
Electronic Preprint for Journal of Information Processing Vol.23 No.2

Regular Paper

Indexing Method for Hierarchical Graphs based on
Relation among Interlacing Sequences of Eigenvalues

Kaoru Katayama1,a) ErnestWekeMainab)

Received: March 30, 2014, Accepted: November 10, 2014

Abstract: We propose an indexing method for hierarchical graphs using their eigenvalues in order to detect those that
are substructures or superstructures of a hierarchical graph given as a query efficiently. The index construction and
the query processing are based on a relation among three interlacing sequences of eigenvalues of hierarchical graphs.
We also propose a matrix representation for a hierarchical graph. Hierarchical graphs are decomposed to improve the
filtering effect of the index and reduce the computational cost of both the index construction and the query processing.
We evaluate the effectiveness of the proposed method by experiments.

Keywords: index, hierarchical graph, interlace, eigenvalue

1. Introduction

Hierarchical structures appear in various real-world data on
their own, or as a result of analyzing them. Molecular structures
and social networks naturally have hierarchies. Clustering a set
of data leads to a hierarchical organization of their subsets. Such
data also have various relations among them besides hierarchies
and they are often represented as graphs. So there are many works
on managing and mining graphs [1]. A graph with a hierarchical
structure, a hierarchical graph is a natural extension of a graph.
Since it has more expressive power than a graph as a data model,
it is used to represent data with a complex structure more pre-
cisely. As with searching subgraphs or supergraphs of a graph in
graph-based applications, searching substructures or superstruc-
tures of a hierarchical graph is a basic task in applications deal-
ing with complex data. For example, in a meta-search engine,
WhatsOnWeb [2], a query is expressed as a hierarchical graph.
Barchall et al. [3] use hierarchical graphs as abstract represen-
tations of chemical structures. Their substructures are searched
according to the hierarchies.

In this paper, we propose an indexing method for hierarchi-
cal graphs to detect those that are superstructures of a hierarchi-
cal graph given as a query efficiently. We represent hierarchical
graphs as matrices and construct the index based on a relation of
their eigenvalues. Given a hierarchical graph as a query, we filter
hierarchical graphs which are not answers to the query and find
candidates for the answers efficiently by comparing eigenvalues
of hierarchical graphs and the query. The same approach can be
used for constructing an index to detect substructures of a query.
The key fact in our indexing method is a relation among three
sequences α, β and γ of eigenvalues of hierarchical graphs, that

1 Graduate School of System Design, Tokyo Metropolitan University,
Hino, Tokyo 191–0065, Japan

a) kaoru@tmu.ac.jp
b) ewmaina@gmail.com

is, if γ interlaces β and β interlaces α, then γ interlaces α. The
word “interlace” comes from the interlace theorem [4]. We give
the definition of this word and a simple proof of the above fact
later. The proposed index is based on the above fact and the inter-
lace theorem. We also propose a symmetric matrix representation
for a hierarchical graph where a substructure of the hierarchical
graph corresponds to the principal submatrix in order to satisfy
the assumption of the theorem. Commonly used matrix repre-
sentations such as adjacency matrices do not have this property.
In order to improve the filtering effect of the index and reduce
the computation cost of the index construction and the query pro-
cessing, hierarchical graphs are decomposed according to labels
of the vertices and the edges. For graphs, various indexing meth-
ods are proposed [5]. On the other hand, there are few works on
indexing hierarchical graphs for detecting their superstructures
or substructures to the authors’ knowledge. We keep our propo-
sition as simple as possible and show the basic performance of
our approach by experiments. The performance of the proposed
index can be improved by combining with the various existing
techniques for graphs. We think that this approach is more in-
formative for understanding the advantages and disadvantages of
our proposition and improving it in future. Since graphs are hier-
archical graphs without hierarchy, our approach is applicable to
them.

The rest of the paper is organized as follows. We discuss re-
lated work in Section 2. Definitions on graphs, their matrix rep-
resentation and the interlace theorem on eigenvalues of symmet-
ric matrices are presented in Section 3. Hierarchical graphs and
their matrix representation are defined in Section 4. In Section 5,
we explain the basic idea of our indexing method. The detailed
algorithms for constructing the index structure and processing a
query are shown in Section 6. In Section 7, we show the effi-
ciency and scalability of our index by experiments. We conclude
in Section 8.

c© 2015 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.23 No.2

2. Related Work

Hierarchical graphs are used as data models in various appli-
cations such as content-based image retrieval [6], query expres-
sions for a web search engine [2] and representations of chemical
structures [3]. Although there exists many works on indexing (not
hierarchical) graphs [5], there are few works on indexing hierar-
chical graphs for retrieving their substructures or superstructures
to the authors’ knowledge. Shokoufandeh et al. [6] propose an in-
dexing method for hierarchical image features. The hierarchical
structure of the features is represented as an unlabeled directed
acyclic graph. The features are embedded into low-dimensional
vector space using eigenvalues of a matrix representation com-
posed of adjacency matrices of subgraphs of the graph. Answers
to a query are retrieved using nearest-neighbor search. Their in-
dexing method is for directed acyclic graphs and not for hierarchi-
cal graphs which are our concern in this paper. Demirci et al. [7]
take a similar approach to Shokoufandeh et al. [6] for indexing
image features. They represent image features as unlabeled undi-
rected graphs and encode them as eigenvalues of their laplacian
matrices. The features are embedded into vector space by the
eigenvalues and answers to a query are retrieved using nearest-
neighbor search.

Zhang et al. [8] propose an indexing method using eigenvalues
of graphs for XML documents. They represent a XML docu-
ment and a XPath query as labeled directed acyclic graphs and
use the maximum eigenvalues and the minimum ones of anti-
symmetric matrices representing the graphs as keys of the index
which is a B+ tree. In processing a query, they perform “range
query” based on the “eigenvalue containment property” [8] in the
B+ tree, which is a relation among the maximum eigenvalues and
the minimum ones of two anti-symmetric matrices representing
a directed acyclic graph and its induced subgraph. On the other
hand, our index structure is the tree which reflects directly the
interlacing relation between eigenvalues of a (hierarchical) graph
and its (hierarchical) subgraph. Therefore it is not necessary for
us to perform “range query” in the index. In addition, our index-
ing method can be used for detecting not only induced subgraphs
of labeled directed acyclic graphs but also general (hierarchical)
subgraphs of (hierarchical) graphs. Zou et al. [9] also propose
an indexing method, GCoding-tree, using some eigenvalues of
a graph as its feature. The structure of GCoding-tree is based
on combinatorial structures of each graph in a graph database.
Eigenvalues of graphs are used as encoding for the graphs. They
are stored in nodes of GCoding-tree to filter graphs which are
not answers to a query. Shokoufandeh et al. [10] propose another
indexing method for object recognition. It maps the tree repre-
senting features of an object into a vector space by eigenvalues of
the adjacency matrix of the tree.

Most of graph indicies take combinatorial approaches in in-
dex construction and query processing. Fg-index [11] is such a
graph index using only combinatorial methods. It is constructed
from frequent subgraphs in a graph database. In order to find
such subgraphs, a graph mining algorithm, gSpan [12] is used.
Cheng et al. [13] have improved Fg-index and proposed a new in-
dexing method called Fg*-index. They have addressed the prob-

lem of the number of frequent subgraphs generated by a graph
mining algorithm and the size of Fg-index. GraphGrep [14] and
Closure-tree [15] are the indexes for finding supergraphs of a
query. GraphGrep uses all paths from each vertex of each graph
in a database for index construction. Closure-tree is constructed
hierarchically from generalized graphs which summarizes its de-
scendant graphs. Since a hierarchical graph has a more complex
structure than a graph, it costs much more to find frequent hier-
archical subgraphs or all paths from each vertex of a hierarchical
graph like graphs. We avoid such costly methods.

