
Vol. 43 No. 2 IPSJ Journal Feb. 2002

Regular Paper

Information Flow Control among Objects

in Role-based Access Control Model

Vlad Ingar Wietrzyk,
†
Keiji Izaki,

††
Katsuya Tanaka

††

and Makoto Takizawa
††

Various kinds of applications have to be secure in an object-based model. The secure system
is required to not only protect objects from illegally manipulated but also prevent illegal
information flow among objects. In this paper, we discuss how to resolve illegal information
flow among objects in a role-based model. We define safe roles where no illegal information
flow occurs. In addition, we discuss how to safely perform transactions with unsafe roles.
We discuss an algorithm to check if illegal information flow occurs each time a method is
performed.

1. Introduction

Various kinds of object-based systems like
object-oriented database systems, JAVA 7) and
CORBA 14) are widely used for applications.
Object-based systems are composed of multiple
objects cooperating to achieve some objectives
by passing messages. An object is an encap-
sulation of data and methods for manipulating
the data. Methods are invoked on objects in
a nested manner. The object-based system are
required to not only protect objects from ille-
gally manipulated but also prevent illegal infor-
mation flow among objects in the system.
In the access control model 12), an access rule

〈s, o, t〉means that a subject s is allowed to ma-
nipulate an object o in an access type t. Only
access requests which satisfy the access rules are
accepted to be performed. However, the con-
finement problem 13) is implied, i.e. illegal infor-
mation flow occurs among subjects and objects.
In the mandatory lattice-based model 1),3),17),
objects and subjects are classified into secu-
rity classes. Legal information flow is defined
in terms of the can-flow relation 3) between
classes. Access rules are specified so that only
the legal information flow occurs. For example,
if a subject s reads an object o, information in
o flows to s. Hence, the subject s can read the
object o only if a can-flow relation from o to s
is specified. In the role-based model 6),18),20), a
role is defined to be a collection of access rights,
i.e. pairs of access types and objects, to de-

† School of Computing and Information Technology,
University of Western Sydney

†† Department of Computers and Systems Engineer-
ing, Tokyo Denki University

note a job function in the enterprise. Subjects
are granted roles which show their jobs. In an
object-based system, the methods are invoked
on objects in a nested manner. The purpose-
oriented model 19),21) discusses which methods
can invoke another method in the object-based
system. In the paper Ref. 16), a message filter
is used to block read and write requests if il-
legal information flow occurs. The authors 10)

discuss what information flow to possibly occur
among objects if subjects issue methods by the
authority of the roles in case every method in-
vocation is not nested. Methods are invoked
in the nested manner in the object-based sys-
tems. Let us consider a database application in
a multi-tier client-server model by using Java
servlet 11). First, an application program, i.e. a
method A is invoked by a client. The program
A manipulates data in a data server and then
invokes an application program B in another
application server. Here, a method A invokes
another method B in a nested manner. Data
derived by A from the data server may be in-
cluded in the parameters of B and be brought
to B. This is an example of information flow to
occur in the nested invocation.
In this paper, we consider a role-based access

control in an object-based system where meth-
ods are invoked in a nested manner. We newly
discuss illegal information flow to occur among
objects by transactions in the role-based access
control. Objects support more abstract meth-
ods than read and write ones. First, we classify
the methods supported by objects from the in-
formation flow point of view. We define a safe
role where no illegal information flow occurs
by performing any transaction with the role.

353



354 IPSJ Journal Feb. 2002

In addition, we discuss an algorithm to check
for each method issued by a transaction if ille-
gal information flow occurs by performing the
method. By using the algorithm, some methods
issued by a transaction can be performed even
if the transaction is in a session with an unsafe
role. Data flowing from an object o1 to o2 can
belong to o2 some time after the data flows. We
discuss how to manage timed information flow.
In Section 2, we classify methods from infor-

mation flow point of view. In Section 3, we
discuss information flow to occur in a nested
invocation. In Section 4, we discuss how to re-
solve illegal information flow.

2. Object-based Systems

An object-based system is composed of ob-
jects which are encapsulation of data and meth-
ods. A transaction invokes a method by sending
a request message to an object. The method is
performed on the object and then the response
is sent back to the transaction. During the com-
putation of the method, other methods might
be invoked. Thus, methods are invoked in a
nested manner.
Each subject plays a role in an organization.

