and the maintenance
of the whole system

• EPSS developers can easily provide EPSS
on the Web content by creating rules using
WebAttendant’s authoring function.

• Since each process of WebAttendant is in-
dependent of the Web server, EPSS creator
can add EPSS to the existing Web content
without changing the Web content itself.

In order to verify the usefulness and efficacy

of WebAttendant, we carried out several exper-
iments. Results of the experiments show that
WebAttendant is a highly effective platform for
Web-based EPSS.

2. The Concept of EPSS

Here we summarize the purpose of EPSS de-
scribed by Stevens, et al.3). An EPSS is a sys-
tem that can provide on-demand, task-specific
skills training, task- and situation-specific in-
formation access, customized tools for task au-
tomation, and embedded coaching, help, and
validation tools. The aim of EPSS is to address
the various levels of skill among the users of ap-
plications, in other words, to develop an EPSS
that does not require its users to be highly
skilled in Web site operation.
In the Web-based EPSS framework, there

are two types of EPSS framework: Built-
in EPSS framework and content-independent
EPSS framework for a Web site.
• Built-in EPSS framework for a Web site:
Web-based EPSS framework, which can
provide an EPSS dependent on the Web
content. To provide an EPSS to a Web site,
the developer needs to modify the modules
for each required EPSS functions using pro-
gramming languages, and need to embed
these modules for each HTML Web page.

• Content-independent EPSS framework for
a Web site: Web-based EPSS framework,
which can provide an EPSS independent of
the Web content. The developer can add
any HTMLWeb page without changing the
Web page itself. This framework already
has most of the functions for an EPSS ser-
vice. The developer can use these EPSS
functions to provide any HTML Web page
by only creating some new rules.

3. Comparison of Existing EPSS Soft-
ware and WebAttendant

Figure 2 shows WebAttendant and different
categories of existing EPSS. Existing EPSS and
WebAttendant are categorized based on their
target applications. There are EPSSs which are
used for stand-alone applications and for Web
sites. We first explain EPSS for stand-alone
applications.
3.1 EPSS for Stand-alone Applica-

tions
EPSS for stand-alone applications are catego-

rized based on the techniques they use to figure
out what their users are trying to do. There are

618 IPSJ Journal Feb. 2002

Fig. 2 WebAttendant and existing EPSSs.

two categories of EPSS for stand-alone applica-
tions:
• EPSS using explicit query approach.
• EPSS using automatic context sensing ap-
proach.

For the explicit query approach, users have
to request support from the EPSS by sending
explicit queries about what they are trying to
do or about what help they want. CoachWare4)
and the TRACK Knowledge Base are examples
of systems that use explicit queries to find out
how to support a user’s task. Such systems may
use a database of queries that are intended to
force users to clarify their situation even when
users are not knowledgeable about the applica-
tion they are trying to use. Alternately, users
may be asked to describe their problems in their
own words. However, this approach is espe-
cially difficult for those users who don’t un-
derstand the application. Moreover, because
some users may be able to explicitly describe
their problems, they may need hints, such as
marginal annotations, before they can even un-
derstand the questions.
For the automatic context sensing approach,

the system attempts to infer each user’s inten-
tions by automatically tracking their operation
histories. If a user makes a mistake, the sys-
tem can detect his/her mistake and support
him/her without any request for assistance be-
ing made by the user, even when users do not
recognize that they have made mistakes. For
this reason, an EPSS with an automatic con-
text sensing approach is more user-friendly and
superior to an EPSS with an explicit query ap-
proach.
MMHelper5), Microsoft Agent6), and Quick-

Card7) are examples of EPSS with the same
approach. They attempt to automatically sense
the context. Examples of useful data that can
be used for this detection include the font size
and number words input in a form and the
amount of time a user spends in an application
without doing anything. These existing EPSS
detect the operations within the standard GUI
components. Since these existing EPSS are de-
signed for a stand-alone application, they can-
not be reused for other application.
3.2 EPSS for Web Sites
Categorized from the viewpoint of system

design, there are built-in EPSS and content-
independent EPSS on the Web. A built-in
EPSS is designed for specific Web content by
building the EPSS as a part of the content. On
the other hand, a content-independent EPSS is
designed independently from any Web contents.
Almost all existing Web-based EPSS are

built-in EPSS. Since webmasters can design
many kinds of interventions and make programs
freely, this approach allows a greater flexibility
in design. However, there are some disadvan-
tages with built-in EPSS:
• Since the composition of the Web content
and user’s skill levels vary for each kind
of Web content, it is difficult to reuse the
modules of one built-in EPSS for other Web
contents.

• If a large number of users with different
skill levels use the Web sites, webmasters
will need to develop several versions of a
built-in EPSS service to support its users.
This leads to higher cost.

On the other hand, the content-independent
EPSS software has some advantages:
• It is easy to add or reuse EPSS for exist-
ing Web content without changing the Web
content itself.

• It is easy to reuse the separate modules
of an EPSS for other Web sites since they
are independent of the Web content. And
EPSS master can manage each process of
EPSS independent of the Web site.

Most existing EPSS on the Web are built-in
EPSS with explicit query approach, and these
can be used only for specific Web content. The
main examples of built-in EPSS with explicit
query approach are Query-Based Online Help
Services. In a Query-Based Online Help Ser-
vice, a user has to ask questions by entering key-
words or forming a query on the Web page and
then get guidance from an EPSS database. A

Vol. 43 No. 2 Content-independent EPSS with Automatic Context Sensing on the Web 619

Query-Based Onlin Help Service does not assist
a user unless he/she recognizes the mistakes.
Examples of existing built-in EPSS using au-

tomatic context sensing are a Movie Help Ser-
vice on a Web site and the EPSS for the Amer-
ican FactFinder8)∼9). The Movie Help Service
demonstrates to the user how to use the Web
site using balloon help messages when a user
loads the Web site. The movie Help Service
only tracks a user’s page loading events. It
does not grasp a user’s intention. The EPSS
for the American FactFinder provides perfor-
mance support based on their unique charac-
teristics and the needs of the key user group to
which they belong. However, it mainly tracks
the user’s page loading events, and it does not
track more detailed information, as does We-
bAttendant. Plus, it is not reusable.
WebAttendant grasps a user’s status for offer-

ing instructions by automatically tracking the
user’s more detailed Web operations, such as,
the time and the type of the Document Ob-
ject Model (DOM) event (see Section 5(2)) oc-
curs, the type, number, and value of any tar-
get objects where the DOM event occurs, the
user name, and the current URL involved. We-
bAttendant can infer a user’s intention more
accurately and can provide the user with more
individualized instructions by using helpful in-
terventions. Furthermore, since WebAttendant
is designed as a content-independent EPSS.
These characteristics of WebAttendant makes
the development and testing processes much
easier, and the development costs lower adding
or reusing services without changing the exist-
ing Web content itself. Due to the above fea-
tures, WebAttendant’s EPSS can be broadened
to any existing Web content. Considering the
above-mentioned advantages of WebAttendant,
it seems reasonable to consider it is superior to
other EPSS.