3. Preliminaries

We study hierarchical graphs composed of a labeled undirected

simple graph g = (Vg, Eg, L(V)g, L(E)g, μg, νg). Vg or V(g) is a
set of vertices. Eg is a set of edges where an edge e in Eg is an
ordered pair (v1, v2) of vertices v1 and v2 in Vg. L(V)g and L(E)g

are sets of labels of vertices and edges, respectively. μg and νg

are onto-mappings Vg → L(V)g and Eg → L(E)g, respectively.
If, for any (v1, v2) ∈ Eg, there is the edge (v2, v1) ∈ Eg, g is called
an undirected simple graph. We simply call a labeled undirected
simple graph a graph. For a vertex v of g, if there is not an edge
(v, v′) or (v′, v) ∈ Eg, we call v an isolated vertex. In this pa-
per, labels of vertices and edges are positive numbers. If they are
not given as positive numbers, we change each label to a positive
number in a suitable way for applications. For succinct descrip-
tion, we denote each element of a graph g as a symbol followed
by a superscript to specify g as above. For example, we denote
a set of vertices of a graph g as Vg. Examples of the following
definitions are included in ones of hierarchical graphs in the next
section.

Definition 1 (Subgraph) A graph g1 = (V1, E1, L(V)1, L(E)1,

μ1, ν1) is a subgraph of another graph g2 = (V2, E2, L(V)2, L(E)2,

μ2, ν2), if there is an injection i : V1 → V2 which satisfies the
following conditions for any (v1, v2) ∈ E1.
• (i(v1), i(v2)) ∈ E2

• μ1(v1) = μ2(i(v1)) and μ1(v2) = μ2(i(v2))
• ν1(v1, v2) = ν2(i(v1), i(v2))
The injection i is called subgraph isomorphism.

3.1 Eigenvalues and Subgraphs
For eigenvalues of a real symmetric matrix and its submatrix,

there is the following relation known as the interlace theorem [4].
tS is the transpose of a matrix S .

Definition 2 Let {αi}i=1,...,n and {β j} j=1,...,m be two ordered se-
quences of real numbers where m < n, α1 ≤ α2 ≤ · · · ≤ αn

and β1 ≤ β2 ≤ . . . ≤ βm, respectively. We say that {β j} j=1,...,m

interlaces {αi}i=1,...,n, if the following condition is satisfied for
k = 1, . . . ,m.

αk ≤ βk ≤ αk+(n−m)

Theorem 1 (Interlace Theorem) Given a real n ×m matrix S

such that tS S = I and a symmetric n×n matrix A, the eigenvalues
of a m × m matrix B = tS AS interlace those of A.

When a graph g1 and its subgraph g2 are represented as the ma-
trices M1 and M2 which satisfy the assumption of this theorem,
respectively, the eigenvalues of M2 interlace the eigenvalues of

c© 2015 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.23 No.2

M1. If the eigenvalues of M2 do not interlace the eigenvalues of
M1, g2 is not a subgraph of g1 by the contraposition.

3.2 Matrix Representation of Graphs
In defining a matrix representation of a hierarchical graph later,

we use the following extended incidence matrix for a graph [16].
Definition 3 A labeled incidence matrix Ng = (ngi j) of a undi-

rected graph g = (Vg, Eg, L(V)g, L(E)g, μg, νg) is the |Vg| × |Eg|
matrix as follows.

ngi j :=

⎧⎪⎪⎨⎪⎪⎩
νg(e j)

0

if e j ∈ Eg is incident to vi ∈ Vg for i and j

otherwise

When νg(e) is 1 for any edge e ∈ Eg, Ng is an ordinary in-

cidence matrix of a graph. Depending on applications, we may
define this matrix by assigning labels of vertices to the elements
instead of labels of edges.

Definition 4 An extended incidence matrix Cg of a directed
graph g = (Vg, Eg, L(V)g, L(E)g, μg, νg) is the matrix

⎡⎢⎢⎢⎢⎣ P Ng

tNg Q

⎤⎥⎥⎥⎥⎦

where Ng = (ni j) is the |Vg| × |Eg| labeled incidence matrix of g,
P = (pi j) and Q = (qi j) are |Vg| × |Vg| and |Eg| × |Eg| matrices as
follows, respectively.

pi j :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
μg(vi) if i = j for vi ∈ Vg,

0 otherwise.

qi j :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
νg(ei) if i = j for ei ∈ Eg,

0 otherwise.

3.3 Decomposing Graphs by Labels
We use the following decomposition of graphs according to

labels assigned to vertices and edges of graphs in defining the
decomposition of hierarchical graphs [16].

Definition 5 For a graph g, the graph g[μg(v)] decomposed
by the label μg(v) of a vertex v ∈ Vg is as follows.
• Vg[μ

g(v)] = {v′ ∈ Vg|μg(v′) = μg(v)}
• Eg[μ

g(v)] = {(v1, v2) ∈ Eg|μg(v1) = μg(v2) = μg(v)}
• L(V)g[μ

g(v)] = {μg(v)}
• L(E)g[μ

g(v)] = {νg(e)|e ∈ Eg[μ
g(v)]}

• μg[μg(v)] is a restriction of μg to Vg[μ
g(v)]

• νg[μg(v)] is a restriction of νg to Eg[μ
g(v)]

The graph g[νg(e)] decomposed by the label νg(e) of an edge
e ∈ Eg is as follows.
• Eg[ν

g(e)] = {e′ ∈ Eg|νg(e′) = νg(e)},
• Vg[ν

g(e)] = {v1, v2 ∈ Vg|(v1, v2) ∈ Eg[ν
g(e)]},

• L(E)g[ν
g(e)] = {νg(e)},

• L(V)g[ν
g(e)] = {μg(v)|v ∈ Vg[ν(e)]},

• μg[νg(e)] is a restriction of μg to Vg[μ
g(v)]

• νg[νg(e)] is a restriction of νg to Eg[μ
g(v)]

The graph g[μg(v)][νg(e)] means (g[μg(v)])[νg(e)], that is, the
graph is decomposed by the label μg(v) of a vertex v and then
decomposed by the label νg(e) of an edge e.

Fig. 1 Hierarchical graph h1 and its hierarchical subgraph h2.

4. Hierarchical Graph and Matrix Represen-
tation

We define a hierarchical graph and a hierarchical subgraph as
an extension of concept of graph and subgraph. Although there
are slightly different types of hierarchical graphs, we focus on a
simple one shown in Fig. 1. A vertex of a graph of which a hier-
archical graph consists contains another graph. Since a graph is a
special hierarchical graph without hierarchy, we can also use the
proposed methods for graphs.

Definition 6 (Hierarchical Graph) A hierarchical graph h is a
tuple (Gh, φh) where
• Gh is a set of graphs {gh

i |i ∈ {1, . . . , n}} which contains the root
graph rh,
The root graph is the uppermost graph in the hierarchy and is
not contained in a vertex of another graph in Gh. It may be
disconnected as other graphs.

• φh is a mapping from
⋃n

i=1 Vg
h
i to Gh \ {rh} where (φh)−1 is an

injection.
φh represents the hierarchical structure of h. For a vertex v of
a graph in Gh, φh(v) is a graph contained in v. Every graph in
Gh \ {rh} is contained in different vertices of graphs in Gh.
We call a substructure and a superstructure of a hierarchical

graph a hierarchical subgraph and a hierarchical supergraph, re-
spectively. That is, a hierarchical subgraph is contained in a hi-
erarchical graph, and a hierarchical supergraph contains a hierar-
chical graph.