In the role-based model 6),18),20), a role is mod-
eled to be a set of access rights. An access right
〈o, t〉 means that t can be performed on the
object o. A subject s is granted a role which
shows its job function in an enterprise. This
means that the subject s can perform a method
t on an object o if 〈o, t〉 ∈ r. If a subject s is
in a session with r, s can issue methods in r.
Each subject can be in a session with at most
one role.
Each method t on an object o is characterized

by the following parameters:
1. Input type = I if the method t has input
data in the parameter, else N .

2. Manipulation type = M if the object o is
changed by t, else N .

3. Derivation type = D if data is derived
from o by t, else N .

4. Output type = O if data is returned to the
invoker of t, else N .

Each method t of an object o is character-
ized by a method type mtype(t) = α1α2α3α4,
where input α1 ∈ {I, N}, manipulation α2 ∈
{M, N}, derivation α3 ∈ {D, N}, and out-
put α4 ∈ {O, N}. For example, a method
class “IMNN” shows a method which car-
ries data in the parameters to an object and

changes the state of the object. Here, N is
omitted in the method type. For example,
“IM” shows IMNN . Especially, “N” shows
a type NNNN . Let MC be a set {IMDO,
IDO, IMO, IO, IMD, ID, IM , I, MDO,
DO, MO, O, MD, D, M , N} of sixteen pos-
sible method types. A counter object c sup-
ports methods display(dsp), increment(inc),
and decrement(dec). mtype(dsp) = DO and
mtype(inc) = mtype(dec) = IMD. Here, DO
means D and O. A notation “β1, . . ., βk ∈
mtype(t)” (k ≤ 4) shows mtype(t) = α1α2α3α4

and βi ∈ {α1, α2, α3, α4} (i ≤ k). For ex-
ample, I ∈ mtype(inc) and ID ∈ mtype(dec).
In the object-based systems, objects are cre-
ated and dropped. IM ∈ mtype(created) and
N ∈ mtype(drop). The method type mtype(t)
is specified for each method t by the owner of
the object.
We assume that each subject does not have

any persistent storage. That is, the subject
does not keep in record data obtained from ob-
jects. The subject issues one or more than one
method to objects. A sequence of methods is-
sued by the subject is referred to as a trans-
action, which is a unit of work. Each transac-
tion T can be in a session with only one role r.
A transaction has a temporary memory. Data
which the transaction derives from objects may
be stored in the temporary memory. On com-
pletion of the transaction, the memory is re-
leased. Any transaction does not share data
with the other transactions. In this paper, ob-
jects show persistent objects.
Suppose T with a role r invokes a method

t1 on an object o1 since 〈o1, t1〉 ∈ r. Suppose
t1 invokes another method t2 on an object o2.
Here, we assume 〈o2, t2〉 ∈ r. That is, 〈o, t〉 ∈
r for every method t invoked on an object o in
T .

3. Nested Invocation

3.1 Invocation Tree
Suppose a transaction T invokes a method

t1 on an object o1 and a method t2 on an ob-
ject o2. Then, t1 invokes a method t3 on an
object o3. The invocations of methods are rep-
resented in a tree form named invocation tree
as shown in Fig. 1. Each node 〈o, t〉 shows a
method t invoked on an object o in the trans-
action T . A dotted directed edge from a parent
to a child shows that the parent invokes the
child. A notation “〈o1, t1〉 �T 〈o2, t2〉” means
that a method t1 on an object o1 invokes t2 on



Vol. 43 No. 2 Information Flow Control among Objects 355

Fig. 1 Invocation tree.

o2 in the transaction T . A node 〈 , T 〉 shows a
root of invocation tree of T . Here, mtype(T ) is
N according to the assumption.
If a method serially invokes multiple meth-

ods, the left-to-right order of nodes shows an
invocation sequence of methods, i.e., tree is or-
dered. Suppose 〈o1, t1〉 �T 〈o2, t2〉 and 〈o1, t1〉
�T 〈o3, t3〉 in an invocation tree of a transac-
tion T . If t1 invokes t2 before t3, 〈o2, t2〉 pre-
cedes 〈o3, t3〉 (〈o2, t2〉 ≺T 〈o3, t3〉). In addition,
〈o4, t4〉 ≺T 〈o3, t3〉 if 〈o2, t2〉 �T 〈o4, t4〉. 〈o2, t2〉
≺T 〈o4, t4〉 if 〈o3, t3〉 �T 〈o4, t4〉. The relation
“≺T ” is transitive. T invokes t1 before t2 as
shown in Fig. 1. Here, 〈o1, t1〉 ≺T 〈o2, t2〉 and
〈o3, t3〉 ≺T 〈o2, t2〉.