4. Design of the System

Our objectives for designing WebAttendant
are to meet two requirements:
(1) To create a framework for a cost-
efficiency development of an EPSS.
(2) To develop an EPSS that does not re-
quire its users to be necessarily highly skilled
in Web site operation.
To achieve our first objective, we designed the

WebAttendant to be a separate EPSS from the
existing Web content (Section 4.1). Also, We-
bAttendant separates the rule module from the

Fig. 3 The structure of WebAttendant and the
existing Web site in development.

WebAttendant execution module to reuse the
same rules for other Web content. Further-
more, WebAttendant provides authoring tool
functions so that EPSS developers (rule cre-
ators) can create rules easily, even if they do
not have programming skills (Section 4.2).
To achieve our second objective, we designed

WebAttendant to provide individual instruc-
tions based on the user’s Web operation events
with an automatic context sensing approach
(Section 4.3).
4.1 Separation of the Web Site and

WebAttendant
Figure 3 shows the structure of both the

existing Web site and WebAttendant in devel-
opment. WebAttendant is designed to oper-
ate separately from a Web site. On the client
side, the proxy server embeds several WebAt-
tendant modules to track a user’s Web opera-
tion and to provide him/her with interventions
on the Web page. On the WebAttendant server
side, other processes of WebAttendant, such as
recording and analysis of user’s operation and
execution of the rules, operate separately from
the Web site. As a result, WebAttendant ser-
vices can be added, changed, and reused with-
out a Webmaster changing the existing Web
content. Also, Web sites and WebAttendant
can be maintained individually.
4.2 Separation of the Rules for EPSS

from the WebAttendant Execu-
tion Module and Authoring Tool

In WebAttendant, the rule module are sepa-
rated from the WebAttendant execution mod-
ule, allowing other Web contents to reuse the

620 IPSJ Journal Feb. 2002

same rules for an EPSS and decreasing the
number of rules that have to be created. We-
bAttendant provides authoring tool function to
create rules easily.
4.3 Providing Each User with Individ-

ual Instructions on a Web Page
This subsection describes the functions re-

quired to provide each user individual instruc-
tions with automatic context sensing approach.
WebAttendant tracks and analyzes a user’s op-
eration history, and determines to provide indi-
vidual instructions according to a set of rules.
Then WebAttendant customizes a Web page to
provide helpful interventions at the necessary
place.
4.3.1 Automatic Tracking of the User’s

Operation
To provide each user with an individual in-

struction on a Web site, a method to recog-
nize the user’s status or intention by inference
from the user’s detailed operation history is re-
quired. Therefore, WebAttendant is required
to provide a history tracking function, which
automatically detects the following user’s oper-
ations, as many as possible on the Web site.
(1) Sensing the context by tracking a user’s
operations on any HTML Web pages that
he/she visits.
Generally, a Web site consists of many pages.
If the tasks in the Web site are complicated,
users will need to carry out various operations
over many pages. Therefore, a function, which
tracks the users operations for several pages is
required.
(2) Sensing a context by tracking users oper-
ations at each object on the same page.
If the users’ tasks in the Web site are compli-
cated, they will need to carry out various opera-
tions on the same page. WebAttendant detects
users operations at each object (for example,
each inputting form) on the same page in order
to examine if he/she carries out the operation
in a correct way.
4.3.2 Analysis of User’s Web Opera-

tion and Determination of the
Rules Execution

WebAttendant is capable of analyzing a
user’s operation behavior and activity. To ana-
lyze a user’s operation, WebAttendant records
and manages the user’s operation as several
contexts with names and attributes on the
server side. Then, WebAttendant analyzes each
user’s contexts by examining some attributes to
find out whether or not it has satisfied certain

conditions. For example, it will examine to find
out if the number of scrolling operations is less
or more than 5. Then, it will examine the rules
that need to be executed.
4.3.3 Customization of the Web Page

for Individual Instructions
After WebAttendant determines to execute a

rule to provide a user with individual instruc-
tions, it customizes the Web page dynamically
by displaying several interventions at suitable
places, or it modifies the Web page automati-
cally in order to complete a task efficiently.

5. The Composition of WebAttendant

Figure 4 shows the structure of WebAtten-
dant. It consists of following modules:
(1) Proxy server module, which embeds the
tags for event probe module and guidance mod-
ule into each Web page.
The tags refer to modules on the Script Server
(a standard HTTP server). The Web page
where the tags are embedded is then sent to
a client browser10).
(2) Event probe module, which tracks user’s
operations in detail.
When a user operates on the Web page, the
event probe module automatically tracks the
user’s operation by handling a DOM event in
the Web browser. Examples of a DOM events
are CLICK, MOUSEMOVE, MOUSEOVER,
SCROLL, KEYDOWN, KEYUP, LOAD, SE-
LECT, and so on.
The event probe module collects a complete set
of information, including
• The time and the type of the DOM event
that occurs,

• The type, number, and value of any target
objects where the DOM event occurs,

• The IP address of the client or the user
name,

• The current URL involved.
The collected information about the users oper-
ations is an “operation event”. The event probe
module sends operation event to a log server11).
Examples of different types of target objects are
TEXT, RADIOBUTTON, CHECKBOX, and
so on.
(3) Log server module, which receives the op-
eration events from the event probe module and
sends them to the context module.
Log server module also transmits DOM actions
from a rule module to the guidance module.
(4) Context module, which has general con-
texts and represents what a user has done.

Vol. 43 No. 2 Content-independent EPSS with Automatic Context Sensing on the Web 621

Fig. 4 The structure of WebAttendant.

The context consists of a set of more than one
context items with a name and attribute. There
are two kinds of context items:
• A parameter from the history of a user’s
operation event: such as “user’s name”,
“URL user loads”, “DOM event name that
a user operates”, “the time that DOM
event occurs”, “the target object ID that
user focuses on a Web page”, and so on

• A parameter to analyze operation event:
such as, “a standard time parameter to con-
sider that a user stops inputting a specific
form for long”, “a standard number param-
eter to consider that a user focuses on a
specific object too much”, and so on.

