NP∩coNP-集合の多項式時間到達可能性について

2L-1

山上 智幸 立教大学数学科

Let us recall that every set A in NPocoNP has the structure in the form $A=\{x\mid (\exists y, |y|=p(|x|))Q(x,y)\}=\{x\mid (\forall y, |y|=p(|x|))R(x,y)\}$

with two defining P-predicates Q,R and a defining polynomial p. We just call it a P-predicate structure of A. To investigate the complexity of A, we now turn our attention to its P-predicate structures. Let us say y a symmetric solution for A on an input x if $|y|=p(|x|)\wedge(Q(x,y)\vee\neg R(x,y))$ is satisfied. The symmetric solutions for A directly represent the complexity of P-redicate structures of A. For example, if we can access such a solution easily then A is easily recognizable. Hence it is less complex. So we may observe how intricate we access symmetric solutions for A.

Let us call f an access function for a set $A \in NP \cap coNP$ if f computes a symmetric solution for A on each input. This paper aims at investigating the computational complexity of each access function for $NP \cap coNP$ -sets. To see the complexity of computing access functions, let us use the following classes of functions on Σ^* (say $\{0,1\}^*$). For any oracle machine M, Query (M,B,x) represents the set of all query words in the computation of $M^B(x)$. Write B to denote the cardinality of a set B.

- (1) $f \in PF_T(B)$ $\langle = \rangle$ some p-time deterministic oracle transducer M computes f with B as an oracle.
- (2) $f \in PF_{tt}(B) \iff f \in PF_{T}(B)$ via a transducer M which Query(M,B,x) is listable by some function $g \in PF_{T}$. Call g a query list.
- (3) $f \in PF_{T[O(logn)]}(B) \iff f \in PF_{T}(B)$ via a transducer M, where $\#Query(T,B,x) \le c \log |x| + d$ holds for all x by some absolute constants $c,d \ge 0$.
- (4) $f \in PF_{btt}(B) \iff f \in PF_{tt}(B)$ via a transducer M, where for all x *Query(M,B,x) is bounded by some absolute constant.

We now introduce the concept of p-time accessibilities. DEFINITION 1. Assume $r \in \{T, tt, T[O(logn)], btt\}$ and $B \subseteq \Sigma^*$.

- (1) A language A belongs to the *p-time* r-accessible class with the oracle B, $PA_r(B)$, if and only if there exist two defining P-predicates Q, R, a defining polynomial p and a function $f \in PF_r(B)$ such that
 - (i) $A = \{x \mid (\exists y, |y| = p(|x|)) Q(x,y)\} = \{x \mid (\forall y, |y| = p(|x|))\} R(x,y)\},$ and
 - (ii) $\forall x[|f(x)|=p(|x|)\wedge(Q(x,f(x)))\vee \neg R(x,f(x)))].$
 - (2) For a complexity class C, $PA_r(C)$ is the union of $PA_r(B)$ for every oracle set $B \in C$.

It should be noted that $PA_r(\emptyset) = PA_r(P) = P$ holds for every $r \in \{T, tt, T[O(\log n)], btt\}$, and also $PA_r(2^{3^*}) \subseteq NP \cap coNP$ is shown, where 2^{3^*} denotes the power set of Σ^* .

PROPOSITION 2. $PA_T(NP) = PA_{tt}(\Delta_p^p) = NP \cap coNP$.

Schöning introduced the concept of polynomially helping the robust algorithms. We can see

A note on polynomial-time accessibility to symmetric solutions for NPAcoNP-sets Tomoyuki Yamakami

Department of Mathematics, Rikkyo University

the relationship of two concepts, the p-time T-accessibility and the polynomially helping. $P_{help}(B)$ denotes the class of languages helped by B.

THEOREM 3. $PA_T(B) = P_{help}(B)$.

Some observations show that $PF_{T[O(logn)]}(B)$ -functions are no more powerful than $PF_{tt}(REC\text{-TALLY})$ -functions. Therefore we get:

THEOREM 4. $PA_{T[O(logn)]}(2^{\Sigma^*}) = PA_{btt}(2^{\Sigma^*}) = P$.

Recently Ko showed Strong-P/poly is no-helper, in other words, $PA_T(Strong-P/poly) = P$. Assume C is either P, NP \cap coNP or NP. His argument can be generalized for Strong-C/poly.

PROPOSITION 5. $PA_T(Strong-C/poly) = PA_T(C)$, where C is either P, $NP \cap coNP$ or NP.

Turn to the p-time tt-accessible classes which can collapse to P. We next see two collapsing results concerning the concepts of the polynomial terseness and the p-selectivity.

Let us begin with (f,g)-pterse sets, an extension of pterse sets. In the following theorem we use the counting argument directly.

THEOREM 6. $PA_{tt}(B) = P$ unless B is (poly, logpoly) - pterse.

Selman showed $P_T(PSEL) = P_T(TALLY)$, while $P_{tt}(PSEL) \neq P_T(PSEL)$ is recently proved by Watanabe. This difference is clear in the case $PA_r(PSEL)$. From Selman's result,

$$PA_T(PSEL) = PA_T(TALLY) = PA_T(P/poly)$$

holds, however, PAtt (PSEL) collapses to P.

bPSEL denotes the family of all bounded-p-selective sets. We here notice that bPSEL is contained between PSEL and the class wPSEL of weakly p-selective sets. Hence it is infered that, for $r \in \{T, tt\}$,

 $PA_r(PSEL) \subseteq PA_r(bPSEL) \subseteq PA_r(wPSEL)$.

Let us claim the collapse of PAtt(bPSEL) to P.

THEOREM 7. $PA_{tt}(bPSEL) = PA_{tt}(PSEL) = P$.

We next devote our attention to the elucidation of structural complexities of the remaining accessible classes among well-known complexity subclasses of NPocoNP.

APT is the family of languages A so that some almost polynomial time machine recognizing A. PROPOSITION 8. $PA_T(APT) = PA_{tt}(APT) = PA_T(REC-TALLY) = PA_T(REC-SPARSE)$, where $r \in \{T, tt\}$.

It reminds us that ZPP is a natural probabilistic class contained in $BPP \cap (NP \cap coNP)$. We can show the following theorem.

THEOREM 9. $PA_T(BPP) \subseteq ZPP \subseteq PA_T(APT)$.

Another well-known class belonging to NP \cap coNP is the class FewP \cap coFewP. For the case FewP \cap coFewP, we can use Hemachandra's technique of hiding informations to a NP-set. Then we get:

THEOREM 10. $FewP \cap coFewP \subseteq PA_T(FewP) \cap PA_{tt}(NP)$.

REFERENCES

- [1] T.Yamakami, Computational complexity of languages counting random oracles, to appear in Lecture Notes in Mathematics.
- [2] T.Yamakami, Polynomial-time accessibility to symmetric solutions for NP\coNP-sets, submitted to Theoretical Computer Science.