3.2 Information Flow
Suppose mtype(t3) = DO, mtype(t2) = IM ,

and mtype(t1) = O in Fig. 1. In a transaction
T , data is derived from an object o3 through
the method t3. The data is forwarded to t1
as the response of t3. The data is brought to
t2 as the input parameter, and is stored into
o2 through t2. Thus, the information in o3 is
brought to o2. A straight arc indicates the in-
formation flow in Fig. 2. This example shows
that information flow among objects may occur
in a nested invocation.
[Definition] Suppose a pair of methods t1 and
t2 on objects o1 and o2, respectively, are in-
voked in a transaction T .
1. Information passes down from 〈o1, t1〉 to
〈o2, t2〉 in T (〈o1, t1〉⇁T 〈o2, t2〉) iff t1 invokes
t2 (〈o1, t1〉 �T 〈o2, t2〉) and I ∈ mtype(t2),
or 〈o1, t1〉 ⇁T 〈o3, t3〉 ⇁T 〈o2, t2〉 for some
〈o3, t3〉 in T .

2. Information passes up from 〈o1, t1〉 to
〈o2, t2〉 in T (〈o1, t1〉 ⇀T 〈o2, t2〉) iff 〈o2, t2〉
�T 〈o1, t1〉 and O ∈ mtype(t2), or 〈o1, t1〉
⇀T 〈o3, t3〉 ⇀T 〈o2, t2〉 for some 〈o3, t3〉 in T .

✷

[Definition] Information passes from 〈o1, t1〉
to 〈o2, t2〉 in an ordered transaction T (〈o1, t1〉
T→
O

〈o2, t2〉) iff 〈o1, t1〉 ⇁T 〈o2, t2〉 or 〈o1, t1〉 ⇀T
〈o2, t2〉, 〈o1, t1〉 ⇁T 〈o3, t3〉 ⇀T 〈o2, t2〉 and 〈o1, t1〉

Fig. 2 Information flow.

≺T 〈o2, t2〉, or 〈o1, t1〉 T→
O

〈o3, t3〉 T→
O

〈o2, t2〉 for
some 〈o3, t3〉 in T . ✷

[Definition] Information passes from 〈o1, t1〉
to 〈o2, t2〉 in an unordered transaction T

(〈o1, t1〉 T→
U

〈o2, t2〉) iff 〈o1, t1〉 ⇁T 〈o2, t2〉 or

〈o1, t1〉 ⇀T 〈o2, t2〉, or 〈o1, t1〉 T→
U

〈o3, t3〉 T→
U〈o2, t2〉 for some 〈o3, t3〉 in T . ✷

Suppose t1 is invoked before t2, i.e. 〈o1, t1〉
≺T 〈o2, t2〉 in Fig. 2. 〈o3, t3〉 ⇀T 〈o1, t1〉 ⇀T 〈 , T 〉
⇁T 〈o2, t2〉. 〈o1, t1〉 
 T→

O
〈o2, t2〉 if 〈o2, t2〉 ≺T

〈o1, t1〉. However, 〈o1, t1〉 T→
U

〈o2, t2〉. A rela-

tion “→T ” shows “ T→
O
” or “ T→

U
”. A notation “o1 →T

o2” shows “〈o1, t1〉 →T 〈o2, t2〉” for some meth-
ods t1 and t2. Here, T →T o and o →T T indicate
〈 , T 〉 →T 〈o, t〉 and 〈o, t〉 →T 〈 , T 〉, respectively.
According to the definitions, o1

T→
U
o2 if o1

T→
O

o2.
[Definition] 〈o1, t1〉 flows into 〈o2, t2〉 in a
transaction T (〈o1, t1〉 T⇒ 〈o2, t2〉) iff 〈o1, t1〉 →T
〈o2, t2〉, D ∈ mtype(t1), and M ∈ mtype(t2). ✷