Definition 7 (Hierarchical Subgraph) A hierarchical graph
h1 = (G1, φ1) is a hierarchical subgraph of another hierarchi-
cal graph h2 = (G2, φ2), if there is an injection ih from G1 to G2

as follows.
• for any g ∈ G1, g is a subgraph of ih(g) ∈ G2

• for any vertex v ∈ Vg of any graph g ∈ G1, if there is a graph
φ1(v), φ1(v) is a subgraph of φ2(ig(v)) where ig : Vg → Vih(g) is
the subgraph isomorphism.
Example 1 Figure 1 shows examples of a hierarchical graph

h1 and its hierarchical subgraph h2. h1 is a hierarchical super-

c© 2015 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.23 No.2

graph of h2. The numbers in (a) and (c) are labels of vertices and
edges, and the symbols in (b) and (d) are their identifiers. h1 is
(G1, φ1) where G1 = {g1

1, g
1
2, g

1
3, g

1
4} and g1

1 is the root graph of h1.
φ1 is the mapping where φ1(v11) = g1

2, φ1(v12) = g1
3 and φ1(v13) = g1

4.
In the same way, h2 is (G2, φ2) where G2 = {g2

1, g
2
2, g

2
3} and g2

1 is
the root graph of h2. φ2 is the mapping where φ2(w1

1) = g2
2 and

φ2(w1
2) = g2

3. h2 is a hierarchical subgraph of h1 according to the
injection ih from G2 to G1 where ih(g2

1) = g1
1, ih(g2

2) = g1
3 and

ih(g2
3) = g1

4. For the subgraph isomorphism ig : Vg
2
1 → Vg

1
1 be-

tween g2
1 ∈ G2 and g1

1 ∈ G1, φ2(w1
1) = g2

2 and φ2(w1
2) = g2

3 are
subgraphs of φ1(ig(w1

1)) = g1
3 and φ1(ig(w1

2)) = g1
4, respectively.

We define a matrix representation for a hierarchical graph as
follows to have the prerequisites of the interlace theorem. That
is, if hs is a hierarchical subgraph of another hierarchical graph
h, there is a matrix S such that Dhs

= tS DhS and tS S = I for the
matrices Dh and Dhs

representing h and hs.
Definition 8 An hierarchical incidence matrix Dh of a hier-

archical graph h = (Gh, φh) where Gh = {gh
i |i = 1, . . . , n} is the

matrix as follows.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Cg
h
1 Rg

h
1 ,g

h
2 · · · Rg

h
1 ,g

h
n

tRg
h
1 ,g

h
2 Cg

h
2 · · · Rg

h
2 ,g

h
n

...
...

. . .
...

tRg
h
1 ,g

h
n tRg

h
2 ,g

h
n · · · Cg

h
n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Cg
h
i is an extended incidence matrix of gh

i . Rg
h
i ,g

h
j = (rkl) is the

(|Vgh
i | + |Egh

i |) × (|Vgh
j | + |Egh

j |) matrix as follows.
• If a vertex vk of gh

i contains gh
j , each element of the k-th row

corresponding to vk is μg
h
i (vk) and the other elements are 0.

• If a vertex vl of gh
j contains gh

i inversely, each element of the l-

th column corresponding to vl is μg
h
j (vl) and the other elements

are 0.
• If gh

i and gh
j do not have the above relations, all the elements

are 0.
We use labels of vertices as elements of Rg

h
i ,g

h
j in this definition.

Alternatively, labels of edges or other suitable numbers can also
be used as the elements depending on applications.

Example 2 For graphs g1
1, g1

2 and g1
3 in hierarchical graph h1

of Fig. 1, Cg
1
1 =

⎡⎢⎢⎢⎢⎢⎣
1 0 0 3 0
0 1 0 3 3
0 0 2 0 3
3 3 0 3 0
0 3 3 0 3

⎤⎥⎥⎥⎥⎥⎦, Cg
1
2 =

[
1 0 3
0 4 3
3 3 3

]
and Cg

1
3 =

⎡⎢⎢⎢⎢⎢⎣
1 0 0 5 0
0 1 0 5 5
0 0 4 0 5
5 5 0 5 0
0 5 5 0 5

⎤⎥⎥⎥⎥⎥⎦,

respectively. Since v11 ∈ Vg
1
1 of g1

1 contains g1
2, Rg

1
2 ,g

1
1 is
[

1 0 0 0 0
1 0 0 0 0
1 0 0 0 0

]

where 1 is μg
1
1 (v11) of v11. There is no inclusion relation between

g1
2 and g1

3. Therefore Rg
1
2 ,g

1
3 is
[

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

]
. Since v12 ∈ Vg

1
1 of g1

1

contains g1
3, Rg

1
1 ,g

1
3 is

⎡⎢⎢⎢⎢⎢⎣
0 0 0 0 0
1 1 1 1 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎦ where 1 is μg
1
1 (v12) of v12. The hier-

archical incidence matrices D1 and D2 of h1 and its hierarchical
subgraph h2 are as follows. For D1 and D2, there is the matrix S

such that D2 = tS D1S and tS S = I.

D1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Cg
1
2 Rg

1
2 ,g

1
1 Rg

1
2 ,g

1
3 Rg

1
2 ,g

1
4

tRg
1
2 ,g

1
1 Cg

1
1 Rg

1
1 ,g

1
3 Rg

1
1 ,g

1
4

tRg
1
2 ,g

1
3 tRg

1
1 ,g

1
3 Cg

1
3 Rg

1
3 ,g

1
4

tRg
1
2 ,g

1
4 tRg

1
1 ,g

1
4 tRg

1
3 ,g

1
4 Cg

1
4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎣

1 0 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 4 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 3 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 3 3 1 1 1 1 1 0 0 0 0 0 0
0 0 0 0 0 2 0 3 0 0 0 0 0 2 2 2 2 2 2
0 0 0 3 3 0 3 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 3 3 0 3 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 1 0 0 5 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 1 0 5 5 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 4 0 5 0 0 0 0 0 0
0 0 0 0 1 0 0 0 5 5 0 5 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 5 5 0 5 0 0 0 0 0 0
0 0 0 0 0 2 0 0 0 0 0 0 0 1 0 0 3 0 3
0 0 0 0 0 2 0 0 0 0 0 0 0 0 1 0 3 3 0
0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 4 0 3 3
0 0 0 0 0 2 0 0 0 0 0 0 0 3 3 0 3 0 0
0 0 0 0 0 2 0 0 0 0 0 0 0 0 3 3 0 3 0
0 0 0 0 0 2 0 0 0 0 0 0 0 3 0 3 0 0 3

⎤⎥⎥⎥⎦

D2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
Cg

2
1 Rg

2
1 ,g

2
2 Rg

2
1 ,g

2
3

tRg
2
1 ,g

2
2 Cg

2
2 Rg

2
2 ,g

2
3

tRg
2
1 ,g

2
3 tRg

2
2 ,g

2
3 Cg

2
3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 3 1 1 1 1 0 0 0
0 2 3 0 0 0 0 2 2 2
3 3 3 0 0 0 0 0 0 0
1 0 0 1 0 0 5 0 0 0
1 0 0 0 1 0 5 0 0 0
1 0 0 0 0 4 0 0 0 0
1 0 0 5 5 0 5 0 0 0
0 2 0 0 0 0 0 1 0 3
0 2 0 0 0 0 0 0 4 3
0 2 0 0 0 0 0 3 3 3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

S =

⎡⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎦

5. Structure of Proposed Index

We explain our approach for constructing the proposed index
and processing queries to detect hierarchical supergraphs of a
hierarchical graph given as a query. We can filter hierarchical
graphs which do not contain the query from a hierarchical graph
database, and find candidates for the answers with the index.
We call such hierarchical graphs which are not hierarchical su-
pergraphs of a query non hierarchical supergraphs. The same
approach can be used for detecting hierarchical subgraphs of a
query. We discuss this briefly later in Section 5.3.

