RS IE S 205 37 [E] (R AI634E 1) & H K 2 19

A Simple Semantic Model for Flat GHC

3D-2

Kazunori Ueda and Koichi Furukawa

Institute for New Generation Computer Technology

1. Introduction

In designing a set of transformation rules for
Flat GHC programs [1], we were faced with
the problem of justifying them on an appro-
priate semantic model. This paper informally
describes the semantic model we designed for
that purpose. The full description of the se-
mantics will be found in [1].

2. Design Criteria

e Modeling Behaviors. A multiset of GHC
goals can be regarded as a process that
communicates with the outside world by
observing and generating substitutions.
The semantics should model this behav-
ioral aspect.

o Abstractness. The semantics should con-
centrate on communication. It should ab-
stract away internal affairs of a process
such as the number of (sub)goals and the
number of commitments done. Also, it
should abstract away how unification is
specified in the source text.

o Modeling non-terminating programs. We

must be able to define the semantics of
programs that do not terminate but are
still useful.

e Modeling anomalous behaviors. Anoma-
lous behaviors such as failure of a unifi-
cation goal in a clause body, irreducibil-
ity of a non-unification goal and infinite
computation without observable substitu-
tion must be modeled, because we have to
prove that such behaviors are not intro-
duced by program transformation.

A Simple Semantic Model for Flat GHC
Kazunori Ueda, Koichi Furukawa
Institute for New Generation Computer Technology

o Simplicity and generality. The semantics
should be as simple and general as pos-
sible to be widely used. We decided to
use standard tools like finite terms, sub-
‘stitutions defined over them, and least fix-
points. We decided not to use mode sys-
tems. We decided not to handle discontin-
uous concepts like fairness.

o Usefulness. It should not be just a de-
scription, but a tool to be used (at least)
for proving the correctness of the transfor-
mation rules.

3. The Model

The semantics of a multiset By of goals under
a program P, denoted [By]p, is modeled as
the set of all possible finite sequences of trans-
actions with it. A (normal) transaction, de-
noted (o,), is an act of providing a multiset
of goals with a possibly empty input substitu-
tion o and getting an observable (see below)
output substitution . An output substitution
is also called a partial answer substitution.

The first transaction (oy,(1) must be
made through the variables in var(By), called
the interface. The above observability condi-
tion for B can be written as Boay 31 # Boa.
As the result of the first transaction, By will
be reduced to a multiset B; of goals, which
represents the rest of the computation. Then
the second transaction (as, f3) must be made
through the interface var(Boai5).

The ‘size’ of a transaction depends on how
the outside world observes an output substitu-
tion. Suppose By returns a complex (or even
infinite) data structure ¢ in response to an in-
put ;. What should 3; be, or what should
the outside world see in one transaction? The
answer is that the outside world can observe
any finite template of ¢ (i.e., a term of which
t is an instance). In our model, the result

20

of one unification goal may be observed us-
ing two or more transactions, and the result
of two or more unification goals may be ob-
served in one transaction. A transaction is of
a finite nature; it is realized by a finite num-
ber of reductions and can return only a finite
data structure.

The outside world may not communicate
with By at all. This is modeled by always
including € (empty sequence) in [By]p. The
empty sequence is used as a base case in defin-
ing the model of By inductively.

An input «; to By may not necessarily
cause a normal transaction as defined above.
First, it may cause failure of a unification goal
in a clause body. This. is modeled by letting
[Bol» 3 (01, T), where T means failure. Sec-
ond, By may succeed (i.e., be reduced out)
with no observable output. Third, By may
deadlock (i.e., be reduced to a multiset of
goals that does not allow further reduction)
with no observable output. Fourth, By may
fall into infinite computation that does not
generate observable output. The last three
cases mean inactivity of By and cannot be
distinguished from outside; ‘so they are all
modeled by letting [Bo]p 3 (o1,Ll), where
L stands for ‘no output’. However, if nec-
essary, these cases could be distinguished in
the model by using Lsyccess, -Ldeadiock and
L divergence Instead of L. Failure and inactiv-
ity are called special transactions and are used
as base cases in defining the model of By.

4. Examples
Consider a single clause program
P: pX) :- true | X=£(Y), p(Y).

and autonomous (i.e., empty input) transac-
tions with P. Then [p(X)], has

e, (B,{X—£x1)}),
(0, {X—£ XD} (0, {X1 —£ XD }),

(0, {x—£XD}) (0, {X1—£(XD)})
(0, {x2—£(x3)}),

and also

(0,{X—£(£X21}),
(0, {X—£(£(£(X3)N}),

Our model successfully circumvents Brock-
Ackerman anomaly [2]. Let BA be:

d([Al_1,0)

merge ([AIX1],Y,Z) :- true |
Z=[A1Z1] ,merge(X1,Y,Z1).
merge (X, [AIY1],Z) :- true |
Z=[A1Z1] ,merge(X,Y1,Z1).

:~— true | 0=[A,A].

merge([1,Y,Z) :- true | Z=Y.
merge(X,[],Z) :- true | Z=X.
pl([AIZ1],0) :- true |

0=[A]01],p11(Z1,01).
p11([B|_.1,01) :- true | 01=[B].

p2([A,BI_1,0)

g1(I,J,0) :- true |
d(I,X),d(J,Y),merge(X,Y,Z),p1(Z,0).
g2(I,J3,0) :- true |
d(I,X),d(J,Y) ,merge(X,Y,Z2),p2(Z,0).

:— true | O=[A,B].

Then, the computation
{({1+[51.1},{0+[510'1})

belongs both to [gi(I,J,0)];, and to
[g2(1,3,0)]54 (0" being a fresh variable),
but

({1 1[51_1},{0[510'1})
({3161_1},{0"« [61})

belongs only to [g1(I,J,0)]z4 and not to

References

[1] Ueda, K. and Furukawa, K. (1988) Trans-
formation Rules for GHC Programs. To
appear as ICOT Tech. Report.

[2] Brock, J. D. and Ackerman, W. B. (1981)
Scenarios: A Model of Non-determinate
Computation. In Formalization of Pro-
gramming Concepts, LNCS 107, Springer-
Verlag, pp. 252-259.