In Fig. 2, 〈o3, t3〉 T⇒ 〈o2, t2〉 where 〈o3, t3〉 is
a source and 〈o2, t2〉 is a sink. Here, data in
o3 flows into o2. “〈o1, t1〉 T⇒ 〈o2, t2〉” can be
abbreviated as o1

T⇒ o2. T
T⇒ o if T →T o and o

is a sink. o T⇒ T if o→T T and o is a source. o1
r⇒

o2 for a role r iff o1
T⇒ o2 for some transaction

T with r.
[Definition] Information in oi flows into oj
(oi ⇒ oj) iff oi

r⇒ oj for some role r or oi ⇒ ok
⇒ oj for some object ok. ✷

oi ⇒ oj is primitive for a role r if oi
r⇒ oj .

oi ⇒ oj is transitive for a role r iff oi ⇒r oj is
not primitive for r, i.e. oi ⇒ ok

r⇒ oj but oi

 r⇒ oj for some ok. If oi ⇒ oj is transitive for
r, a transaction T with r may get data in oi
through oj even if T is not allowed to get data
from oi.
[Definition] “oi ⇒ oj” is illegal iff oi ⇒ oj is
transitive for some role r. ✷

[Definition] A role r threatens another role r1



356 IPSJ Journal Feb. 2002

Fig. 3 Safeness.

iff for some objects oi, oj , and o, oi
r1⇒ oj

r⇒ o
and oi ⇒ o is transitive for r. ✷

Suppose information in oi might flow into an
object oj (oi

r1⇒ oj) by performing a transaction
T1 with a role r1. Even if a transaction T2 is
not granted a role to derive data from oi, T2 can
get data in oi from oj if T2 is granted a role r to
derive data from oj . Thus, if there is another
role r threatening a role r1, illegal information
flow might occur if some transaction with r is
performed.
[Definition] “oi

r⇒ oj” is safe for a role r iff r
is not threatened by any role. ✷

Figure 3 shows a system including a pair of
roles r and r′ where oi

r⇒ oj . For another role

r′, oi
r′⇒ o and oj

r′⇒ o in Fig. 3 (1). Since r′ does
not threaten r, oi

r⇒ oj is safe. In Fig. 3 (2), oj
r′
⇒ o but oi

r′


⇒ o. However, T is not allowed
to derive data from oi. Hence, r′ threatens r
and oi

r⇒ oj is not safe. oi ⇒ o is illegal. This
is a confinement problem on roles. It is noted
that o may show a transaction. For example,
the transaction T manipulates oj through aDO

method t. Here, oi
r′⇒ T .

[Definition] A role r is safe iff r neither threat-
ens any role nor is threatened by any role. ✷

A transaction is safe iff the transaction is in a
session with a safe role. An unsafe transaction
is in a session with an unsafe role.
[Theorem] If every transaction is safe, no ille-
gal information flow occurs. ✷

That is, no illegal information flow occurs if
every role is safe. The paper 10) discusses an
algorithm to check whether or not illegal in-
formation flow possibly occurs if the method is
performed.

3.3 Invocation Models
Suppose a transaction T is in a session with

a role r. It is not easy to make clear what
transactions exist for each role and how each
transaction invokes methods. Hence, we first

Fig. 4 Invocation trees.

discuss a basic (B) model where there is one
transaction Tr which is in a session with a role
r and invokes all the methods in r, i.e. 〈 , Tr〉
�Tr

〈o, t〉 for every 〈o, t〉 in the role r. An in-
vocation tree of Tr is an unordered, two-level
tree. Here, 〈 , Tr〉 r→ 〈o, t〉 if 〈o, t〉 ∈ r and I
∈ mtype(t) according to the definition of →.
〈o, t〉 r→ 〈 , T 〉 if 〈o, t〉 ∈ r and O ∈ mtype(t). r→
is transitive. 〈o, t〉 r⇒ 〈 , T 〉 iff 〈o, t〉 r→ 〈 , Tr〉
and D ∈ mtype(t). 〈 , Tr〉 r⇒ 〈o, t〉 iff 〈 , Tr〉
r→ 〈o, t〉 and M ∈ mtype(t). 〈o1, t1〉 r⇒ 〈o2, t2〉,
iff 〈o1, t1〉 r→ 〈 , Tr〉 and 〈 , Tr〉 r→ 〈o2, t2〉 and
D ∈ mtype(t1) andM ∈ mtype(t2). Here, r

r⇒ o
and o r⇒ r show “〈 , Tr〉 r⇒ 〈o, t〉” and “〈o, t〉 r⇒
〈 , Tr〉” for some method t, respectively. “ r⇒