5.1 Detecting Non Hierarchical Supergraphs by Eigenval-
ues

We decide whether a hierarchical graph h in a database is not a
hierarchical supergraph of a query q by comparing the eigenval-
ues of their hierarchical incidence matrices Dh and Dq defined in
the previous section. That is, if eigenvalues of Dq does not inter-
lace eigenvalues of Dh, h is not a hierarchical supergraph of q as
is the case of graphs in Section 3.1. We denote a set of eigenval-
ues of the hierarchical incidence matrix of a hierarchical graph h

as Eig(h). We construct a tree-structured index for hierarchical
graphs based on the following relation among sequences of real
numbers. This is a key fact of our approach.

Proposition 1 Let α, β and γ be three sequences of real num-
bers. If γ interlaces β and β interlaces α, then γ interlaces α.

Proof Let three sequences of real numbers α, β and γ be
{α1, α2, . . . , αl}, {β1, β2, . . . , βm} and {γ1, γ2, . . . , γn} where α1 ≤
α2 ≤ · · · ≤ αl, β1 ≤ β2 ≤ · · · ≤ βm, γ1 ≤ γ2 ≤ · · · ≤ γn and
l > m > n. It is clear that αi ≤ γi for i = 1, 2, . . . , n from the
assumption. We can also show γi ≤ αi+(l−n) for i = 1, 2, . . . , n as
follows.
γi ≤ βi+(m−n) ≤ αi+(m−n)+(l−m) = αi+(l−n) �

c© 2015 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.23 No.2

Each node of the tree-structured index contains an identifier
of a hierarchical graph and its eigenvalues. When eigenvalues
Eig(h1) of a hierarchical graph h1 interlace eigenvalues Eig(h2)
of another hierarchical graph h2, the node which contains Eig(h1)
is a child of the node which contains Eig(h2). The query pro-
cessing starts from the root node of the index constructed based
on the above manner. We check whether eigenvalues Eig(q) of
q interlace eigenvalues in a node of the index. If Eig(q) do not
interlace the eigenvalues in the node, we know that not only the
hierarchical graph in the node but also all hierarchical graphs in
the descendant nodes are not hierarchical supergraphs of q be-
cause of the following corollary.

Corollary 1 Let α, β and γ be three sequences of real num-
bers. If β interlace α and γ does not interlace α, then γ does not
interlace β.

Proof By the way of contradiction, we assume that γ inter-
lace β. In this case γ also interlace α by Proposition 1. This is
contradiction. �

Here, α, β and γ correspond to sequences of eigenvalues of the
following three hierarchical graphs, that is, a hierarchical graph
in a node nod of the index, a hierarchical graph in a child node
of nod and a query hierarchical graph, respectively. We describe
the detail of algorithms for constructing the index and processing
a query in the next section.

5.2 Decomposing Hierarchical Graphs by Labels
In order to reduce the cost of computing eigenvalues of hi-

erarchical graphs, we decompose each hierarchical graph in a
database and a query according to labels of vertices and edges.
Although there are various ways to decompose hierarchical
graphs according to labels, we consider the following ways for
simplicity. It is an extension of the decomposition of graphs,
which is described in Definition 5. The decomposition of hier-
archical graphs also results in a significant improvement in the
filtering performance of the proposed index as shown in the ex-
perimental evaluation.

Definition 9 For a hierarchical graph h = (Gh, φh) where
Gh = {gh

i |i = 1, . . . ,m}, the hierarchical graph h[μg(v)] =
(Gh[μg(v)], φh[μg(v)]) decomposed by the label μg(v) of a vertex v of
a graph g in Gh is as follows.
• φh[μg(v)] is a restriction of φh to {v′ ∈ ⋃m

i=1 V(gh
i)|μg(v′) = μg(v)}.

• Gh[μg(v)] is a set of graphs {gh
i [μg(v)]|i = 1, . . . ,m} where

the root graph is the union of rh[μg(v)] and a set of
graphs {gh

i [μg(v)]|φh[μg(v)](v′) � gh
i [μg(v)] for any v′ ∈⋃m

i=1 V(gh
i [μg(v)])}. That is, gh

i [μg(v)] where the vertex
containing it is deleted becomes a part of the root graph.

The hierarchical graph h[νg(e)] = (Gh[νg(e)], φh[νg(e)]) decomposed
by the label νg(e) of an edge e in

⋃m
i=1 L(E)g

h
i is as follows.

• φh[νg(e)] is a restriction of φh to {v ∈ ⋃m
i=1 V(gh

i)|νg(e′) =
νg(e), e′ = (v, v′), v′ ∈ ⋃m

i=1 V(gh
i)}.

• Gh[νg(e)] is a set of graphs {gh
i [νg(e)]|i = 1, . . . ,m}

where the root graph is the union of rh[νg(e)] and
graphs {gh

i [νg(e)]|φh[νg(e)](v) � gh
i [νg(e)] for any v ∈⋃m

i=1 V(gh
i [νg(e)])}.

As the decomposition of graphs, h[μg(v)][νg(e)] means
(h[μg(v)])[νg(e)], that is, the hierarchical graph is decomposed by

Fig. 2 Decomposed hierarchical graphs of h1 of Fig. 1.

the label μg(v) of a vertex v and then decomposed by the label
νg(e) of an edge e. If hs is a hierarchical subgraph of h, hs[μg(v)]
is a hierarchical subgraph of h[μg(v)].

Example 3 Figure 2 shows the decomposed hierarchical
graphs of h1 of Fig. 1. h1[1] and h1[3] are the decomposed ones
according to the label 1 of a vertex and the label 3 of an edge,
respectively. h1[1][3] and h1[3][1] are the decomposed ones of
h1[1] and h1[3] according to the label 3 of an edge and the label
1 of a vertex, respectively. In both h1 and h2, the set of labels
of vertices and the set of labels of edges are disjoint. The root
graph of h1[1] is g1

1[1]∪ g1
4[1]. The hierarchical incidence matrix

D1[3][1] of h1[3][1] is as follows.

D1[3][1] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 3 1 0 0 0
0 1 3 0 0 0 0
3 3 3 0 0 0 0
1 0 0 1 0 0 0
0 0 0 0 1 0 3
0 0 0 0 0 1 3
0 0 0 0 3 3 3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

We use the term “interlace” for two hierarchical graphs decom-
posed according to labels as follows .

Definition 10 A hierarchical graph h1 = (G1, φ1) where G1 =

{g1
i |1 ≤ i ≤ n} interlaces another hierarchical graph h2 = (G2, φ2),

if the following conditions are satisfied.
• h1[μg(v)] interlaces h2[μg(v)] for each μg(v) ∈ ⋃n

i=1 L(V)g
1
i

• h1[μg(v)][νg(e)] interlaces h2[μg(v)][νg(e)] for each μg(v) ∈⋃n
i=1 L(V)g

1
i and νg(e) ∈ ⋃n

i=1 L(E)g
1
i

We can define it in a similar way for the other decomposed hier-
archical graphs such as h1[νg(e)], h2[νg(e)], h1[νg(e)][μg(v)] and
h2[νg(e)][μg(v)]. It is clear that, if the eigenvalues of a decom-
posed hierarchical graph of h1 do not interlace the eigenvalues
of the corresponding decomposed hierarchical graph of h2, h1 is
not a hierarchical subgraph of h2. We denote a family of sets of
eigenvalues of every decomposed hierarchical graph in the above
definition as AE(h).

5.3 Detecting Non Hierarchical Subgraphs by Eigenvalues
When we find hierarchical subgraphs of a query hierarchical

c© 2015 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.23 No.2

Algorithm 1 ConstructIndex(H)
Input: a hierarchical graph database H

Output: an index for H

1: create the root node of an index

2: for each h ∈ H do

3: AE(h)← ComputeEigenvalue(h)

4: CreateNode(root,h,AE(h))

5: end for

graph, we construct the index as follows. When the eigenvalues
of a hierarchical graph h1 interlace the eigenvalues of another hi-
erarchical graph h2, the node which contains h2 and its eigenval-
ues is a child of the node which contains h1 and its eigenvalues.
Given a query for this index, if the eigenvalues of the query do not
interlace the eigenvalues of the hierarchical graph in a node, we
know that all hierarchical graphs in the node and the descendant
nodes are not hierarchical subgraphs of the query by the follow-
ing proposition.