When the context module accepts the opera-
tion event from the log server it records and
updates the context. After this, the context
module makes a new context item, which is ap-
propriate to the DOM event, or updates the
value of a context item. Also, the context mod-
ule examines a value of a context item and if the
value is satisfactory, according to the set stan-
dard parameter, it makes the context event to
notify the rule module that the user’s context
is updated and sends the context event to the
rule module. There are three kinds of context
events:
• DOM event itself,
• Context events that notifies the rule mod-
ule that user’s context updated by analyz-

ing the history of user’s operation: such
as context events that notifies that a user
spends inputting a form too much time,
that a user moves a mouse without in-
putting anything in a form, and so on.

• Context events that notifies the rule mod-
ule that user’s context updated by analyz-
ing the value of input form: such as, con-
text event that notifies the context item’s
changes when a user inputs a specific key
word, when a user inputs a number larger
than a specific number, and so on.

(5) Rule module, which decides which rule
should be selected to provide individual instruc-
tions based on the user’s context / DOM events.
The rule module receives the context/DOM
event from the context module. Then, the rule
module selects a rule that is appropriate to the
context/DOM event and decides the execution
of a guidance to the user as a DOM action or
an update to the value of a context item as a
context action. The rule module sends a DOM
action to the log server, which is a command
for guidance module to execute guidance on a
DOM object. Or, the rule module sends the
context action to the context module, which is
a command for the context module to update
the value of a context item.
(6) Guidance module, which runs as a client-
side applet and give an individual instruction to
a user.

622 IPSJ Journal Feb. 2002

Fig. 5 WebAttendant experimental service to US
Census Bureau Web site (http://www.census.
gov/). An example of several interventions by
DOM actions: (a) Balloon help on: adding a
babble balloon help beside a specific link with
a message, (b) Auto input: inputting a mes-
sage automatically in a form, (c) Window on:
displaying a window with a specific URL, (d)
Web page on: displaying a specific URL Web
page beside a link in a part of Web page.

When the guidance module receives a DOM ac-
tion from the log server, it executes the DOM
action, such as an action to provide interven-
tions to the target object12) or change pages
automatically. Figure 5 shows an example of
WebAttendant providing an experiment EPSS
to an existing Web site. The examples of DOM
action are following:
• Balloon help on: adding a balloon help
beside a HTML element with a message
(Fig. 5 (a)).

• Auto input: inputting a message automat-
ically in an input form (Fig. 5 (b)).

• Window on: displaying a window with a
specific URL (Fig. 5 (c)).

• Web page on: displaying a specific URL
Web page besides a HTML object in a Web
page (Fig. 5 (d)).

(7) Rule, which defines the functions of
EPSS service, i.e., the way to instruct each user
depending on the user’s situation.
Rules describe what kind of intervention should
happen to the user and how that should hap-
pen, depending on the user’s situation. Rules
are described as a XML rule format. A rule
format consists of a “condition part” and an
“execution part”.
In condition part, the user’s situation is de-
scribed by using context event and the attribute
of a specific context item. In execution part,
the way to instruct each user or the update of

his/her contexts are described by using more
than one DOM action and context action.
(8) Authoring tool module, which provides a
simple point-and-click user interface to create
rule descriptions.
Authoring tool module allows users to create
rules by minimum operations, linking them di-
rectly to the target object on the Web page.
The rule creator can describe which URL and
object, when, what kinds of messages, and how
he/she want to show by the interventions on the
Web site by selecting an item in the window be-
side the target Web page.

6. Experiments to Verify the Superi-
ority of WebAttendant over Built-
in EPSS

As mentioned in Section 4, our first objective
for developing WebAttendant was to create a
framework for a cost-efficient development of
an EPSS. Our second objective was to develop
an EPSS that does not require its users to be
necessarily highly skilled on the Web. In other
words, we wanted to reduce the gap between
the knowledge level of the users and the knowl-
edge level a Web site requires its users to have
in order to carry out tasks on that specific Web
site. We conducted two types of experiments
to examine whether or not we achieved our ob-
jectives. We describe one of the experiments in
this section and the other experiment in Sec-
tion 7. In order to verify the superiority of We-
bAttendant framework over a built-in EPSS its
cost-efficiency of development, we ran several
sets of experiments to evaluate two aspects of
EPSS development:
(1) An amount of work involved to develop
an EPSS.
First we examined the total operational steps
involved in developing an EPSS when we used
WebAttendant. Then, we examined the to-
tal size of the programs involved to develop
the same EPSS when we used a built-in EPSS
framework. Finally, We compared the total op-
erational steps involved in EPSS development
to the total size of program involved in EPSS
development.
(2) Reusability To examine a cost-efficiency
of development of an EPSS when EPSS mod-
ules are reused, we compared the total number
of operational steps involved when we used We-
bAttendant framework to the size of a program
involved when we used a built-in EPSS frame-
work to reuse the same EPSS modules. We did

Vol. 43 No. 2 Content-independent EPSS with Automatic Context Sensing on the Web 623

Table 1 The scenarios of EPSS services for each Web
site and for each skill level user, and exam-
ples of a rule.

case scenario
EPSS
-A

Assisting users how to register using their
ID, check the availability of the courses, and
fill out course application

EPSS
-B

Assisting users how to make a map using
data in the US Census Bureau

EPSS
-C

Assisting users how to transfer a money to
other’s bank account

EPSS
-L1

The target is a user who does not have aWeb
operation skill, and also a first time user of
this site. Assisting a user by explaining the
flow of a task for his purpose in detail. And
also explaining the summary of each page.

EPSS
-L2

The target is a user who have an ordinary
Web operation skill. Or a user who used this
site before. Assisting a user by explaining
the summary of each task simply.

EPSS
-L3

The target is a user who is a Web expert.
Or a user who used this site many times.
Assisting a user only he makes a mistake,
for example, when inputting a world in a
target object with mistake.

this comparison for two possibilities:
(a) Developing EPSSs for Different Web

sites:
We developed several different EPSSs for
different Web sites. We then estimated
the amount of work when modules for
EPSS functions to provide EPSS to some
specific Web sites were reused for other
Web sites as well.

(b) Developing EPSSs for users with
different skill levels on the same
Web site:
Assume an EPSS module is used to
provide EPSS service to “highly skilled
users”on a specific Web site called site A.
We call this EPSS-L1. Similarly, we call
EPSS service provided to “intermediate-
skilled users” and “low-skilled users” in
site A as EPSS-L2 and EPSS-L3 respec-
tively. We estimated the amount of
work when these different EPSSs mod-
ules for EPSS functions were reused for
other users with different skill levels even
though we initially designated it to be
EPSS for highly skilled users.