B
”

shows “ r⇒” in the B model.
Next, suppose a collection of transactions are

a priori defined. Tr(r) is a set of transactions
which are in sessions with r. Let N(T ) be a set
{〈o, t〉 | t is invoked on o in a transaction T}
and Al(r) be {〈o, t〉 | 〈o, t〉 ∈ N(T ) for every
transaction T in Tr(r)} (⊆ r). Suppose two
transactions T1 and T2 are in sessions with a
role r. T1 invokes a method t1 on an object o1.
T2 invokes a method t2 on an object o2 and then
t2 invokes a method t3 on an object o3 and t4 on
o4. Here, Tr(r) = {T1, T2}. N(T1) = {〈o1, t1〉},
and N(T2) = {〈o2, t2〉, 〈o3, t3〉, 〈o4, t4〉}. Al(r)
= N(T1) ∪ N(T2). There are two cases: invo-
cation sequence of methods is a priori fixed or
not, i.e. invocation tree of each transaction is
ordered (O) or unordered (U). In the basic (B)
model, Tr invokes t1 and t2. Since o1

r⇒ Tr
r⇒

o2
r⇒ o3, i.e. information in o1 possibly flows

to o3. In the unordered (U) and ordered (O)
models, there is no information flow between
o1 and o3, because o1 and o3 are manipulated
by T1 and T2, respectively. If the transactions
are not ordered, o4

r⇒ o3 as shown in Fig. 4.
On the other hand, if the transactions are or-
dered, o4 is manipulated before o3. Hence, o4
r


⇒ o3. oi
r⇒
U
oj if oi

r⇒
O
oj . oi

r⇒
B
oj if oi

r⇒
U
oj .



Vol. 43 No. 2 Information Flow Control among Objects 357

If transaction are not well defined in appli-
cations, the basic (B) model is taken. If it is
a priori well defined what methods are invoked
in each transaction but the invocation order of
methods is not a priori known, the unordered
(U) model is taken. Furthermore, if it is well
defined what order method are invoked in each
transaction, the O model is taken. Thus, it de-
pends on applications which model is taken.

4. Resolution of Illegal Information
Flow

4.1 Flow Graph
Every safe transaction is allowed to be per-

formed because no illegal information flow oc-
curs. As discussed in Fig. 4, o1

r⇒ o3 does not
hold in the U and O models even if o1

r⇒ o3 in
the B model. o1

r⇒ o3 in the U model but o1
r⇒

o3 does not hold in the O model. This means it
depends on an invocation sequence of methods
whether or not illegal information flow occurs.
The paper Ref. 10) discusses how to decide if a
role is safe and an algorithm for each method is-
sued by an unsafe transaction to check whether
or not illegal information flow possibly occurs
if the method is performed. However, it is not
easy, possibly impossible to decide whether or
not each role is safe if roles include large num-
ber of objects and roles are dynamically created
and dropped. In this paper, we discuss an al-
gorithm to check whether or not illegal infor-
mation flow necessarily occurs if each method
issued by every transaction is performed. A sys-
tem maintains a following directed flow graph
G.
[Flow graph]
1. Each node in G shows an object in the
system. Here, each transaction is also an
object. If an object is created, a node for
the object is added in G. Initially, G in-
cludes no edge.

2. A directed edge o1 →τ o2 is created if o1
T⇒ o2 by performing a transaction T of a
role r at time τ . If o1 →τ1 o2 already exists
in G, o1 →τ1 o2 is changed to o1 →τ o2 if
τ1 < τ .

3. For each object o3 such that o3 →τ2 o1
→τ o2 in G,
3.1 o3 →τ o2 is created if there is no edge
from o3 to o2 in G and τ2 < τ . go to
Step 2.

3.2 o3 →τ2 o2 if o3 →τ3 o2 is already in
G and τ2 > τ3.

Fig. 5 Flow graph G.