Proposition 2 Let α, β and γ be three sequences of real num-
bers. If γ interlaces β and γ does not interlace α, then β does not
interlace α.

Proof Omitted.
α, γ and β correspond to sequences of eigenvalues of the fol-

lowing three hierarchical graphs, that is, a query, a hierarchical
graph in a node nod of the index and a hierarchical graph in a
child of nod, respectively.

6. Algorithms for Index Construction and
Query Processing

We focus on finding hierarchical supergraphs of a query.

6.1 Index Construction
Algorithms 1, 2, 3 and 4 build an index by adding a new node

for each hierarchical graph in a hierarchical graph database one
by one from the root node. The root node is dummy and does not
have any information. The addition of the new node is based on
the way described in Section 5.1. When a node for a hierarchical
graph hp is a parent of a node for a hierarchical graph hc, if all the
following conditions are satisfied, a new node for a hierarchical
graph h is inserted between the node for hp and the node for hc.
That is, h interlaces hp, h does not interlace hc and hc interlaces
h. Each node of the tree except the root node stores the identifier
of a hierarchical graph in a database and the eigenvalues of both
the original hierarchical graph and its decomposed hierarchical
graphs. The structure of a constructed index depends on the or-
der of processing of hierarchical graphs in a database. We denote
the hierarchical graph stored in a node nod of an interlace tree as
hnod.

Example 4 Figure 3 demonstrates the index construction by
Algorithm 1 for the hierarchical graphs h1, h2 and h3. The eigen-
values of h1, h2 and h3 have the following relations.
• AE(h1) does not interlace AE(h2) and AE(h3)
• AE(h2) interlaces AE(h1) but does not interlace AE(h3)
• AE(h3) interlaces AE(h1) but does not interlace AE(h2)
The left index of Fig. 3 is constructed by processing in the order
of h2, h3 and h1. On the other hand, the right one is done in in the

Algorithm 2 ComputeEigenvalue(h)

Input: a hierarchical graph h = (Gh, φh) where Gh = {gh
i |1 ≤ i ≤ n}

Output: a family AE(h) of sets of eigenvalues of decomposed hierarchical

graphs of h

1: for each label μg(v) ∈ ⋃n
i=1 L(V)g

h
i do

2: add Eig(h[μg(v)]) to AE(h)

3: for each label νg(e) ∈ ⋃n
i=1 L(E)g

h
i do

4: add Eig(h[μg(v)][νg(e)]) to AE(h)

5: end for

6: end for

7: return AE(h)

Algorithm 3 CreateNode(nod,h,AE(h))
Input: a node nod of an index, a hierarchical graph h and a family AE(h) of

sets of eigenvalues of decomposed hierarchical graphs of h

Output: an index

1: if nod has child nodes then

2: for each child node cnod of nod do

3: if CheckInterlace(h, hcnod , AE(h), AE(hcnod)) then

4: CreateNode(cnod, h, AE(h))

5: return

6: else

7: if CheckInterlace(hcnod , h, AE(hcnod), AE(h))) then

8: create a node for h as a child node of nod and a parent node

of cnod

9: store h and AE(h) in the node

10: return

11: end if

12: end if

13: end for

14: end if

15: create a node cnod for h as a child node of nod

16: store h and AE(h) in cnod

17: return

Algorithm 4 CheckInterlace(h1, h2, AE(h1), AE(h2))
Input: two hierarchical graphs h1 = (G1, φ1) and h2 = (G2, φ2) where

G1 = {g1
i |1 ≤ i ≤ n}, two families AE(h1) and AE(h2) of sets of eigenval-

ues of decomposed hierarchical graphs of h1 and h2

Output: true when h1 interlaces h2, or false when h1 does not interlace h2

1: for each label μg(v) ∈ ⋃n
i=1 L(V)g

1
i do

2: for each label νg(e) ∈ ⋃n
i=1 L(E)g

1
i do

3: if Eig(h1[μg(v)][νg(e)]) ∈ AE(h1) does not interlace

Eig(h2[μg(v)][νg(e)]) ∈ AE(h2) then

4: return false

5: end if

6: end for

7: end for

8: for each label μg(v) ∈ ⋃n
i=1 L(V)g

1
i do

9: if Eig(h1[μg(v)]) ∈ AE(h1) does not interlace Eig(h2[μg(v)]) ∈ AE(h2)

then

10: return false

11: end if

12: end for

13: return true

order of h3, h2 and h1.

6.2 Query Processing
The query processing starts from the root node of the con-

structed index. Given a query q, for each child node nod of the

c© 2015 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.23 No.2

Fig. 3 Structures of indices constructed by proposed algorithms.

Algorithm 5 ProcessQuery(t, q)
Input: an index t constructed for a hierarchical graph database, a hierarchi-

cal graphs q as a query

Output: a set CHq of answers to q

1: CheckNode(t, root, q)

Algorithm 6 CheckNode(t, nod, q)
Input: an index t, a node nod of the index, a query q

Output: a set CHq of answers to q

1: for each child node cnod of nod do

2: if FindCandidate(hcnod , q, AE(hcnod))) then

3: add hnod to CHq

4: CheckNode(t, cnod, q)

5: end if

6: end for

7: return CHq

Algorithm 7 FindCandidate(h1, h2, AE(h1))
Input: two hierarchical graphs h1 and h2, and a family AE(h1) of sets of

eigenvalues of decomposed hierarchical graphs of h1

Output: true when h1 interlaces h2, or false when h1 does not interlace h2

1: for each label μg(v) of a vertex v of a graph g in Gh do

2: for each label νg(e) of an edge e of a graph g in Gh do

3: if Eig(h2[μg(v)][νg(e)]) does not interlace Eig(h1[μg(v)][νg(e)]) ∈
AE(h1) then

4: return false

5: end if

6: end for

7: end for

8: for each label μg(v) of a vertex v of a graph g in Gh do

9: if Eig(h2[μg(v)]) does not interlace Eig(h1[μg(v)]) ∈ AE(h1) then

10: return false

11: end if

12: end for

13: return true

root, we check whether q interlaces a hierarchical graph hnod in
nod according to Definition 10 . If q interlaces hnod, hnod is re-
turned as an answer to q, that is, a candidate for a hierarchical
subgraph of q and then we check it for each child of nod. If q does
not interlace hnod, q is not a hierarchical subgraph of hnod and the
hierarchical graphs in the descendant nodes by Corollary 1. So
it is not necessary to check it for the descendant nodes of nod.
Algorithms 5, 6 and 7 show the detail of the query processing.

6.3 Maintenance of Index
When a new hierarchical graph h is added to the hierarchical

graph database H, we add the new node for h to the index by the
same procedure as constructing it. When a hierarchical graph h

is deleted from H, we delete the node for h from the index. If the

deleted node has child nodes, we connect the parent node with
the child nodes. Since both the processes of addition and deletion
are simple, we omit details.

7. Experimental Evaluation

In order to evaluate the proposed indexing method for hierar-
chical graphs, we show the time to construct the index, the time
to process queries and the number of candidates for answers to
queries on two kinds of hierarchical graphs, one of which is gen-
erated from real data and another is done artificially. The real
data are originally a subset of Gene Ontology [17]. The artificial
hierarchical graphs are prepared using a generator that we devel-
oped. We use the following procedure as a baseline in evaluation
of query processing time since there is no appropriate indexing
method for hierarchical graphs as a target for comparison so far
to the authors’ knowledge. That is, eigenvalues of hierarchical
graphs in a database are computed and stored in advance. Given
a hierarchical graph as a query, we compute the eigenvalues and
compare them with the eigenvalues of each hierarchical graph in
the database one by one based on the interlace theorem. We call
this procedure Sequential Process.