6.1 The Method and the Results of
EPSS about an Amount of Work
Experiments:

To compare an amount of work using We-
bAttendant framework versus using a Built-in
EPSS framework, we developed EPSS-A, which
is an EPSS for a Web-training site. As shown

Fig. 6 A wizard asking a user the purpose of his/her
task.

Fig. 7 WebAttendant providing task-assistance to a
training business Web site.

in Table 1 (EPSS-A), the purpose of EPSS-
A service was to help users register using their
ID, check the availability of courses and fill out
course applications. Figures 6 and 7 shows an
example of EPSS-A services. To carry out the
required functions, EPSS-A had two types of
modules:(1) EVENT module, for tracking and
analyzing a user’s operational behavior. (2)
GUIDANCE module, for providing instructions
in the form of helpful interventions. Table 2
shows the details about these modules. Ta-
ble 3 (EPSS-A) shows the EPSS-A’s different
modules and the number of times these modules
are used.
6.1.1 Results of EPSS Development

Experiments Using a WebAtten-
dant Framework

As WebAttendant already had all modules
shown in Table 2 and could use any HTMLWeb
page without changing each Web page, the only
work required to develop EPSS-A was to create
rules for defining the functions of EPSS-A. An

624 IPSJ Journal Feb. 2002

Table 2 An example of modules for EPSS functions.

Event module name
load • load a page
unload • unload a page
mouseover • put the mouse over the

target object
mouseout • put the mouse out of

the target object
click • click the mouse at the

target object
submit • submit the target form
no-change • lose focus without

inputting
repeated-focus • focus the target object

repeatedly
specified-focus-order • focus some objects

with specified-order
specified-focus-unorder • do not focus some ob-

jects with specified-order
long-focus • foucus an object for a

long time
long-no-keypress • focus an object for

a long time without
inputting

many-mouse-operations • move a mouse many
times

many-scroll-operations • scroll many times
many-mouseover • put a mouse over some

objects many times
many-back-button-return • back the page to previ-

ous page many times
click-hesitation • hesitate a click operation
input-include-prohibited-
char

• input characters with
prohibited char

Guidance module name
page change • change a different URL

automatically from the
current URL in a same
window

window on • display a window which
a specific URL

balloon help on • add a balloon help be-
side a HTML element
with a message

wizard • display a window as a
wizard for a user

Web page on • display a specific URL
Web page besides a HTML
object in a Web page

autoinput • input a message au-
tomatically in an input
form

alert • display an alert window

authoring tool function was used for Extensi-
ble Markup Language (XML) format rule de-
scription. Thus, the EPSS creator did not need
to have any programming skill to implement
an XML format rules, and he or she created
rules by simple operations. For example, to cre-
ate the rule “when a user puts a mouse over a
specific link many times, the window which in-
structs how to use this Web page is provided”

Table 3 The number of times using a module for
each Web site.

Module name
number∗1

total∗2

a∗3 b∗3 c∗3 (E)
The total number of
rules

43 35 30 -

EVENT
load 4 2 6 11
unload 1 - - 0
mouseover 8 3 2 12
mouseout 8 3 2 12
click 2 3 - 4
submit - 1 - 0
no-change - - 1 0
repeated-focus - - 3 2
specified-focus-order - 1 2 2
specified-focus-unorder - 1 3 3
long-focus 1 - - 0
long-no-keypress 1 - 1 1
many-mouse-operations 1 10 - 10
many-scroll-operations 3 - 2 4
many-mouseover 8 5 - 12
many-back-button-return 3 1 3 6
click-hesitation 1 5 4 9
input-include-prohibited-
char

2 - 1 2

GUIDANCE
pagechange 3 1 2 5
window on 8 1 - 8
balloon help on 19 14 17 49
wizard 3 10 7 19
Web page on 8 7 - 14
autoinput - - 1 0
alert 2 2 3 6

∗1: The number of times using modules.
∗2: The total number of times reusing a module (E).
∗3: a: EPSS-A, b: EPSS-B, c: EPSS-C

the EPSS creator only needed to follow the fol-
lowing 4 steps using an authoring tool function:
(Step1) select the condition part of the rule

from the drop-down lists,
(Step2) click a target object (link) on the

target Web page,
(Step3) select the type of intervention that

you want to provide from a drop-down list, and
(Step4) fill in a message that you want to

show with an intervention.
We estimated the amount of work that

needed to be done to develop EPSS-A using
the number of 43 rules for each Web site and
total number of operational steps for creating
Web sites from Table 4. A rule format con-
sists of a “condition part” and an “execution
part”. Condition part is defined as the func-
tion for the EVENT module. Execution part
is defined as the function for the GUIDANCE
module.
Table 5 shows the total number of steps us-

Vol. 43 No. 2 Content-independent EPSS with Automatic Context Sensing on the Web 625

Table 4 The size of programs in built-in EPSS frame-
work and the number of steps using WebAt-
tendant.

Built-in
Web-

module name attendant
(A) (B) (C) (D)

Event
load 12 1 1 0
unload 32 1 1 0
mouseover 34 1 2 1
mouseout 45 1 2 1
click 109 1 2 1
submit 38 1 2 1
no-change 223 4 2 1
repeated-focus 227 6 2 1
specified-focus-order 277 16 2 1
specified-focus-unorder 277 16 2 1
long-focus 188 4 2 1
long-no-keypress 217 6 2 1
many-mouse-operations 193 6 2 1
many-scroll-operations 170 2 1 0
many-mouseover 159 4 2 1
many-back-button-return 216 4 1 0
click-hesitation 228 4 2 1
input-include-prohibited 160 4 2 1
-char
Guidance
pagechange 18 1 1 1
window on 26 1 1 1
balloon help on 132 1 1 1
wizard 26 1 1 1
Web page on 258 1 1 1
autoinput 15 1 1 1
alert 4 1 1 1

(A): The total number of programming-lines the creator
modified at the first time by Table 9. (line)

(B): The total number of programming-lines the creator
modified when reusing a module. (line)

(C): The number of steps to create rules at the first
time.