✷

Figure 5 shows a flow graph G including four
objects o1, o2, o3, and o4. First, suppose o1 →4

o2 and o2 →3 o4 hold in G. Then, information
flow o2

r1⇒ o3 occurs by performing a transac-
tion at time 6. Here, a directed edge o2 →6 o3
is created in G. Since o1 →4 o2 →6 o3, infor-
mation flowing to o2 from o1 at time 4 might
flow to o3 by the transaction. Hence, o1 →6 o3
since 4 < 6 (Fig. 5 (2)). Then, o3

r2⇒ o4 at time
8. o3 →8 o4. Since o1 →4 o2 →6 o3 →8 o4,
an edge o1 →8 o4 is also created and another
edge o2 →8 o4 is tried to be created. However,
“o2 →3 o4” in G. Since 3 < 8, the time 3 of the
edge “o2 →3 o4” is replaced with 8 (Fig. 5 (3)).
In Fig. 5 (3), information in the objects o1, o2,
and o3 flow into o4. Let In(o) be a set {oi | oi
→τ o in G} of objects whose information has
flown into an object o. Let Out(o) be a set { oi
| o →τ oi in G } of objects whose information
are flown from object o. For example, In(o4) =
{o1, o2, o3} in Fig. 5.
Suppose a method t is issued to an object o

in a transaction T with a role r. Each time a
method t is invoked on an object o in the trans-
action T , a pair 〈o, t〉 is logged in an invocation
tree form into a log LT . 〈o, t〉 shows a node of
ordered invocation tree of T . A flow graph G
is maintained according to the algorithm pre-
sented in preceding section. If the following
condition is satisfied, the method t cannot be
invoked in the object o by the transaction.
[Condition for a method t] (Fig. 6)
1. for every “o2 →τ o1” in a flow graph G if
IM ∈ mtype(t) and “o1

T⇒ o” is obtained
from LT .

2. for every “o2 →τ o” in G if DO ∈
mtype(t).

✷



358 IPSJ Journal Feb. 2002

Fig. 6 Condition.

In the condition 1, data in some object o2
might have been brought into an object o1 (o2
T⇒ o1) in a transaction T before the transaction
T manipulates an object o. Hence, we have
to check if information in an object o2 could
flow into another object o1. Here, if the role
r includes an access right to derive data from
the object o2, a method t is allowed to be per-
formed on the object o. Otherwise, the method
t is not allowed to be performed since illegal
information flow occurs. The second condition
shows that a transaction T with a role r issues a
method t to derive data from the object o. Here,
some data in another object o2 might have been
brought to an object o by another transaction
before the transaction T starts. Hence, the
method t is allowed to be performed on an ob-
ject o only if the transaction T is allowed to de-
rive data from every object o2 in the input set
In(o) (o2 ⇒ o). If the method t could be per-
formed according to the condition, the method
t is logged in the log LT of the transaction T if
DO ∈ mtype(t).

4.2 Timed Information Flow
Suppose some data in an object oi illegally

flows to another object oj by performing a
transaction T with a role r at time τ (oi →τ

oj in G). Security level of data is changing
time by time. After it takes some time δ, the
data brought from oi is considered to belong to
oj . δ is decided by security administrator. An
edge “oi →τ oj” is aged if τ + δ < σ where
σ shows the current time. Every aged edge is
removed from the graph G for σ. In Fig. 5,
suppose δ = 10. If σ gets 15, an edge timed
4 is aged now and removed. Figure 7 shows
the flow graph G obtained here. Suppose some
transaction T with a role r1 issues a request
t3 on an object o3 which DO ∈ mtype(t3) in
Fig. 5 (3) but data in o1 is not allowed to be
derived. In Fig. 5 (3), T is rejected according
to the conditions. However, the DO method t3
can be performed in Fig. 7 because of no illegal
information flow from o1 to T .
Suppose an object o3 is dropped in a flow

graph G of Fig. 5 (3). Since “o3 →4 o4” exists
in G, some data in o3 might have been copied in
o4. Hence, only transaction which is granted to

Fig. 7 Flow graph.

Fig. 8 Flow graph.

manipulate o3 is allowed to manipulate o4 even
after o3 is dropped.
[Drop of an object] An object o is dropped.
1. A node o is marked.
2. Every incoming edge in In(o) is removed
from G.

