938 :
TARIL I

238 (R AI644E R) & H K &

Processing Distributed Set Queries

2Q-1

Mohamed El-Sharkawi

-The Set Equality Correlated Case-

Yahiko Kambayashi

Faculty of Engineering, Kyushu University

1- Introduction
To build an efficient distributed system, problems
associated with distributed databases have to be
solved. Among these problems, the problem of
efficient query processing is important. In this

aper, we discuss efficient processing of set queries.
gince processing set queries involves transmition of
large volumes of data, finding efficient ways to
process these queries is important. We discuss set
queries in context of SQL, the approach, however, is
general. A set query in SQL is represented by the
nested form; i.e. as two query blocks connected by a
set operatlon The objective is to minimize
transmission cost by minimizing size of data to be
transmitted between sites in the system.The
approach is similar to the one in case of centeralized
set queries [1]. Functional dependencies between
attributes in the query are used to minimize size of
transmitted data. A set query is transformed into
either a distributed non-set query or a local set
query. Optimization of distributed nested SQL
queries was discussed in [2], however, optimization
of set SQL queries is missing. Optlmlzatlon of set
queries, in general, was discussed in [3]. The
objective is to find a transmission plan that
minimizes the communication cost. It is assumed
that relations in the database are partitioned.
Set queries are classified into two main types,
correlated and uncorrelated. A query is correlated
when the inner query block refers to a relation in the
outer block, and uncorrelated otherwise. Here,
correlated set queries are considered. Correlated
queries are then classified into two types, one when
the WHERE clause of the outer block contains a
constant, the second when it contains an attribute.
These types are called type-SCOR1 and type-SCOR2,
respectively. The general form of these two types
are:

e-SCOR1

ELECT RI.C FROM RI

WHERE "Constant" SET OPERATION
SELECT RJ.K FROM RJ
WHERE RLV = RJ.U
e-SCOR2
SELECT RI.C FROM RI
WHERE RILK SET OPERATION
SELECT RJ.K FROM RJ
WHERE RLV = RJ.U

Here, we concentrate on queries where the set
operation is =ALL (i.e. set equality operation).

1-2 Assumptions
In this paper we make the following assumptions:
(1) The underlying communication network is a
long-haul network. (2) The set query is of level one
nesting. That is, it consists of two nested blocks.
Each relation (set of relations) in a block are stored
in a different site from the other block. (3) All local
and non-set distributed operations are done before
optimizing the set operation. (4) The cost of
processing the query at the output site is always less
than the cost of sending the output relation to the
other site and then send the output back.

1-3 Basic Idea
The very intuitive approach to process a set query is
to send either relation to the other site. If the output
is needed at site RI, it is better to send RJ to site RI.
If, however, the cost of sending RJ is greater than
the cost of sending RI to RJ in addition to the cost of
sending the output back to site RI, it is better to send
RI to site RJ. In this approach, the whole relation,
either RI or RJ, is sent to the other site. Our
approach is to use set semantics to minimize size of
one of the relations before it is sent. For two sets to
be equal, the necessary condition is that they should
have same size. In the relational model, the size of a
set of values of a certain attribute that is associated
with a value of another attribute can be reasoned
using functional dependencies between the
attributes. For instance, if there is an FD between
attributes U and K, i.e. U—K, for any value of U
there is one and only one associated value of K. On
the other hand, if such dependency is not satisfied,
the set of K-values associated with a u-value may be
equal or greater than one. We use this knowledge to
send only sets that have sizes match the set
operation. There are four possible combinations of
set sizes. Either the both sets are of size one, one is of
size one and the other is of size greater or equal one,
or the both sets are of size greater than one. For each
case procedures that minimize communication cost
are presented.
2- Processing Queries of The First Type
The query has the form:
SELECT RI FROM RI
WHERE "Constant" = ALL
SELECT RJ.K FROM RJ
WHERE RI.V=RJ.U

In this case Set 1 is of size one and the only element
in this set has its value specified to be "Constant".
The following procedure converts the query into a
non-set query:
(1) Send the value "Constant” to site RJ.
(2) If RJ.U — RJ.K, apply the following query to
generate a new relation RJ*(U):

SELECT RJ.U FROM RJ

WHERE RJ.K = "Constant".
(3) Else, apply the following query:

SELECT RJU FROM RJ
GROUPBY U

HAVING COUNT (DISTINCTK) = 1
AND K = "Constant"

In this query, DISTINCT clause is important since
we handle sets. The query gets all U values having
the associated sets of K values are of size one, and
the only element in the set is equal to "Constant”.
(4) Send the result of the query to site RI, the query
becomes a local nested non-set query:
SELECT RI.C FROM RI
WHERE RILV = SELECT RJ*U FROM RJ*
Cost of the procedure is the cost of sending
the"Constant" from RI to RJ in addition to the cost of
sending the result of the query generating RJ*.
3- Processing Queries of The Second Type

A query of this type has the form:

939

SELECT RI.C FROM RI
WHERE RLK = ALL SELECT RJ.KX
FROM RJ
WHERE RILV = RJ.U

Size of Set 1 in this case is not specified, so we need to
consider all possible combinations of set sizes.
[1] Both sets are of size equal to one. This arises
when the following two dependencies are satisfied:
RLV — RLK and RJ.U — RJ.K. In this case, = ALL
can be replaced by the scalar equality, and the query
becomes a non-set correlated query. The cost of this
conversion is cost of sending the informative
messages between sites.
[2] Size of Set 1 is one and the size of Set 2 is equal to
or greater than one. The following dependencies
should be satisfied: RLV — RLK and RJ.U + RJ.K.
Thus, U-values that may participate in the query are
those having the associated set of K-values is of size
one. The following procedure converts the query into
a non-set query:
(1) Send a message from site RI to site RJ informing
the existence of the FD RL.V — RLK.
(2) Process the following query on relation RJ to
generate a new relation RJ*(U,K):
RJ*(U,K) = SELECT RJ.U,RJ.K FROM RJ

GROUPBY U

HAVING COUNT (DISTINCTK) = 1
RJ*(U,K) is the projection of RJ on U and K such
that each u value has only one associated k value.
(3) Send RJ* to site RI
(4) The query becomes a centeralized non-set
correlated query as follows:
SELECT RIL.C FROM RI
WHERE RLK = SELECT RJ*K FROM RJ*

WHERE RLV = RJ*U

The cost of the procedure is the summation of the
cost of sending the informative message from site RI
to site RJ and the cost of sending RJ* to site RIL
We can minimize the cost of sending RJ* if the
dependency RJ.K > RJ.U is satisfied, by sending an
unnormalized relation of RJ* by applying Group-By
on attribute K. Note that, if the number of distinct K
values is small with respect to the number of U
values, we can apply semi-join between RJ*and RI
on attribute K in order to minimize the size of RJ*
“before sending it to site RL
[3] The third case, when Set 1 is of size greater or
equal to one and Set 2 is of size one. That is the
following dependencies are satisfied: RI.V + RLK
and RJ.U — RJ.K. In this case, we apply a procedure
similar to the previous one on relation RI.
(1) Send a message from RJ to RI informing the
existence of the FD: RJ.U — RJ.K.
(2) At site RI apply the following query:

RI*(V,K,C) =
SELECT RLV,RILK,RI.C FROM RI
GROUPBY V

HAVING COUNT(OISTINCT K)=1
The query gets tuples of RI with V. values has only
one associated k value.
(3) Send the projection of RI* on attributes V, K,
named RI**, to site RJ. The projection of RI* is sent
to site RJ, violating assumption 4, since the size of
RI* is small with respect to the size of relation RdJ.
(4) Apply the following query at RJ to get RI#(V).
SELECT RI*V FROM RI*
WHERE RI**K = SELECT RJ.K FROM RJ

WHERE RI*.V=RJ.U.

RI# contains V values such that their tuples satisfy
both conditions in the query.

(5) Send RI# to site RI.
(6) Perform the following query at RI to get the
result:
SELECT RI**.C FROM RI**
WHERE RI**V = SELECT RI#.V FROM RI#.
The cost of this procedure is the cost of sending
relation RI** to site RJ in addition to the cost of
sending relation RI# to site RI.
[4] The forth case when the both sets are of sizes
greater than one. The situation is different from the
previous cases, elements in the two sets have to be
compared for equality. The following procedure
minimizes the cost of data transmission and the
query is converted into a local set query.
(1) Exchange messages between the two sites to
inform that the set size is greater than one.
(2) Apply the following query at site RJ:
RJI*(U,CK,K)=
SELECT RJ.U, COUNT(DISTINCT K), K
FROM RJ
GROUP BY U.
The objective of this query is to create a new
attribute that counts the size of the set of K values
associated with a u value.
(3) At site RI, get a relation RI*(V,CK,C) by
applying a query similar to the one in Step 2 on
relation RI.
RI*(V,CK,K,C) =
SELECT RLV, COUNT(DISTINCT K), R1LX, RI.C
FROM RI
GROUPBY V.
This query is similar to the query in step (2).
(4) Send the projection of RJ* on attributes U, CK,
named RJ#, to site RL
(5) Apply the following query at site RI:
RI**(U,V,K,C) =
SELECT RJ#.U, RI*.V, RI* K, RI*.C
FROM RI* RJ#
WHERE RJ#.U = RI*.V
AND RJ#.CK = RI*.CK.
The query produces a tuple consisting of RJ#.U,
RI*V, RI*.K, and RI*.C, in which RJ#.U is equal to
RI*.V and the sizes of the sets of K values associated
with two similar u and v values are same.
% Send the projection of RI** on U, as RJ%, to site

(7) Apply the following query at site RJ:
RJI**(U,K) = SELECT RJ*U,RJ*K
FROM RJ* RI%
WHERE RJ*.U = RJ%.U.
The query combines each u value in the result of the
query in step(5) with its associated set of K values.
(8) Send RJ** to site RI and apply the following
uery:
%ELECT RI*.C FROM RI*
WHERE RI*K =ALL SELECT RJ**K
FROM RJ**
WHERERI*.V = RJ**.U,
This query obtains the final result; it is a local set
query.

The cost of this procedure is the summation of
transmission costs in Steps (1), (3), (6), and (8).

References

[1]1 El-Sharkawi, M., Kambayashi, Y., LA
Feb. 1988.

[2] Gavish, B., Segev, A., ACMTODS, 11, 3, Sep.
1986.

[3] Lohman, G., M., et.al. , Proc. VLDB, 1984.

Symp.

