
Vol. 44 No. 3 IPSJ Journal Mar. 2003

Regular Paper

Group Communication Protocol for Hierarchical Group

Kojiro Taguchi† and Makoto Takizawa†

A group including a large number of processes implies large computation and communica-
tion overheads O(n2) to manipulate and transmit messages for number n of processes in a
group. In this paper, we discuss a hierarchical group (HG) where subgroups of processes are
interconnected in order to reduce the overheads. We propose a hierarchical group (HG) pro-
tocol to causally deliver messages to processes in the hierarchical group. In the HG protocol,
each message carries a vector whose size is the number of subgroups, smaller than number of
processes in a group.

1. Introduction

In distributed applications like telecon-
ferences, a collection of multiple processes
is cooperating to achieve some objectives.
The collection of processes is referred to as
group 1),5),7),9)∼14). In virtual universities, stu-
dents in the world can admit courses. In
these applications, huge number of processes
are cooperating, which are distributed in var-
ious areas like not only local area but also wide
area. A large-scale group is a group which in-
cludes hundreds of numbers processes. A wide-
area group is a group where processes are dis-
tributed in wide-area networks like the Internet.
Tachikawa and Takizawa 12),13) discuss proto-
cols for wide-area groups which adopt fully
distributed control and destination retransmis-
sion.

A group communication protocol supports a
group of n (> 1) processes with causally/totally
ordered delivery of messages 1),7). In order to
support the ordered delivery of messages, a vec-
tor clock 1),7) including n elements is used. A
header length of a message is O(n) for number
n of processes in a group because the message
carries the vector clock. Computation and com-
munication overheads are O(n2) because a pro-
cess sends a message to all the processes in a
group. Even if a group of tens of processes can
be realized by traditional group protocols, it is
difficult, maybe impossible to support a group
of hundreds processes due to large computation
and communication overheads. In order to re-
duce the overheads, hierarchical groups are dis-
cussed 4),14). Papers 2),4) discuss how to mul-
ticast messages in a hierarchical group but do

† Department of Computers and Systems Engineer-
ing, Tokyo Denki University

not discuss ordered delivery of messages. Taka-
mura and Takizawa 14) discuss how to support
the causally ordered delivery in a hierarchical
group by using the vector clock but the the
vector size is the total number of processes. In
this paper, processes in different local areas es-
tablish a subgroup which supports the causally
ordered delivery of messages by its own mecha-
nism like physical clock 8), liner clock 6), vector
clock 1),7), and centralized controller 5). Sub-
groups are interconnected by the Internet to
make a group. We discuss a new type of hierar-
chical group (HG) protocol for a large-scale and
wide-area group of processes, where each mes-
sage carries a vector whose size is the number
of subgroups, smaller than the total number of
processes.

In section 2, we present a system model. In
section 3, we discuss the causally ordered de-
livery of messages in a hierarchical group. In
section 4, we discuss the HG protocol. In sec-
tion 5, we evaluate the HG protocol in terms
of computation and communication overheads
compared with traditional protocols.

2. System Model

2.1 System Configuration
We present a system configuration of this pa-

per. A system is composed of multiple pro-
cesses interconnected in networks. A group of
multiple processes are cooperating in order to
achieve some objectives. In the one-to-one com-
munication like one supported by TCP/IP 3)

and multicast communication 2), each message
is reliably delivered to one or more than one
process, i.e. in the sending order with neither
loss nor duplication of message. On the other
hand, in the group communication, a process
sends a message to multiple processes while re-
ceiving messages from multiple processes in a

674

Vol. 44 No. 3 Group Communication Protocol for Hierarchical Group 675

group. The membership of the group may be
dynamically changed by members’ leaving and
new members’ joining the group 11). In addi-
tion, messages are required to be causally de-
livered to destination processes in the group 1).
Let si(m) and rj(m) denote sending and receipt
events of a message m in processes pi and pj ,
respectively. By using the happens-before re-
lation 6), the causally precedent relation “→”
on messages is defined: a message m1 causally
precedes another message m2 (m1 → m2) iff
si(m1) happens before sj(m2). A process is re-
quired to deliver a message m1 before another
message m2 if m1 causally precedes m2.

Processes are interconnected in networks.
Every pair of processes can communicate with
one another through a logical communication
channel supported by the network. For exam-
ple, each channel is realized in a connection sup-
ported by TCP/IP 3).

2.2 Functions of Group Protocols
It is significant to discuss which process co-

ordinates communication among processes in a
group. One way to coordinate communication
is a centralized way 4),5) where there is one con-
troller in a group. Every process first sends
a message to the controller and then the con-
troller delivers the message to all the destina-
tion processes in the group. The delivery order
of messages is decided by the controller. An-
other way is a distributed way where there is
no centralized controller. Every process directly
sends messages to the destination processes and
directly receives messages from processes in a
group. Each process makes a decision on de-
livery order and atomic receipt of messages by
itself, e.g. by using the vector clock 7). ISIS 1)

takes a decentralized way where every destina-
tion process sends a receipt confirmation to the
sender of a message assuming the underlying
network is reliable. Takizawa, et al. 9),10),13)

take a fully distributed approach where every
destination process sends a receipt confirma-
tion to not only the sender but also all the other
destinations by taking usage of less-reliable net-
works (Fig. 1). A process can also detect mes-
sage loss on receipt of messages including re-
ceipt confirmation from other destinations. In
order to reduce the number of messages trans-
mitted in the network, receipt confirmation of
messages received is carried back to the other
processes. In addition, every process takes de-
layed confirmation. The process sends receipt
confirmation of messages only if the process re-

Fig. 1 Transmission of receipt confirmation.