3. Every outgoing edge in Out(o) is marked.
✷

Figure 8 shows a flow graph G obtained by
dropping the object o3 through the algorithm
from Fig. 5 (3). The node o3 is marked ∗. A
dotted edge from o3 to o4 shows a marked edge.
All incoming edges to o3, i.e. “o1 →6 o3” and
“o2 →6 o3” are removed from G. Here, suppose
some transaction T issues a DO method t4 on
o4. t4 is rejected if T is not allowed to derived
data from o3 even if o3 is dropped already, be-
cause there is still data of o3 in o4. Each marked
edge is removed after it takes δ time units. If
a marked node o does not have any outgoing
edge, i.e. Out(o) = φ, o is removed from G.
[Remove of aged edge]
1. For any edge “oi →τ oj” in G, the edge is
removed if τ + δ ≤ σ.

2. Every marked node oi is removed if
Out(oi) = φ.

✷

5. Concluding Remarks

This paper discussed an access control model
for the object-based system with role concepts.
We discussed how to control information flow in
a system where methods are invoked in a nested
manner. We first defined a safe role where no
illegal information flow possibly occurs in types
of invocation models; basic (B), unordered (U),
and ordered (O) models. We presented the al-
gorithm to check if each method could be per-
formed, i.e. no illegal information flow occurs
after the method is performed. By using the



Vol. 43 No. 2 Information Flow Control among Objects 359

algorithm, some methods issued by an unsafe
transaction can be performed depending on in
what order a transaction performs the methods.
We also discussed a case that security level is
time-variant. Information flowing to another
object can be considered to belong to the ob-
ject after some time.
Another idea to protect illegal information

flow is to partially order access rights in roles.
The ordering relation show safe invocation se-
quences of methods. We would like to discuss
this point in another paper.

References

1) Bell, D.E. and LaPadula, L.J.: Secure Com-
puter Systems: Mathematical Foundations and
Model, Mitre Corp. Report, No.M74–244, Bed-
ford, Mass. (1975).

2) Castano, S., Fugini, M., Matella, G. and
Samarati, P.: Database Security, Addison-
Wesley (1995).

3) Denning, D.E.: A Lattice Model of Secure In-
formation Flow, Comm. ACM, Vol.19, No.5,
pp.236–243 (1976).

4) Fausto, R., Elisa, B., Won, K. and Darrell, W.:
A Model of Authorization for Next-Generation
Database Systems, ACM Trans.Database Syst.,
Vol.16, No.1, pp.88–131 (1991).

5) Ferrai, E., Samarati, P., Bertino, E. and
Jajodia, S.: Providing Flexibility in Informa-
tion Flow Control for Object-Oriented Sys-
tems, Proc. 1997 IEEE Symp. on Security and
Privacy, pp.130–140 (1997).

6) Ferraiolo, D. and Kuhn, R.: Role-Based Ac-
cess Controls, Proc. 15th NIST-NCSC Nat’l
Computer Security Conf., pp.554–563 (1992).

7) Gosling, J. and McGilton, H.: The Java Lan-
guage Environment, Sun Microsystems, Inc.
(1996).

8) Harrison, M.A., Ruzzo, W.L. and Ullman,
J.D.: Protection in Operating Systems, Comm.
ACM, Vol.19, No.8, pp.461–471 (1976).

9) Izaki, K., Tanaka, K. and Takizawa, M.: Au-
thorization Model in Object-Oriented Systems,
Proc. IFIP Database Security (2000).

10) Izaki, K., Tanaka, K. and Takizawa, M.: Infor-
mation Flow Control in Role-Based Model for
Distributed Objects, Proc. IEEE Int’l Conf. on
Parallel and Distributed Systems (2001).

11) Jason, H., William, C. and Ferguson, P.: Java
Servlet Programming, O’Reilly and Associates
(1998).

12) Lampson, B.W.: Protection, Proc. 5th Prince-
ton Symp. on Information Sciences and Sys-
tems, pp.437–443 (1971). (also in ACM Op-
erating Systems Review, Vol.8, No.1, pp.18–24

(1974))
13) Lampson, B.W.: A Note on the Confinement

Problem, Comm. ACM, Vol.16, No.10, pp.613–
615 (1973).

14) Object Management Group Inc.: The Com-
mon Object Request Broker: Architecture and
Specification, Rev. 2.1 (1997).

15) Oracle Corporation: Oracle8i Concepts, Vol.1,
Release 8.1.5 (1999).

16) Samarati, P., Bertino, E., Ciampichetti, A.
and Jajodia, S.: Information Flow Control
in Object-Oriented Systems, IEEE Trans. on
Knowledge and Data Engineering, Vol.9, No.4,
pp.524–538 (1997).