(D): The number of steps to change a rule when reusing
a rule.

ing WebAttendant. As shown in Table 5 the
amount of work to develop EPSS-A was 103
operational steps using WebAttendant.
6.1.2 Results of EPSS Development

Experiments Using a Built-in
EPSS framework

To develop EPSS-A, the creator had to mod-
ify several modules for required EPSS func-
tions, using JavaScript and Java languages.
Also, the creator had to modify a module to
define these EPSS functions and embed it in
each HTML Web page. Therefore, the EPSS
creator had to have programming skills.
Using the size of the programming by Java

and JavaScript languages, we estimated the
amount of work that was done for EPSS-A de-
velopment. Table 5 shows the results of EPSS
development experiments. Table 4 shows the

Table 5 The results of EPSS about an amount of
work experiments.

module name Built-in
Web-

attendant
Event
load 15 1
unload 32 1
mouseover 41 10
mouseout 52 10
click 110 4
long-focus 188 3
long-no-keypress 217 3
many-mouse-operations 193 3
many-scroll-operations 174 1
many-mouseover 187 10
many-back-button-return 224 1
click-hesitation 228 3
input-include-prohibited-char 164 4
Guidance
pagechange 20 4
window on 33 9
balloon help on 204 20
wizard 28 4
Web page on 272 9
alert 8 3
total 2,390 103

Built-in: The total number of programming lines the
creator had to modify. =(A)+(B)×(E)

WebAttendant: The total number of operational steps
to create rules. =(C)+(D)×(E)

(A),(B),(C),(D) in Table 4, (E) in Table 3

size of the programming lines using built-in
EPSS. For example, when modifying a “many-
mouse-operations” module to handle a user’s
operation that of moving a mouse many times,
the required size of programs is 193 lines, as
shown in Table 4. Even the developer could
reuse this module at the second time, he still
needed to modify a module to define this mod-
ule for required EPSS functions and embed
several modules for each target object in each
HTML Web page. When reusing this module
several times, the required size of programs was
6 lines from the second time as shown in Ta-
ble 4. When modifying a “window-on” module
to provide a user with a guidance window with
a message, the size of programs were 26 lines
as shown in Table 4. When reusing this mod-
ule, the size of programs was 1 line but needed
to embed for each target object in each HTML
Web page. As shown in Table 5, a total size of
programming for development of EPSS-A be-
came 2,390 lines by summing all the required
size of programs for all modules.
6.1.3 Comparison
To develop EPSS-A using WebAttendant, the

creator’s only work was making rules by us-
ing the WebAttendant authoring tool function.

626 IPSJ Journal Feb. 2002

The total number of operational steps involved
to make 43 rules was 103, and no special pro-
gramming skill was required. In contrast, using
a built-in EPSS framework, the creator had to
modify several EPSS modules using a program-
ming language. Even if the creator could reuse
EPSS modules that he/she had modified before,
there was still the need to modify a module to
define the EVENT and the GUINDANCE mod-
ules and embed these modules for each target
object in each HTML Web page. From the re-
sults of the experiments, we found that the to-
tal size of programs the creator had to mod-
ify were 2,390 programming lines. Though we
could not compare the total number of opera-
tional steps using WebAttendant and total size
of programs in built-in EPSS framework, we are
certain that the cost of EPSS-A development
using a built-in EPSS was higher compared to
the cost of EPSS-A development using WebAt-
tendant framework.
6.2 The Method and the Results of

Reusability Experiment:
6.2.1 Developing EPSSs for Different

Web Sites
We developed three different EPSS for three

different Web sites, using the WebAttendant
framework once and another time using a built-
in EPSS framework. The three different EPSS
were the EPSS for Web training site (EPSS-A),
which we already described in Section 6.1, the
EPSS for US Census Bureau Web site (EPSS-
B) as shown in Fig. 5 and the EPSS for Web
banking site (EPSS-C). We then compared the
amount of work needed to complete for develop-
ment of these EPSSs when we used the WebAt-
tendant framework compared to when we used
a built-in EPSS framework. Table 1 shows the
scenarios of EPSS services for each Web site.
From the scenarios, we determined the func-
tions each EPSS required to perform. Table 3
shows a list of modules for each function of the
EPSS-A, EPSS-B and EPSS-C.
(1) Results of EPSS development experi-
ments using a WebAttendant framework.
The only work needed to be completed to make
the EPSS modules reusable was to change sev-
eral parts of each rule that WebAttendant was
going to reuse.
We estimated the amount of work involved in
modifying the EPSS-A to be reusable as EPSS-
B or EPSS-C. We also estimated the amount
of work involved in modifying the EPSS-B to
be reusable as EPSS-C. The estimation was

Table 6 The results of reusability experiment
developing EPSSs for Different Web sites.

module name Built-in
Web-

Attendant
Event
load 11 0
mouseover 12 0
mouseout 12 12
click 4 4
repeated-focus 12 2
specified-focus-order 32 2
specified-focus-unorder 48 3
long-no-keypress 6 1
many-mouse-operations 60 10
many-scroll-operations 8 0
many-mouseover 48 12
many-back-button-return 24 0
click-hesitation 36 9
input-include-prohibited-char 36 9
Guidance
pagechange 5 5
window on 8 8
balloon help on 49 49
wizard 19 19
Web page on 14 14
alert 6 6
total 422 158

Built-in: The total number of programming lines the
creator had to modify to reuse =(B)×(E)

WebAttendant: The total number of operational steps
to change rules when reusing modules =(D)×(E)

(B),(D) in Table 4, (E) in Table 3

based on the total number of operational steps
involved in modifying the reusable rules. As
shown in Table 3 the number of rules created
for each Web site were 43 for EPSS-A, 35 for
EPSS-B, and 30 for EPSS-C. We consider each
part of reusability individually about EVENT
module as a “condition part” and GUIDANCE
module as an “execution part”. Reusable rules
that require no modifications:
These rules define the functions of an EVENT
module, which are independent of the Web
site contents. The following are examples of
reusable rules:
• A rule that defines the function of “many-
mouse operations (handling a mouse many
times)”.

• A rule that defines the function of “many-
scroll operations (handling user scrolling
many times)”.

