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On k-component Algorithms for Graphs and Digraphs.

Seishi Makino
IBM Research, Tokyo Research Laboratory

1. Introduction.

Consider a digraph (or graph) G without any
self-loops or parallel-edges.  We denote the
vertex-set. and edge-set of G by V(G) and E(G),
respectively. We denote the cardinality of ¥{G) and
EG), namely, |[V(G)| or |E(G) by n and e,
respectively. G is k-connected, if there exist at least
k vertex-disjoint paths from vtow, for every
ordered pair of vandw(vwe V(G). A
k-component of G is a maximal k-connected
subgraph of G (see Figure 1).

Hopcroft and Tarjan discovered algorithms for
finding 1-components, 2-components  and
3-components of a graph, as well as 1-components
of a digraph, within O(n+e) time [Ta72],
[HoTa73]. The existence of such linear algorithms
for finding k-components of a graph for any fixed
k(> 3) was conjectured in [AhHoUl174]; however,
no such bnear algorithm has been found. Recently,
Kanevsky and Ramachandran discovered an
algorithm that finds all separating triplets of a
3-connected graph in O(n?) time [ KaRa87], which
suggests the existence of an efficient algorithm for
finding 4-components of a graph; however, finding
all separating triplets does not directly yield a
decomposition into  4-components, and the
problem still remains.

Matula discovered a polynomial algorithm that
finds all the k-components of a graph, using cluster
analysis techniques [Ma77]. Note that the
problems for graphs are easily reducible to those for
symmetncal digraphs, although the converse is not
. true. Our purpose is to construct an algorithm to
find all the k-components of a digraph. Our
algorithm can be regarded as an extension and
refinement (a practical, and probably more efficient
version) of Matula’s.

Proceeding to our main results, we need to
mtroduce some notations. For vywe V, let [v,w]
denote a directed edge which leaves v and enters w.
Forve V, let I'*(v) = {w| [vw]le E(G) }, and T'"-
v) ={w} [wyle E{G)}. We denote deg(v)=
min{I*), I~(}. G is complete if T*y)=
I'(v)=n—1, for ¥ve W(G). For U(cV(G)), <Us
denotes the induced subgraph of G by U, that is, a
subgraph of G whose vertex-set is U, and whose
edge-set is {[v,w]e E(G)vwe U}. S(cVG)) is a
separator of G if <V{G)\S>; is not 1-connected.
For I>1, a [lseparator, denoted by &{(G), is a

minimum separator, S, of G, such that |S|</
Note that £{G) is nothing but a minimum
separator of G, if it exists, and that otherwise &{G)
1s empty (see Figure 1). We assume all digraphs in
our algorithm are represented by adjacency
structures [AhHoUl74], [Ta72], and manipulated
in an efficient way. Our results are summarized as
follows.

Theorem 1 Let G be a digraph with n vertices
and e edges. All the possible v-components
k<v) of G are found within
H(n—k)yx Max{n+ e,T}) time, where T, is the
time bound for computing E(G).

Many algonithm are available for computing
£4(G) for digraphs [EvTa75],[Ga80]. In particular,
Galil’s approach [Ga80] yields an
AIx(n+ e)x Jn x Max{l,\/rz_}) time algorithm for
computing £{G). Thus we have:

Corollary 1 All the possible v-components
(k<v<) of a digraph G are found within
O(n— kyx Ix (n+ e)xNn x Max{INn}) time.

Provided that G is a symmetrical digraph, or a
graph, we can use more efficient algorithms for
computing  ¢{(G), [EsHa84], [GrHag6].
Combining Granot-Hassin’s algorithm [ GrHa86]
with Even-Tarjan’s maximum-flow algorithm
[EvTa75], we can compute ¢{G) in
Onx (n+ e)x min{l,\/;}) time. Thus we have:

Corollary 2 All the possible v-components
(k<v <D of a symmetrical digraph (or graph) G
are found within

O(n—k)xnx(n+ e)x min{l,\/Pn_}) time.

Note that Corollary 1 and Corollary 2 show the
same time bound, if [ <vn . In particular,
combined with Kanevsky-Ramachandran and
Hopcroft-Tarjan algorithms [ KaRa87], [HoTa73],
Theorem 1 yields an O(n*) bound for finding
4-components of a graph.

2. Proof of Theorem 1.

The proof of Theorem 1 is essentially the same
as that shown in [ M88].
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3. Algorithm.

1. procedure FMC(k,[,G)
2 beginif k<1 then
3. beginif \V(G)| = k+ 1 then
4.  repeat
5. for Yve V(G) do
6. if deg(v) < k then
eliminate v, together with
I'+(v), and I'-(v) from G;
7. find l-components of G;
8. eliminate all edges linking between
any two 1l-components from G;
9.  until
IV(G)| < k+ 1, or min{deg(v)lve V(G)} = k;
10. i I(G)l=k+ 1 and G is complete then
11. output G as a k-component;
12.  if|V(G)|>k+ 1 then
13. for each 1-component G, of G do

4. Remarks.

In our algorithm, degree checks and eliminations
of unavailable edges in lines 4 - 8 are not necessary
to achieve the time bounds of section 1. However,
in many cases, these simple tricks yield considerable
reduction of the cost, while the precise estimation
still remains.
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Figure 1. A graph G with 14 vertices. G itself is the 1-component. 2-component is <2,3,...,14>, 3-component is

<4,5,..,14>;, 4 and S-component is <4,5,..,9> ;. £4<4,5,...,14> ) is {8,9,10}. {¥<4,5,...,14> ;) is empty.