17) Sandhu, R.S.: Lattice-Based Access Control
Models, IEEE Computer, Vol.26, No.11, pp.9–
19 (1993).

18) Sandhu, R.S., Coyne, E.J., Feinstein, H.L.
and Youman, C.E.: Role-Based Access Control
Models, IEEE Computer, Vol.29, No.2, pp.38–
47 (1996).

19) Tachikawa, T., Yasuda, M. and Takizawa, M.:
A Purpose-oriented Access Control Model in
Object-based Systems, Trans. IPSJ, Vol.38,
No.11, pp.2362–2369 (1997).

20) Tari, Z. and Chan, S.W.: A Role-Based Ac-
cess Control for Intranet Security, IEEE Inter-
net Computing, Vol.1, No.5, pp.24–34 (1997).

21) Yasuda, M., Higaki, H. and Takizawa, M.: A
Purpose-Oriented Access Control Model for In-
formation Flow Management, Proc. 14th IFIP
Int’l Information Security Conf. (SEC ’98 ),
pp.230–239 (1998).

(Received June 7, 2001)
(Accepted December 18, 2001)



360 IPSJ Journal Feb. 2002

Vlad Ingar Wietrzyk ob-
tained his M.Sc. degree from
Prague University. EU and his
Dip. in Computer Science from
UTS, Sydney. Since 1999 he
has been at the University of
Western Sydney. Since 1997 un-

til 1998 he had been a visiting researcher of
Stuttgart and Mannheim Universities. He has
publications in national and international con-
ferences and workshops. In 1999 he was a visit-
ing researcher at the Institute of Software Engi-
neering, Montreal University. He has served on
the program committees of international con-
ferences like ICPADS, IDEAS, CIT, COMAD,
ENTER. He has deliverd industrial seminars
on computing to companies like VERSANT
and ALCATEL. While at the Analytical Ser-
vice Corporation, Sydney, 1987～1995 he de-
signed and implemented in software, a hierar-
chical clustering method which was the first to
support the analysis of data based on groups
and data exploration. His current research
interests are: object distributed databases,
various aspects of information systems design
methodologies (including distributed systems),
transaction processing in distributed systems,
concurrency control, distributed and federated
database systems, and distributed workflow
technology supporting electronic commerce. He
is a member of IEEE and AIEA.

Keiji Izaki was born in 1978.
He received his B.E. degree in
computers and systems engi-
neering from Tokyo Denki Univ.,
Japan in 2000. He is now a
graduate student of the master
course in the Dept. of Comput-

ers and Systems Engineering, Tokyo Denki
Univ. His research interests include distributed
database systems and security. He is a student
member of IPSJ.

Katsuya Tanaka was born
in 1971. He received his B.E.
and M.E. degrees in Computers
and Systems Engineering from
Tokyo Denki University, Japan
in 1995 and 1997, respectively.
From 1997 to 1999, he worked

for NTT Data Corporation. Currently, he is an
assistant in the Department of Computers and
Systems Engineering, Tokyo Denki University.
He received the D.E. degree from Dept. of Com-
puters and Systems Engineering, Tokyo Denki
University, Japan, in 2000. His research in-
terests include distributed systems, transaction
management, recovery protocols, and computer
network protocols. He is a member of IEEE CS
and IPSJ.

Makoto Takizawa was born
in 1950. He received his B.E.
and M.E. degrees in Applied
Physics from Tohoku Univ.,
Japan, in 1973 and 1975, respec-
tively. He received his D.E. in
Computer Science from Tohoku

Univ. in 1983. From 1975 to 1986, he worked
for Japan Information Processing Developing
Center (JIPDEC) supported by the MITI. He
is currently a Professor of the Dept. of Com-
puters and Systems Engineering, Tokyo Denki
Univ. since 1986. From 1989 to 1990, he was a
visiting professor of the GMD-IPSI, Germany.
He is also a regular visiting professor of Keele
Univ., England since 1990. He was a program
co-chair of IEEE ICDCS-18, 1998 and serves on
the program committees of many international
conferences. He chaired SIGDPS of IPSJ from
1997 to 1999. He is IPSJ fellow. His research in-
terests include communication protocols, group
communication, distributed database systems,
transaction management, and security. He is a
member of IEEE, ACM, and IPSJ.