There are some reusable rules that require some
changes, these are dependent on the Web site
contents. For example, “click-hesitation” mod-
ule in Table 4, 2 operational steps which define
a target DOM ID for an instruction in a rule
had to be changed. As show in the Table 6,
the total number of operational steps involved

Vol. 43 No. 2 Content-independent EPSS with Automatic Context Sensing on the Web 627

Table 7 The number of times using a module for a
user with a different skill.

module name L1 L2 L3 total(F)
The total number of rules 10 20 30
Event
load 1 2 4 6
unload 1 1 1
mouseover 3 2
mouseout 3 2
long-focus 1 1 1
long-no-keypress 1 1 1
many-mouse-operations 1 1 1
many-scroll-operations 2 2 2 5
many-mouseover 4 8 11
many-back-button-return 2 3 3 7
click-hesitation 3 3 1 6
input-include-prohibited-char 2 2 2 5
Guidance
pagechange 2 1
window on 4 5 7 15
balloon help on 4 10 13
wizard 3 3 5
Web page on 4 6 6 15
alert 2 2 2 5

L1: EPSS-L1, L2: EPSS-L2, L3: EPSS-L3
total: the total number of times reusing a module =
(F)

in modifying the reusable rules was 158 steps.
(2) Results of EPSS development experi-
ments using a built-in EPSS framework
We developed EPSS-A, EPSS-B and EPSS-C
using a built-in EPSS framework. To reuse
these EPSSs, the creator had to modify the
modules for each function using JavaScript and
Java languages, and had to embed them in each
module in each HTML Web page. Therefore,
the EPSS creator had to have programming
skills. We estimated the amount of work in-
volved in EPSS development based on the total
number of programming lines the creator had
to modify to reuse these EPSS modules. As
show in Table 6, the total programming lines for
development of EPSS-A, EPSS-B and EPSS-C
were 422 lines.
6.2.2 Developing EPSSs for Users

with Different Skill Levels in a
Same Web Site

We developed three different EPSSs once us-
ing the WebAttendant framework and another
time using a built-in EPSS framework. The
three different EPSSs were intended for users
of three different skill levels in Web site opera-
tion. We developed the EPSS for “highly skilled
users” as EPSS-L1, EPSS-L2 for “intermediate-
skilled users” and EPSS-L3 for “users with little
skill” in Web operation. We compared the tasks
involved in reusing the modules of these EPSSs

Table 8 The results of reusability experiment devel-
oping EPSSs for users with different skill
level in a same Web site.

module name Built-in
Web-

attendant
Event
load 6 0
unload 1 0
mouseover 2 2
mouseout 2 2
long-focus 4 1
long-no-keypress 6 1
many-mouse-operations 6 1
many-scroll-operations 10 0
many-mouseover 44 11
many-back-button-return 28 7
click-hesitation 24 6
input-include-prohibited-char 20 5
Guidance
pagechange 1 1
window on 15 15
balloon help on 13 13
wizard 5 5
Web page on 15 15
alert 5 5
total 207 90

Built-in: The total number of programming lines the
creator had to modify to reuse modules =(B)×(F)

WebAttendant: The total number of operational steps
to change rules for reusing modules =(D)×(F)

(B),(D) in Table 4, (F) in Table 7

when we used a WebAttendant framework com-
pared to when we used a built-in EPSS frame-
work.
Table 1 shows the scenarios for three EPSS

services for users with three different skill levels.
From the scenarios, we determined the func-
tions each EPSS was required to perform. Ta-
ble 7 shows a list of modules for each of the
functions the EPSS-L1, EPSS-L2 and EPSS-L3
were required to perform.
(1) Results of experiments using a WebAt-
tendant framework
The only works needed to complete to make
EPSS modules to be reusable was to change
several parts of each rule that WebAttendant
was going to reuse.
We estimated the amount of work involved in
modifying EPSS-L1 to be reused as EPSS-L2
or EPSS-L3. We also estimated the amount of
work involved in modifying the EPSS-L2 to be
reused as EPSS-L3. The estimation was based
on the total number of reusable rules that the
total number of operational steps involved in
modifying rules. Table 7 shows the number of
times using a module for a user with a differ-
ent skill. Table 8 shows the results of reusabil-
ity experiment developing EPSSs for users with

628 IPSJ Journal Feb. 2002

different skill levels on the same Web site. As
shown in Table 8, the total number of steps in-
volved in modifying rules for reusing the mod-
ules was 90 steps. Reusable rules requiring
no modifications are independent of the Web
site contents as described in section 6.2.1(1).
There are some reusable rules that required
some changes which are dependent on the Web
site contents as described in section 6.2.1(1).
For example, “window on” module in Table 4,
1 step which defines an intervention message in
a rule had to be changed.
(2) Results of experiments using a built-in
EPSS framework
We developed EPSS-L1, EPSS-L2, and EPSS-
L3 using a built-in EPSS framework. To reuse
these EPSS functions, the creator had to mod-
ify required modules using JavaScript and Java
languages, and had to embed each module for
each target object in each HTML Web page.
The work involved in developing the EPSS was
the same as that is described in section 6.2.1(2).
We estimated the amount of work based on the
total number of programming lines we had to
modify to make the EPSS modules reusable. As
shown in Table 8, the total number of program-
ming lines that needed to be modified was 207.
6.2.3 Comparison
Based on the results of experiments described

in 6.2.1 and 6.2.2, the only work needed to com-
plete to make the EPSS modules reusable was
to change several parts of each rule that We-
bAttendant was going to use. For example, the
creator changed the target object ID, and an
intervention message to make a rule reusable.
Moreover, some rules could be reused without
changing any parts of the rule. Therefore, the
work involved in making the EPSS reusable for
another Web site was 158 operational steps for
changing the rules in (a) developing EPSSs for
Different Web sites and 90 operational steps in
(b) developing EPSSs for users with a different
skill level in the same Web site.
On the other hand, in the case of a built-in

EPSS, the developer had to modify and em-
bed JavaScript programs for each target object
in each HTML Web page to define the EVENT
and GUIDANCE module. The work involved in
making the EPSS reusable was the task of em-
bedding 422 programming-lines for (a) and 207
programming-lines for (b). From the results of
these experiments, we concluded that the We-
bAttendant framework is superior to a built-in
EPSS framework in terms of its reusability for

developing EPSSs for different Web sites.
6.3 Discussion about Experiments to

Verify the Superiority of WebAt-
tendant over Built-in EPSS

We ran several sets of experiments to verify
the superiority of WebAttendant over a built-
in EPSS in terms of its cost-efficiency of de-
velopment. We examined the cost-efficiency
of WebAttendant development, and we con-
cluded that WebAttendant development is cost-
efficient because of its small amount of work
and its high reusability for other Web sites and
its capability to provide EPSS for users with
different Web operation skill levels.