It is difficult to decide exactly whether a number of hierarchical
graphs are hierarchical subgraphs of other ones within a reason-
able time and memory. Therefore we use a simpler procedure
as a target for comparison in evaluating efficiency of the index-
ing method. That is, for each hierarchical graph, we ignore the
hierarchical structure and check only whether each graph consti-
tuting it is a subgraph of a graph constituting another hierarchical
graph in a combinatorial way. Algorithm 8 shows the detail of
this procedure called Simple Search. Since Simple Search may
be faster than procedures for the exact decision, it is valid to use
it as a target for comparison instead of a procedure for the exact
decision. In order to compare Simple Search adequately to the
indexing method, we measure the time required to process hier-
archical graphs which are not candidates detected using the index
with Simple Search. We use 20 percent of them to compute the
average time per a query in the experiments since it takes much
time and memory to process all of the hierarchical graphs. We
use VF2 [18] to decide whether a graph is a subgraph of another
graph.

Table 1 shows the meanings of entries in tables where the re-
sults of experiments are shown. We develop all the software with
Visual C++ 2012 and MATLAB 2012b on Windows 7 Profes-
sional 64 bit and use a PC with a 2.8 GHz Intel Core i3 processor
and 16 GB RAM.

7.1 Hierarchical Graphs Generated from Real Data
We use Gene Ontology as a sample of real data. It is often

used in experimental evaluation for graph based processing [19].
In this ontology, biological terms and relations among them are
defined. We construct 1,356 hierarchical graphs by regarding bi-
ological terms as vertices of graphs and “is-a” relations among
the biological terms as hierarchies of the graphs. A hierarchical
graph consists of at most 50 graphs each of which has at most 5
vertices. On the assumption that ontologies are used to resolve
contexts of terms, we connect the vertices of a graph with edges

c© 2015 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.23 No.2

Algorithm 8 SimpleSearch(H, q)
Input: a set H of hierarchical graphs, a hierarchical graph q as a query

Output: the set of candidates for answers to q

1: for each hierarchical graph h in H do

2: for each graph gq in the set Gq of graphs constituting q do

3: if gq is not a subgraph of any graph in the set Gh of graphs consti-

tuting h then

4: add h to a set NC of hierarchical graphs

5: break out of the inner loop

6: end if

7: end for

8: end for

9: return H \ NC

Table 1 Entries in tables.

Entry Meaning

File Read time [s] to read hierarchical graphs from an input
file

Index Const. time [s] to compute eigenvalues of indexed hier-
archical graphs and construct the index

Eigen. Comp. (EC) average time [ms] to decompose a query hierar-
chical graph and compute eigenvalues of all the
decomposed hierarchical graphs

Tree Trav. (TT) average time [ms] to detect candidates for an-
swers to a query with the constructed index

Seq. Proc. (SP) average time [ms] to detect candidates for an-
swers to a query by comparing their eigenvalues
based on the interlace theorem one by one with-
out the constructed index (time to compute eigen-
values is not included)

Candidates (C) average number of candidates for answers to a
query

TT/SP ratio of Tree Trav. (TT) to Seq. Proc. (SP)
(EC+TT)/(EC’+TT’) ratio of the processing time with the decomposi-

tion of hierarchical graphs to the time without it
C/C’ ratio of the number of candidates for answers

with the decomposition of hierarchical graphs to
the number without it

Simple Search average time [ms] per query to process hierarchi-
cal graphs which are not candidates detected us-
ing the index with Algorithm 8

TT/Simple Search ratio of Tree Trav. (TT) to Simple Search

Table 2 Index construction and query processing with proposed index and
sequentially without index for real data.

Labels 3 4 5 6 7

File Read 1.23 1.32 1.34 1.42 1.53
Index Const. 0.85 0.92 0.97 1.04 1.14

Eigen. Comp. (EC) 0.6 0.7 0.7 0.9 0.8
Tree Trav. (TT) 0.8 0.9 0.9 0.9 1.0
Candidates (C) 294 218 172 139 114

Seq. Proc. (SP) 1.6 1.8 2.1 2.2 2.4
TT/SP 0.53 0.47 0.43 0.40 0.40

Simple Search 3.7 3.5 3.5 3.4 3.4
TT/Simple Search 0.23 0.24 0.26 0.26 0.29

and randomly add labels to them. In a context, all vertices have
the same label. We choose the number of labels according to the
number of vertices of a graph. Since indexing is usually useful for
a large amount of data, the size of this ontology is not sufficient
for evaluation. The purpose of this experiment is to show a pre-
liminary result for data which are characteristic of the real world.
We show the performance of the proposed indexing method for
larger sizes of synthetic data later.

Table 2 shows the time required for constructing the index and
processing queries, and the number of candidates for answers to
queries in the case where the number of labels varies. The num-

ber of candidates to answers for a query is approximately from 8
to 21 percent of the number of hierarchical graphs in the data set.
The query processing time (TT) with the index is from 40 to 53
percent of the time (SP) without the index. It is also from 23 to 29
percent of the processing time of Simple Search. As the number
of labels assigned to vertices and edges decreases, the proposed
method becomes effective relative to Simple Search since it is
harder to check whether a graph is a subgraph of another graph
in a combinatorial way. On the other hand, the proposed method
becomes less effective relative to Sequential Process. It is thought
to be due to structural differences of the constructed indices.

7.2 Hierarchical Graphs Generated Artificially
We use synthetic data to evaluate the performance of the pro-

posed method for various sizes and types of hierarchical graphs.
In our hierarchical graph generator, hierarchical structure among
graphs that constitute a hierarchical graph is decided randomly. It
is configured by the following parameters for a data set.
• number |H| of hierarchical graphs in a data set H

• number |Gh| of graphs that constitute a hierarchical graph
h ∈ H

• number |Vg| of vertices of each graph g ∈ Gh that constitutes
a hierarchical graph h ∈ H

• density |Eg|/(|Vg|(|Vg| −1)/2) of each graph g ∈ Gh that con-
stitutes a hierarchical graph h ∈ H

• number |L(V)g| of labels assigned to vertices of each graph
g ∈ Gh that constitutes a hierarchical graph h ∈ H

• number |L(E)g| of labels assigned to edges of each graph
g ∈ Gh that constitutes a hierarchical graph h ∈ H

We generate a synthetic data set similar to the ontology. That
is, different sizes of hierarchical graphs are included in a data
set, and the number of smaller sized hierarchical graphs is more
than the number of larger sized ones. In this experiment, 5 dif-
ferent sizes of hierarchical graphs are included in a data set. The
size of a hierarchical graph depends on the number of graphs that
constitute it and the number of their vertices. The number of hi-
erarchical graphs of a size in a data set is inversely proportional
to the size. For example, the number of hierarchical graphs con-
sisting of two graphs is twice the number of hierarchical graphs
consisting of four graphs. Positive integers are randomly assigned
to vertices and edges of graphs as labels. Labels of vertices are
different from labels of edges. We use all hierarchical graphs in
each data set as queries. Therefore there is at least one answer for
each query in the data set. The leftmost columns in Table 3 and 4
show the results on the same data set.

Table 3 (a) shows the results in the case where the number of
hierarchical graphs in a data set varies from 9,300 to 21,700. In
every data set, a hierarchical graph consists of 2, 4, 8, 16 or 32
graphs. The graph has 8 vertices and its density is 0.3. The num-
ber of labels assigned to the vertices and the edges is 8. In any
data set, the average number of candidates for answers to a query
is approximately 0.4 percent of the number of hierarchical graphs.
As the number of hierarchical graphs in a data set increases, the
processing time (TT) with the index increases but the both val-
ues of TT/SP and TT/Simple Search decrease. It means that the
proposed index becomes effective relative to Simple Search and

c© 2015 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.23 No.2

Table 3 Index construction and query processing with proposed index and sequentially without index for
artificial data.

