TR B 25 37 1] (MR MI634F- 1% 1) &[5 k2

687

7Y -3

A 1.1 M LIPS (i.e. MHz) Flat GHC Interpreter for the
Hitachi Supercomputer S-820

Martin Nilsson and Hidehiko Tanaka *
The University of Tokyo

Abstract: We will describe some optimizations of
an implementation of Flat GHC For the Hitachi S-
820/80 supercomputer. The implementation performs
about 1.1 million process reductions per second, for a
concatenate-type benchmark.

1 Introduction

One of the interesting features of logic programming
languages is that interpreters for these languages often
can be expressed as very compact loops. Our research
is based on the idea that if we can express the language
interpreter as a few vectorizable loops, we might get a
very efficient supercomputer implementation.

We compile Flat GHC to a lower-level language Fleng,
for which it is relatively easy to write a vectorizable
interepreter [1}, [2], [3]

There is an empirical guideline for Prolog implemen-
tations which says that the inference frequency (LIPS
number) is very approximately f/1000 for an inter-
preter, where f is the number if machine instructions
per second (MIPS number). If we take the peak per-
formance as the MIPS number for the supercomputer,
we obtain a “dream” value of about 3 MHz inference
frequency for the S-820 supercomputer. Since this com-
puter has 12 pipelines, several of which are dedicated
to multiplication, etc., which is not useful for our im-
plementation, the actual number of useful pipelines is
something like four to eight. This reduces the dream
value to 1-2 MHz.

Our Fleng interpreter comes quite close to this value,
by performing about 1.1 million process reductions per
second on the S-820.

The interpreter we describe is an improvement of an
earlier interpreter. We will briefly mention the main
optimizations we have made, benchmark results, and
some other implementation data.

*Hidehiko Tanaka Lab., Dept. of Electr. Engineering, Univ.
of Tokyo, Bunkyo-ku, Hongo 7-3-1, TOKYO 113

2 Optimizations

Almost all optimizations involve unification. This
might not be so strange, since almost all of the code
is unification. All optimizations maintain the 100%
vectorization ratio.

e Separation of Head and Body Unification
The old implementation tried to share as much
code as possible. For instance, most of the code
for head and body unification was shared. In the
new implementation, these have been separated,
allowing different optimizations for each case.

e More Compact Clause Representation
Earlier not only data, but also clauses, were repre-
sented as binary trees. They are now represented
as linear records. This speeds up AND- and OR-
reduction, which need fewer memory references.

e Indexing
Head unification now looks at the type of the first
argument to see if some quick decision is possible.

e Separate First Unification Stage
The first stage of unification has been taken out,
and is handled specially. This allows a kind of
“secondary indexing.” Also, stack frames do not
have to be created for unifications which succeed
quickly.

e Unification first Sequential, then Parallel
Unification is first performed serially, and if suc-
cessful, it is split up in several parallel parts. This
also builds upon the idea of indexing: The success
of head unification is usually decided early. The
purpose of the later stages are more important for
parameter transfer.

e Recognize First Occurrence of Variables
Unification recognizes the first occurence of head
variables, and binds them immediately, without
unnecessary dereferencing.

e The Unification Stack Area is Reset Automatically
Stack frames used by unification are automati-
cally thrown away after unification finishes. This



688

has the side effect that suspended processes must
restart unification from the beginning when they
are activated.

e SIMD Simplifies Distributed Unification
We realized that SIMD computers substantial sim-
plification of distributed unification:

In distributed unification, we have the problem
of binding a variable to another, with a directed
binding. Unless we are careful, it might hap-
pen that several variables which are bound asyn-
chronously are bound in a circle. This is not ac-
ceptable, but avoiding it is hard; if we try to lock
both variables, we risk deadlock. Another way is
to impose a permanent ordering on all variables,
and make sure that variable bindings are bound
in the direction specified by the ordering. This
scheme can work, but leads to substantial over-

head.

For an SIMD implementation, we only need a tem-
porary ordering during the binding of the variables.
After binding, the ordering may safely be forgot-
ten. No cycles can be created by binding variables,
assuming that they have been fully dereferenced
before binding. (This is not obvious, but is per-
haps most easily seen by observing that the fact
that variables are bound in tree structures is an
invariant.)

3 Benchmark Results

10 Inference
’ frequency [MHz]
0.8 —
0.6 -
0.4 —
02 - Degres of
Parallelism
T | I
1 10 100 1000

For a simple benchmark, consisting of a number of par-
allel concatenate calls, run on the Hitachi S-820/80,
the optimized interpreter achieved approximately 1.1
million process reductions per second. The new ver-
sion is about twice as fast, but almost twice as large,
as the old version. The interpreter cycle contains 40

loops, which represents a doubling compared to the
non-optimized version. Most of this code is for unifi-
cation.

The degree of parallelism for this benchmark was 1000.
The cost per degree of parallelism is approximately 80
bytes, i.e. 20 positions of queue storage.

The ratio of vector processor time to scalar processor
time goes up to about 20:1 for 1000 parallel processes.
This shows that the processing time is clearly domi-
nated by vector processing.

4 Conclusions

We have shown that a vector parallel supercomputer
can execute Flat GHC with a speed competing with
that of the fastest compiled implementations.

5 Acknowledgments

This work was supported by the Japanese Ministry of
Education, and the Swedish National Board for Tech-
nical Development. We have benefited very much from
discussions with members of the Special Interest Group
of the Inference Engine at the university, and with
members of the Parallel Programming Systems Work-
ing Group at ICOT. We are especially grateful for vivid
discussions with Kanada-san and Tatsuguchi-san.

References

[1] Nilsson, M. and Tanaka, H.: Fleng Prolog - The
Language which turns Supercomputers inio Pro-
log Machines. In Wada,E. (Ed.): Proc. Japanese
Logic Programming Conference. ICOT, Tokyo,
1986. p 209-216. Proceedings also published as
Springer LNCS 264.

[2] Nilsson, M. and Tanaka, H.: The Art of Building
a Parallel Logic Programming System. In Wada,E.
(Ed.): Proc. Japanese Logic Programming Con-
ference. ICOT, Tokyo, June, 1987. p 155-163. Pro-
ceedings also to appear as Springer LNCS.

[3] Nilsson, M. and Tanaka, H.: Converting FGHC
Clauses with Guards into Clauses without Guards.
In Information Processing Soc. of Japan Work-
shop on Programming Languages no. 17, July
1988. (In bad Japanese).