7. An Experiment to Verify the Use-
fulness and Efficacy of EPSS Sys-
tem Using WebAttendant

In order to verify the usefulness and effi-
cacy of WebAttendant, we carried out exper-
iments in which WebAttendant provided task-
assistance service (EPSS service) to users of a
Web training site. This Web training site was a
task-oriented Web site where users had to reg-
ister using their ID, check the availability of the
courses, and fill out course application.
The first-time users tasks were searching to

find how to register using their ID, finding the
page for ID registration, and submitting their
ID. First-time users carried out these tasks with
or without task-assistance service by WebAt-
tendant.
7.1 Outline of the Created Rules in

the Experiment
We determined what kinds of rules are re-

quired for task-assistance. Then we created the
following 43 rules. These rules consist of “con-
dition part” and “execution part”. The type of
a context event and the current status of a con-
text are described in the condition part of the
rule. A method of guidance or the next status
of a context is described in the execution part of
the rule. Some examples of the rules are shown
below.
(1) A rule for assessing the user’s current
purpose:
An example of the rule is as follows:
(Condition part) When the top page is

loaded and the user performs MOUSEMOVE
events 5 times or more on the page.
(Execution part) a wizard (Fig. 6) asking

the user the purpose of his/her task is provided
beside the Web page.
(2) A rule to help users track the process flow

Vol. 43 No. 2 Content-independent EPSS with Automatic Context Sensing on the Web 629

of the business task
An example of the rule is as follows.
(Condition part) When the user checks

“I have not registered ID yet” in the window
asking whether or not the user has a registra-
tion ID.
(Execution part) A help balloon with the

message “carrying out ID registration for the
next step” is provided beside the ID registration
item in the current window (Fig. 7).
(3) A rule that directs users until the com-
pletion of registration.
This rule helps guide navigation until the user
completes the registration task, after Rule (1)
has been activated. For example, when a user
chooses ID registration task from the wizard,
the system will tell the user what to do to com-
plete the task, pointing to correct places until
registration is completed. An example of the
rule is as follows.
(Condition part) When the user’s mouse

moves over the input form of the ID registration
page.
(Execution part) A help balloon with the

message “Please input a six-digit number, and
click on the registration button” appears on the
input form.
7.2 The Results of the Experiment
The experiment was conducted over a 1-

month period. Twenty people, all first-time
WebAttendant task-assistance users, partici-
pated in the experiment. The participants car-
ried out the experiment either with or without
WebAttendant task-assistance service. WebAt-
tendant tracked the participants’ operations
generating activity histories. The experiment
was analyzed from four points of view:
(1) Whether or not a participant used We-
bAttendant task-assistance service
(2) Time spent to complete ID registration
(3) The number of a user’s operation events
(4) The results of the questionnaire
7.2.1 Analysis of Time Spent to Com-

plete Tasks
Figure 8 shows the average total time each

participant spent to register. It also shows the
average time each participant spent to complete
each process of registration task. The average
total time using WebAttendant task-assistance
service was 2.73 minutes or shorter, while for
those without a task-assistance service it was
5.84 minutes.
For ID registration, Users who carried out the

experiment without WebAttendant had to visit

Fig. 8 The average time participants spent to
register.

at least 4 specific Web pages. “Time spent on
each process” in the Fig. 8 is an average time
that users spent from the one go specific page
to another page. For example, for registration
task,
• The time for process # 1 is the average time
a user spent loading the top page and the
visitor center Web page.

• The time for process # 2 is the average
time a user spent loading the visitor center
Web page and the page describing how to
register.

• The time for process # 3 is the average
time a user spent loading the Web page de-
scribing how to register and the registration
Web page.

It is important to mention that the average time
for each process does include the time a user
may have wasted going to and returning from
pages unrelated to each specific process.
WebAttendant task-assistance helped users

spent less time to complete each process, com-
pared to when there was no assistance.
Users spent an average 2.60 minutes to com-

plete process # 1 when they used WebAtten-
dant task-assistance, compared to an average
1.19 minutes when there was no assistance. The
difference in average time is due to the fact that
several interventions, such as guidance windows
and three different wizards had to be loaded
and taught to the users in the case where there
was assistance. The 1.41 minutes increased av-
erage time in process # 1 is insignificant com-
pared to the 3.11 minutes reduction in total
time needed to complete the task.
Users spent longer time to complete process

1 through process # 3 mainly because they
had difficulty finding the right links leading to
task completion.
With task-assistance service, users didn’t

have to do process # 2 and # 3 because WebAt-
tendant automatically changed the top page to

630 IPSJ Journal Feb. 2002

Fig. 9 Average number for each operation event.

the page where users started process # 4. Plus,
balloon help messages and windows, which fa-
cilitate flow of each process, helped users to
complete process # 4 more efficiently. As a re-
sult, average total time for registration reduced
significantly.
7.2.2 Analysis of Each Experiment

Based on the User’s Operation
Event

Figure 9 showed the results of numbers of
user’s each operation event during the task to
register in the case with a task-assistance ser-
vice and without.
• The numbers of SCROLL events decreased
much more compared to the case without
a task-assistance service. This was be-
cause users without a task-assistance ser-
vice could not easily find the link to the
next page to lead the next process of the
task.

• Users could find the link easily thanks
to the interventions such as a balloon
help messages. The balloon help messages
pointed out the link to a next page to lead
the next process.

• The numbers of MOUSEMOVE events in-
creased more compared to the case with-
out a task-assistance service. The reason
for this is that users frequently moved the
mouse to the several interventions when
they appeared.

• The numbers of MOUSEOVER, and
MOUSEOUT events increased more com-
pared to the case without a task-assistance
service. The reason for this is owing to the
balloon help. Many balloon help messages
appeared when the users put the mouse
over the link and a form object and they
disappeared when the user put the mouse
out of these objects. As a result, users
had to repeat MOUSEOVER and MOUSE-

Fig. 10 Results of questionnaires on completion of
tasks with or without WebAttendant.

OUT operations if they needed to read mes-
sages again. This caused the numbers of
MOUSEMOVE and MOUSEOUT events
to increase.

7.2.3 Results of Questionnaires
Results of the questionnaires are shown in

Fig. 10. With task-assistance service, 80 per-
cent of the users completed their tasks with
no difficulties and 20 percent of the users com-
pleted their tasks with some degree of difficul-
ties. Without a task-assistance service 10 per-
cent of users completed their tasks with no dif-
ficulties, 30 percent of the users completed their
tasks with some degree of difficulty and 60 per-
cent of users could not complete their tasks.
The following are the reasons why WebAt-

tendant task-assistance service users completed
their tasks more efficiently:
• Help windows and balloon help messages
helped users to better understand the flow
of each process.

• Balloon help messages helped the users by
pointing out the links that users had to fol-
low to proceed to complete a given task.