(a) Varying number of hierarchical graphs (b) Varying number of graphs of which a hierarchical graph consists

Hier. Graphs 9,300 12,400 15,500 18,600 21,700

File Read 144.8 199.7 268.8 356.9 411.3
Index Const. 105.3 148.2 204.1 277.3 319.5

Eigen. Comp. (EC) 4.2 4.1 4.1 4.3 4.1
Tree Trav. (TT) 15.5 18.8 22.6 27.1 30.0
Candidates (C) 36 50 59 72 83

Seq. Proc. (SP) 48.1 63.2 78.5 98.8 110.6
TT/SP 0.32 0.30 0.29 0.29 0.27

Simple Search 43.2 57.8 71.9 86.6 100.5
TT/Simple Search 0.35 0.32 0.31 0.31 0.29

Graphs 2-32 3-48 4-64 5-80 6-96

File Read 144.8 213.7 304.7 419.2 553.1
Index Const. 105.3 129.8 160.8 191.8 214.9

Eigen. Comp. (EC) 4.2 5.6 7.0 8.5 10.3
Tree Trav. (TT) 15.5 17.6 19.2 20.3 21.6
Candidates (C) 36 28 23 20 18

Seq. Proc. (SP) 48.1 49.0 49.4 49.1 48.9
TT/SP 0.33 0.38 0.42 0.44 0.44

Simple Search 43.2 60.0 78.3 94.0 115.2
TT/Simple Search 0.35 0.29 0.25 0.22 0.19

(c) Varying number of vertices of graphs in a hierarchical graph (d) Varying density of graphs in a hierarchical graphs

Vertices 8 10 12 14 16

File Read 144.8 296.7 300.9 429.1 607.6
Index Const. 105.3 141.9 157.5 194.3 222.8

Eigen. Comp. (EC) 4.2 5.8 7.2 9.0 11.3
Tree Trav. (TT) 15.5 18.1 19.0 20.9 21.4
Candidates (C) 36 25 20 17 15

Seq. Proc. (SP) 48.1 48.6 48.9 48.8 49.5
TT/SP 0.32 0.37 0.39 0.43 0.43

Simple Search 43.2 47.4 53.0 57.6 62.2
TT/Simple Search 0.35 0.38 0.36 0.36 0.34

Density 0.30 0.40 0.50 0.60 0.70

File Read 144.8 170.1 200.8 233.9 263.0
Index Const. 105.3 117.2 132.4 148.0 154.7

Eigen. Comp. (EC) 4.2 4.7 5.4 6.1 6.5
Tree Trav. (TT) 15.5 16.6 17.8 18.7 18.9
Candidates (C) 36 30 25 23 21

Seq. Proc. (SP) 48.1 47.4 49.0 48.9 48.5
TT/SP 0.32 0.35 0.36 0.38 0.39

Simple Search 43.2 43.9 44.0 44.7 44.9
TT/Simple Search 0.35 0.38 0.40 0.42 0.42

(e) Varying number of labels assigned to vertices and edges of graphs in hierarchical graphs

Labels 3 4 5 6 7

File Read 95.4 144.8 219.2 313.3 435.2
Index Const. 56.0 105.3 180.1 274.8 396.0

Eigen. Comp. (EC) 3.1 4.2 5.4 6.8 8.3
Tree Trav. (TT) 7.2 15.5 26.8 40.9 57.5
Candidates (C) 46 36 30 25 23

Seq. Proc. (SP) 25.1 48.1 73.0 102.1 133.9
TT/SP 0.29 0.32 0.37 0.40 0.43

Simple Search 50.8 43.2 40.8 62.0 39.1
TT/Simple Search 0.14 0.35 0.66 0.66 1.47

Sequential Process.
Table 3 (b) shows the results in the case where the set of the

number of graphs that constitute each hierarchical graph in a data
set varies from { 2, 4, 8, 16, 32 } to { 6, 12, 24, 48, 96 }. In the
first row of the table, 2-32 and 3-48 mean the sets { 2, 4, 8, 16,
32 } and { 3, 6, 12, 24, 48 }, respectively, for example. In each
data set, the number of hierarchical graphs is 9,300. The number
of vertices of each graph that constitutes a hierarchical graph is 8
and the density of the graph is 0.3. The number of labels assigned
to vertices and edges of the graph is 8. The average number (CC)
of candidates for answers to a query is approximately from 0.2 to
0.4 percent of the number of hierarchical graphs in the data sets.
As the number of graphs that constitute a hierarchical graph in-
creases, the average number (CC) of candidates and TT/Simple
Search decreases. This means that the proposed index becomes
effective. On the other hand, the value of TT/SP increases. This is
due to the increase in the number of eigenvalues of decomposed
hierarchical graphs in each node of the constructed index, which
are compared in processing a query.

Table 3 (c) shows the results in the case where the number of
vertices of each graph that constitutes hierarchical graphs in a
data set varies from 8 to 16. In each data set, the number of hi-
erarchical graphs is 9,300. A hierarchical graph consists of 2, 4,
8, 16 or 32 graphs. The density of the graph is 0.3. The number
of labels assigned to the vertices and the edges is 8. Table 3 (d)

shows the results in the case where the density of each graph that
constitutes hierarchical graphs in a data set varies from 0.3 to
0.7. In each data set, the number of hierarchical graphs is 9,300.
A hierarchical graph consists of 2, 4, 8, 16 or 32 graphs. The
graph has 8 vertices. The number of labels assigned to the ver-
tices and the edges is 8. In both experiments, the average number
of candidates for answers to a query is approximately from 0.2
to 0.4 percent of the number of hierarchical graphs in the data
sets. It decreases as the size of graphs, that is, the number of
the vertices or their density, that constitute a hierarchical graph
increases. On the other hand, the value of TT/SP increases due
to the increase in the number of eigenvalues of decomposed hi-
erarchical graphs similar to Table 3 (b). The observed variation
in TT/Simple Search of Table 3 (c) and Table 3 (d) may be due to
VF2.

Table 3 (e) shows the results in the case where the number of
labels assigned to vertices and edges of each graph that consti-
tute hierarchical graphs varies from 3 to 7. In each data set, the
number of hierarchical graphs is 9,300. A hierarchical graph con-
sists of 2, 4, 8, 16 or 32 graphs. The graph has 8 vertices and its
density is 0.3. The average number of candidates for answers to
a query is approximately from 0.2 to 0.5 percent of the number
of hierarchical graphs in the data sets. As the number of labels
assigned to vertices and edges of each graph that constitute hier-
archical graphs increases, it decreases since a hierarchical graph

c© 2015 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.23 No.2

Table 4 Index construction and query processing without hierarchical graph decomposition for artificial
data.

(a) Varying sizes of graphs in a hierarchical graph (b) Varying number of vertices of graphs in a hierarchical graph

Graphs 2-32 3-48 4-64 5-80 6-96

File Read 141.8 213.7 304.7 419.2 553.1
Index Const. 29.1 61.2 105.1 167.2 252.5

Eigen. Comp. (EC’) 2.7 5.5 10.1 16.3 24.7
Tree Trav. (TT’) 4.5 7.8 9.5 14.1 15.7
Candidates (C’) 1,618 1,604 1,571 1,550 1,537

(EC+TT)/(EC’+TT’) 2.72 1.75 1.33 0.95 0.79
C/C’ 0.02 0.02 0.01 0.01 0.01

Vertices 8 10 12 14 16

File Read 141.8 296.7 300.9 429.1 607.6
Index Const. 29.1 58.9 104.7 171.5 283.6

Eigen. Comp. (EC’) 2.7 5.4 9.9 17.4 28.5
Tree Trav. (TT’) 4.5 7.7 9.6 14.3 15.5
Candidates (C’) 1,618 1,660 1,653 1,655 1,033

(EC+TT)/(EC’+TT’) 2.72 1.83 1.35 0.95 0.74
C/C’ 0.02 0.02 0.01 0.01 0.01

has lower chances of being a hierarchical subgraph of another hi-
erarchical graph. The query processing time (TT) with the index
increases. It is due to structural differences of the constructed
indices and increase of the time required to decompose a query
hierarchical graph according to labels. The reason why the pro-
cessing time (SP) without the index increases is also that the time
required to decompose a query hierarchical graph increases. On
the other hand, Simple Search becomes faster since sizes of hier-
archical graphs do not change and it is easier to check whether a
graph is a subgraph of another graph. File Read increases since
the size of an input data increases as the number of digits of labels
assigned to vertices and edges of graphs increases.