Fig. 2 Retransmission of message.

ceives some number of messages or it takes some
time after most recently receiving a message.
Furthermore, the destination retransmission is
proposed (Fig. 2), where some destination for-
wards the message to the process on behalf of
the sender 12). In the other protocols, only the
sender retransmits the message.

In traditional distributed group protocols,
the vector clock 7) is used in order to causally
deliver messages to destination processes in a
group. For a group G of n (> 1) processes
p1, . . . , pn, a vector V is in a form 〈V1, . . . , Vn〉.
Every process pi has a vector V = 〈V1, . . . , Vn〉
where each element Vj is initially 0 (j =
1, . . . , n). Each time a process pi sends a mes-
sage m, the ith element Vi is incremented by
one, i.e., Vi := Vi + 1. Then, the message m
carries the vector V (m.V = 〈m.V1, . . . , m.Vn〉)
of the sender process pi. On receipt of a mes-
sage m from another process, the vector V in
a process pi is manipulated as follows: Vk :=
max(Vk, m.Vk) (k = 1, . . . , n, k �= i). Here,
a vector A = 〈A1, . . . , An〉 is larger than an-
other vector B = 〈B1, . . . , Bn〉 (A > B) iff
Aj ≥ Bj (j = 1, . . . , n) and Ak > Bk for
some k. A ≥ B iff A > B or A = B. A
message m1 causally precedes another message
m2 (m1 → m2) iff m1.V < m2.V . m1 is
causally concurrent with m2 (m1 ‖ m2) iff nei-
ther m1 → m2 nor m2 → m1.

2.3 Hierarchical Group
Since the header length of messages is O(n)

and the computation and communication over-
heads are O(n2), it is difficult, or maybe im-
possible for the protocol using the vector clock

676 IPSJ Journal Mar. 2003

Fig. 3 Model of hierarchical group.

to support a larger group from the perfor-
mance point of view. One approach to reducing
the overheads is to hierarchically construct a
group 4),14). For example, a group G composed
of one hundred processes p1, . . . , p100 is decom-
posed into ten subgroups G1, . . . , G10, each of
which includes ten local processes. Each sub-
group Gi has one process named a gateway pro-
cess pi0 (i = 1, . . . , 10). If a process pis in a
subgroup Gi sends a message m to destination
processes in another subgroup Gj (j �= i), the
process pis first sends the message m to a gate-
way process pi0 in Gi. Then, pi0 forwards the
message m to a gateway process pj0 of the des-
tination subgroup Gj . The gateway process pj0

delivers the message m to destination processes
in Gj . A group G is hierarchical iff G is com-
posed of disjoint subgroups and every process
in a subgroup does not directly deliver messages
to any process in another subgroup (Fig. 3). G
is flat iff G is not hierarchical.

3. Causally Ordered Delivery

We discuss a causality of messages in a hier-
archical group. A group G is composed of mul-
tiple subgroups G1, . . . , Gk (k > 1). Each sub-
group Gi includes processes pi1, . . . , pili (li ≥ 1)
and one gateway process pi0. Processes and
messages transmitted in a subgroup are referred
to as local ones. A subgroup of gateway pro-
cesses p10, . . . , pk0 is a main subgroup. Mes-
sages exchanged in the main subgroup are re-
ferred to as global messages. Suppose a gate-
way process receives a local message m. A lo-
cal message which is destined to a process in
another subgroup is an outgoing one. A global
message is created from an outgoing local mes-
sage by a gateway process. Then, the global
message M is transmitted in a main subgroup
and then is changed to a local massage mj in
a destination subgroup Gj . Here, m and mj

are referred to as source and destination local
messages of a global message M , sl(M) and
dlj(M), respectively. A capital letter like M

Fig. 4 Causal delivery in hierarchical group.

shows a global message for a local message m.
Let dlj(m) denote a destination local message
of a source local message m in a subgroup Gj .
Let sl(m) be a source local message of a des-
tination local message m. Let g(m) denote a
global message of a local message m. A nota-
tion “M1 →G M2” shows that a global message
M1 causally precedes another message M2 in
a main subgroup of G. In each subgroup Gi,
local messages can be assumed to be causally
ordered by its ordering mechanism. A notation
“m1 →i m2” indicates that a local message m1

causally precedes another local message m2 in a
subgroup Gi. We discuss how causalities of lo-
cal messages “m1 →i m2” and global messages
“g(m1) →G g(m2)” are related.
[Definition] A local message m1 causally pre-
cedes another local message m2 (m1 → m2) iff
one of the following conditions holds:

(1) sl(m1) →i sl(m2).
(2) dli(m1) →i sl(m2).
(3) m1 → m3 → m2 for some local mes-

sage m3. �

It is straightforward for the following theorem
to hold from the definition.
[Theorem 1] g(m1) →G g(m2) if m1 → m2.