7.3 Discussion about the Experiment
to Verify the Usefulness and Effi-
cacy of EPSS System Using
WebAttendant

Results of the experiments illustrate that
WebAttendant task-assistance service can re-
duce the time required for completing a task.
Interactive balloon help messages reduce the

Vol. 43 No. 2 Content-independent EPSS with Automatic Context Sensing on the Web 631

time wasted on SCROLL operations mainly be-
cause help messages pointed out the link objects
leading to the next process and navigated the
users to complete a task. On the other hand,
MOUSEMOVE, MOUSEOVER, and MOUSE-
OUT operations increased due to help windows,
wizards and balloon help messages intervention.
Results of the experiments also show that ev-
ery intervention was effective in decreasing the
completion time of a task.

8. Future Directions

Results of the experiments suggest the need
for research in the following areas:
(1) Management of rules
We created 30 rules for the experiment. As the
number of rules increases, keeping track of each
rule and operation condition becomes very com-
plicated. Thus making it very desirable to have
a management tool to show the purpose and
operating condition of each rule.
(2) Dealing with dynamically generated
pages
If the Web server is linked to a database and
generates pages dynamically, management of
access to DOM objects in the Web page be-
comes complicated since the document struc-
ture may change. Even an Xpointer13) will fail
unless the original server defines the proper IDs.
It is desirable to extend the rule-description
technology to deal with some of the structural
changes in such dynamic pages.

9. Conclusion

We proposed a framework for development of
a content-independent EPSS called WebAtten-
dant. In contrast to built-in EPSS, which is
a part of Web content, WebAttendant’s EPSS
can be built independent of the Web content.
We proposed the design, the structure and
the functions of WebAttendant. We have also
tested and evaluated its effectiveness.
We conducted a series of experiments to test

the effectiveness of WebAttendant. Based on
the results of these experiments, and we con-
cluded that WebAttendant is highly effective as
a platform of content-independent EPSS on the
Web site.
Acknowledgments Wewould like to thank

Takehisa Sato, Yukie Masuda, and Takayuki
Itoh and other IBM staff members for their co-
operation.

References

1) Amazon.com, http://www.amazon.com.
2) Ebay, http://www.ebay.com.
3) Stevens, G.H. and Stevens, E.F.: Designing

Electronic Performance Support Tools: Talent
Requirements, Performance and Instruction,
Vol.24, No.2, pp.9–11 (1995).

4) CoachWare, http://sterlingnet.com/sterling/
coachware.htm

5) Mmhelper, http://www.esmmi.com/product
more weel.htm

6) Microsoft Agent, http://msdn.microsoft.com/
workshop/imedia/agent/

7) QuickCards, http://www.epssinfosite.com/dd
qcard.html

8) Duke-Moran, C., Swope, G, Morariu, J. and
deKam, P.: Performance Support Case Stud-
ies from IBM, International Society for Per-
formance Improvement, Performance Improve-
ment Journal, Vol.38, No.7 (1999).

9) American FactFinder, http://www.census.gov
10) Furui, Y., Aoki, Y. and Hijikata, Y.: A Web

proxy for embedding operation profiling and
automatic navigation programs in Web pages,
The 60th IPSJ 5S-8, March 16, pp.421–422
(2000).

11) Aoki, Y. and Nakajima, A.: User-Side Web
Page Customization, The 8th International
Conference on Human Computer Interaction
(HCI International ’99), Vol.1, pp.580–584
(1999).

12) Aoki, Y., Ando, F. and Nakajima, A.: Web
Operation Recorder and Player, The 7th In-
ternational Conference on Parallel and Dis-
tributed Systems (ICPADS2000), pp.501–508
(2000).

13) XML Pointer Language (Xpointer) Version
1.0 W3C, Candidate Recommendation, 7 June
(2000). http://www.w3.org/TR/xptr

632 IPSJ Journal Feb. 2002

Appendix

A.1 Programming Lines

Table 9 Total number of programming lines for each
module using built-in EPSS.

module name (a) (b) (c) (d) (e) total
Load 1 0 8 3 0 12
unload 1 20 8 3 0 32
mouseover 1 20 10 3 0 34
mouseout 1 31 10 3 0 45
click 1 95 10 3 0 109
submit 1 30 4 3 0 38
no-change 4 49 35 120 15 223
repeated-focus 6 49 35 122 15 227
specified 16 49 35 145 32 277
-focus-order
specified 16 49 35 145 32 277
-focus-unorder
Long-focus 4 49 35 90 10 188
Long-no 6 49 35 105 22 217
-keypress
many-mouse 6 30 10 123 24 193
-operations
many-scroll 2 33 10 110 15 170
-operations
many-mouseover 4 20 10 110 15 159
many-back 4 25 10 140 37 216
-button-return
click-hesitation 4 45 35 126 18 228
input-include 4 40 12 93 11 160
-prohibited-char

(a): Handling Event
(b): Adding information to a event
(c): Making an event as an object
(d): Making an context event
(e): Updating a context
total: Total number of programming lines

(Received June 7, 2001)
(Accepted November 14, 2001)

Yuko Ikehata received the
M.E. degrees from Keio Uni-
versity, Japan, in 2000. She
also studied computer science
in Ecole Centrale de Nante,
France, as an exchange student
in 1999. She has been work-

ing in IBM Research, Tokyo Research Labora-
tory since 2000. Her current research interests
are information visualization, Internet applica-
tion technology, computer supported collabora-
tive work/learning, and human interface. She
received Best Paper Award of IPSJ National
Convention and also Fujiwara Memorial Award
from Keio University in 2000. She is a member
of IPSJ.

Toshio Souya was born 1964
in Tokyo and received the B.E.,
M.E., and Ph.D. degrees from
Tokyo University of Agriculture
and Technology, Tokyo, Japan,
in 1987, 1989 and 1992, respec-
tively. In 1992, he joined IBM

Research, Tokyo Research Laboratory. He
moved to IBM Global Services, Business Inno-
vation Services in early 2001 and currently he
is working as an associate consultant. His re-
search interests includes human interface, espe-
cially pen input, and computer supported col-
laborative learning. He is a member of IPSJ,
IEEE and ACM.

Yoshinori Hijikata received
the B.E. and M.E. degrees from
Osaka University, Osaka, Japan,
in 1996 and 1998, respectively.
In 1998, he joined IBM Re-
search, Tokyo Research Labora-
tory. Currently, he is a Ph.D.

candidate in Osaka University. His research
interests are on human interface and Internet
application technology. He is a member of
IPSJ, the Japan Society for Software Science
and Technology (JSSST), the Human Interface
Society (HIS) and the IEEE.

