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Let us recall that every set A in NPncoNP has the structure in the form
A={x| 3y, |ly|={{x))Q(x,y) }={x| (Vy, |y|=p(|x]|))R(x,y)}
with two defining P-predicates Q,R and a defining polynomial p. We just call it a P-
predicate structure of A. To investigate the complexity of A, we now turn our attention to
its P-predicate structures. Let us say y a symmetric solution for A on an input x if
lyl=p(|x|)A(Q(x,y)v-R(x,y)) is satisfied. The symmetric solutions for A directly represent
the complexity of P-redicate structures of A. For example, if we can access such a solutioh
easily then A is easily recognizable. Hence it is less complex. So we may observe how
intricate we access symmetric solutions for A.

Let us call f an access function for a set AeNPncoNP if f computes a symmetric solution for
A on each input. This paper aims at investigating the computational complexity of each
access function for NPncoNP-sets. To see the complexity of computing access functions, let
us use the following classes of functions on 3* (say {0,1}*). For any oracle machine M,
Query(M,B,x) represents the set of all query words in the computation of MB(x). Write #B to
denote the cardinality of a set B.

(1) fePFy(B) <=> some p-time deterministic oracle transducer M computes f with B as an
oracle.

(2) f€PF..(B) <=> [fePF{(B) via a transducer M which Query(M,B,x) is listable by some
function gePFy. Call g a query list.

(8) f€PFrro(rogmy1({B) <=> [ePFy(B) via a transducer M, where #Query(T,B,x)sclog|x|+d
holds for all x by some absolute constants c¢,d=20.

(4) fePFpt(B) <=> [€PF.:(B) via a transducer M, where for all x #Query(M,B,x) is
bounded by some absolute constant.

We now introduce the concept of p-time accessibilities.

DEFINITION 1. Assume re{T,tt,T[O(logn)]1,btt} and Bc3*.

{1) A language A belongs to the p-time r—-accessible class with the oracle B, PA.(B), if and
only if there exist two defining P-predicates Q,R, a defining polynomial p and a function
J€PF.(B) such that

(1) A={x| 3y, lyl=p(x]))Q(x,y)}={x]| (Vy, |y|=p(|x])))R(x,y)}, and
(ii) Vxl[jf(x) |=p({x])A(Q(x,[f(x))v-R{(x,f(x)))].

(2) For a complexity class C, PA.(C) is the union of PA.(B) for every oracle set BeC.

1t should be noted that PA.(®)=PA.(P)=P holds for every re{T,tt,T[O(logn)],btt}, and also
PA,(Z”)ENPncoNP is shown, where 2% denotes the power set of 3%,

PROPOSITION 2. PAz(NP)=PA,,(45)=NPncoNP.
Schoning introduced the concept of polynomially helping the robust algorithms. We can see
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the relationship of two concepts, the p-time T-accessibility and the polynomially helping.
Pue1p(B) denotes the class of languages helped by B.
THEOREM 3. PAz(B)=Ppe1p(B).

Some observations show that PFr(o(iogn)j (B)-functions are no more powerful than
PF (REC-TALLY) -functions. Therefore we get:

THEOREM 4. PArgociogny1 (2% )=PAp,, (2°)=P.

Recentiy Ko showed Strong-P/poly is no-helper, in other words, PAy(Strong-P/poly)=P. Assume
C is either P, NPncoNP or NP. His argument can be generalized for Strong-C/poly.

PROPOSITION 5. PAr(Strong-C/poly)=PAr(C), where C is either P, NPncoNP or NP.

Turn to the p-time tt-accessible classes which can collapse to P. We next see two
collapsing results concerning the concepts of the polynomial terseness and the p-selectivity.

Let us begin with (f,g)-pterse sets, an extension of pterse sets. In the following theorem
we use the counting argument directly.

THEOREM 6. PA,:(B)=P unless B is (poly,logpoly)-pterse.

Selman showed Py (PSEL)=Py(TALLY), while P.{(PSEL)+P;(PSEL) is recently proved by Watanabe.

This difference is clear in the case PA.(PSEL). From Selman's result,
PAr (PSEL) =PA; (TALLY) =PA¢(P/poly)
holds, however, PA.+(PSEL) collapses to P.

bPSEL denotes the family of all bounded-p-selective sets. We here notice that bPSEL is
contained between PSEL and the class wWPSEL of weakly p-selective sets. Hence it is infered
that,for re{T, tt}, _

PA. (PSEL)<PA, (bPSEL) cPA, (WPSEL) .

Let us claim the collapse of PAy (bPSEL) to P.

THEOREM 7. PA,,(bPSEL)=PA,,(PSEL)=P.

We next devote our attention to the elucidation of structural complexities of the remaining
accessible classes among well-known complexity subclasses of NPncoNP.

APT is the family of languages A so that some almost polynomial time machine recognizing A.
PROPOSITION 8. PAy(APT)=PAu(APT)=PA,(REC—TALLY)=PAr(REC—SPARSE), where re{T,tt}.

It reminds us that ZPP is a natural probabilistic class contained in BPPNn(NPncoNP). We can
show the following theorem. )

THEOREM 9. PAz(BPP)<ZPPcPAy(APT).

Another well-known class belonging to NPncoNP is the class FewPncoFewP. For the case
FewPncoFewP, we can use Hemachandra’s technique of hiding informations to a NP-set. Then we
get:

THEOREM 10. FewPncoFewP<PAr (FewP)NPA,. (NP) .
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