7.3 Effect of Hierarchical Graph Decomposition
Here we evaluate the effect of the decomposition method of

hierarchical graphs according to labels assigned to vertices and
edges of graphs, which is described in Section 5.2. We compare
the query processing time and the number of candidates for an-
swers to a query in the case with the decomposition to those in
the case without it. The settings and data sets of the experiments
whose results are shown in Table 4 (a) and Table 4 (b) are the
same as in Table 3 (b) and Table 3 (c), respectively.

Table 4 (a) shows the results in the case where the set of the
number of graphs that constitute a hierarchical graph in a data set
varies from { 2, 4, 8, 16, 32 } to { 6, 12, 24, 48, 96 }. Table 4 (b)
shows the results in the case where the number of vertices of each
graph that constitutes hierarchical graphs in the data set varies
from 8 to 16. In both experiments, the average number of can-
didates for answers to a query is approximately from 50 to 100
times as many as the average number of candidates in the case
with the decomposition as will be noted from the value C/C’ in
the tables. They show that the proposed decomposition method is
very effective in reducing the number of candidates. Decreasing
the values of (EC+TT)/(EC’+TT’) in the tables shows that the av-
erage time for processing a query in the case with decomposition
becomes faster than that without the decomposition as the sizes
of graphs that constitute a hierarchical graph become larger.

8. Conclusion

We propose an indexing method for hierarchical graphs, which
is based on the relation of interlacing sequences of eigenvalues.
Given a hierarchical graph as a query, we can filter hierarchical
graphs which do not contain it as substructures and find the can-
didates for answers to the query with the index. We also define a
matrix representation of a hierarchical graph. In order to improve
the filtering performance of the proposed index and reduce the

cost of computing eigenvalues, we propose the decomposition of
hierarchical graphs according to labels assigned to vertices and
edges. By experimental evaluation, we show the effectiveness of
the proposed method. Since graphs are hierarchical graphs with-
out hierarchy, our approach is applicable to them. The proposed
methods may be improved by combining with suitable combina-
torial methods.

References

[1] Cook, D.J. and Holder, L.B. (Eds.): MINING GRAPH DATA, John
Wiley & Sons, Inc. (2007).

[2] Giacomo, E., Didimo, W., Grilli, L. and Liotta, G.: WhatsOnWeb:
Using Graph Drawing to Search the Web, Graph Drawing, Healy, P.
and Nikolov, N. (Eds.), Lecture Notes in Computer Science, Vol.3843,
Springer Berlin Heidelberg, pp.480–491 (2006).

[3] Birchall, K. and Gillet, V.J.: Reduced Graphs and Their Applications
in Chemoinformatics, Chemoinformatics and Computational Chemi-
cal Biology, Methods in Molecular Biology, Vol.672, Humana Press,
chapter 8, pp.197–212 (2011).

[4] Haemers, W.H.: Interlacing Eigenvalues and Graphs, Linear Algebra
and its Applications, Vol.226-228, pp.593–616 (1995).

[5] Yan, X. and Han, J.: Graph Indexing, Managing and Mining Graph
Data, Aggarwal, C.C. and Wang, H. (Eds.), Springer, chapter 5,
pp.161–180 (2010).

[6] Shokoufandeh, A., Macrini, D., Dickinson, S., Siddiqi, K. and Zucker,
S.W.: Indexing Hierarchical Structures Using Graph Spectra, IEEE
Trans. Pattern Analysis and Machine Intelligence, Vol.27, No.7,
pp.1125–1140 (2005).

[7] Demirci, M.F., van Leuken, R.H. and Veltkamp, R.C.: Indexing
through laplacian spectra, Computer Vision and Image Understand-
ing, Vol.110, No.3, pp.312–325 (2008).

[8] Zhang, N., Özsu, M.T., Ilyas, I.F. and Aboulnaga, A.: FIX: Feature-
based Indexing Technique for XML Documents, Proc. 32nd Inter-
national Conference on Very Large Data Bases, VLDB Endowment,
pp.259–270 (2006).

[9] Zou, L., Chen, L., Yu, J.X. and Lu, Y.: A novel spectral coding in
a large graph database, Proc. 11th International Conference on Ex-
tending Database Technology: Advances in Database Technology,
pp.181–192 (2008).

[10] Shokoufandeh, A., Dickinson, S.J., Siddiqi, K. and Zucker, S.W.: In-
dexing using a spectral encoding of topological structure, Proc. IEEE
Computer Society Conference on Computer Vision and Pattern Recog-
nition (1999).

[11] Cheng, J., Ke, Y., Ng, W. and Lu, A.: Fg-index: Towards verification-
free query processing on graph databases, Proc. 2007 ACM SIG-
MOD International Conference on Management of Data, pp.857–872
(2007).

[12] Yan, X. and Han, J.: gSpan: Graph-Based Substructure Pattern Min-
ing, Proc. IEEE International Conference on Data Mining, pp.721–
724 (2002).

[13] Cheng, J., Ke, Y. and Ng, W.: Efficient query processing on graph
databases, ACM Trans. Database Syst., Vol.34, No.1, pp.2:1–2:48
(2009).

[14] Shasha, D., Wang, J.T.L. and Giugno, R.: Algorithmics and applica-
tions of tree and graph searching, Proc. 21st ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems, pp.39–52
(2002).

[15] He, H. and Singh, A.K.: Closure-Tree: An Index Structure for Graph
Queries, Proc. 22nd International Conference on Data Engineering,
p.38 (2006).

[16] Katayama, K., Amagasa, Y. and Nagaya, H.: Detecting Non-
subgraphs Efficiently by Comparing Eigenvalues of Decomposed

c© 2015 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.23 No.2

Graphs, IEICE Trans. Information and Systems, Vol.E95-D, No.11,
pp.2724–2727 (2012).

[17] the Gene Ontology Consortium: Gene Ontology: Tool for the unifica-
tion of biology, Nature Genetics, Vol.25, pp.25–29 (2000).

[18] Cordella, L.P., Foggia, P., Sansone, C. and Vento, M.: An improved
algorithm for matching large graphs, 3rd IAPR-TC15 Workshop on
Graph-based Representations in Pattern Recognition, pp.149–159
(2001).

[19] He, H. and Singh, A.K.: Graphs-at-a-time: Query language and access
methods for graph databases, Proc. 2008 ACM SIGMOD International
Conference on Management of Data, pp.405–418 (2008).

Kaoru Katayama received his Ph.D. de-
gree in informatics from Kyoto University
in 2000. He is currently an associate pro-
fessor in the Graduate School of Informa-
tion and Communication Systems, Tokyo
Metropolitan University. His research in-
terests are in the areas of data engineering
and data mining.

Ernest Weke Maina received his M.E.
degree in Electrical Engineering from
Tokyo Metropolitan University in 1996.
He is currently a freelance software de-
veloper. His research interests are in the
areas of graph and network algorithms.

c© 2015 Information Processing Society of Japan