�

Suppose a group G includes a pair of sub-
groups Gi and Gj . Processes pi0 and pj0 are
gateway processes of subgroups Gi and Gj , re-
spectively. A process pis in Gi sends a local
message m1 to a process pjt in Gj . A process
pjt sends a local message m2 before receiving a
destination local message m′

1(= dlj(m1)) and a
local message m3 after receiving m′

1 as shown
in Fig. 4. That is, M1 causally precedes M2

(M1 →G M2) but m1 and m2 are causally con-
current (m1 ‖ m2). The process pj0 sends M2

to pi0 after receiving M1. Hence, M1 causally
precedes M2 (M1 →G M2) in the main sub-
group of G. “M1 →G M2” if “m1 → m2” from
Theorem 1. However, “m1 → m2” does not
necessarily hold even if M1 →G M2. We have

Vol. 44 No. 3 Group Communication Protocol for Hierarchical Group 677

to discuss a mechanism for not causally order-
ing a pair of global messages M1(= g(m1)) and
M2(= g(m2)) in a main subgroup of G unless
“m1 → m2” holds.

4. HG Protocol

4.1 Data Transmission
We discuss a basic data transmission proce-

dure of the hierarchical group (HG) protocol
for a hierarchical group G composed of multiple
subgroups G1, ..., Gk (k > 1). First, we assume
that each subgroup supports some mechanism
to causally deliver messages like vector clock.

A local message m exchanged among pro-
cesses in a subgroup Gi includes following in-
formation (Fig. 5):

m.sp = source process.
m.dp = set of destination processes.
m.SG = source subgroup Gi.
m.DG = set of destination subgroups.
m.vc = vector clock 〈vc1, . . . , vck〉.
m.data = data.

A global message M exchanged among gate-
way processes includes following information
(Fig. 6):

M.SG = sender subgroup.
M.DG = set of destination subgroups.
M.V C = vector clock [V C1, . . . , V Ck].
M.DATA = data (= local message).

Each gateway process pi0 is not only a local
process in a subgroup Gi but also exchanges
global messages with other gateway processes.
The gateway process pi0 manipulates a global
sequence number gseq. The global sequence
number gseq shows a sequence number of a
global message. A vector vc = 〈vc1, . . . , vck〉
manipulated by each local process pij in Gi is
referred to as local vector (j = 0, 1, . . . , li). The
global sequence number gseq and each element
in the local vector vc are initially 0 in every
process. It is noted that the vector size is the
number k of subgroups (k < n).

First, suppose a local process pis in a sub-
group Gi sends a local message m to a pro-
cess pjt in another subgroup Gj . Here, m.sp =
pis, m.SG = Gi, pjt ∈ m.dp, and Gj ∈ m.DG.
The process pis sends a source local message m
to a gateway process pi0 where m.vc := vc. It
is noted that the local vector vc of the process
pis is not updated on sending a local message
while the traditional vector clock is incremented
on sending a message.

Then, the gateway process pi0 receives the
outgoing local message m from the process

Fig. 5 Local message format.

Fig. 6 Global message format.

pis in the subgroup Gi. The global sequence
number gseq in pi0 is incremented by one;
gseq := gseq + 1. Then, a global message
M(= g(m)) is created from the local message m
where M.V Ci := gseq, M.V Ch := m.vch (h =
1, . . . , k, h �= i), M.SG := m.SG, M.DG :=
m.DG, and M.DATA := m. The gateway
process pi0 sends the global message M to a
gateway pj0 in each destination subgroup Gj ∈
M.DG.

Next, a gateway process pj0 in a sub-
group Gj receives a global message M
from another subgroup Gi. Here, vch :=
max(vch, M.V Ch) (h = 1, . . . , k, h �= j) in pj0.
The gateway process pj0 creates a destination
local message mj(= dlj(M)) from the global
message M and then forwards mj to destina-
tion processes in Gj . Here, mj := M.DATA
and mj .vc := M.V C. Each gateway process
manipulates a pair of local vector vc and global
sequence number gseq while a local process only
manipulates a local vector vc.

A local process pjt receives a local message m
from the gateway process pj0 or another local
process in a same subgroup Gj . Here, vch :=
max(vch, m.vch) (h = 1, . . . , k, h �= j) in pjt.
[Example] Figure 7 shows a group G com-
posed of three subgroups G1, G2, and G3. Let
p10, p20, and p30 be gateway processes of the
subgroups G1, G2, and G3, respectively. No-
tations [gseq] and 〈vc1, vc2, vc3〉 indicate in-
stances of global sequence number and local
vector, respectively, in each process. Initially,
gseq = 0 and vc1 = vc2 = vc3 = 0. First, a
process p1s in the subgroup G1 sends a source
local message a to a pair of processes p2t and
p3u in subgroups G2 and G3, respectively. Here,
a.vc = 〈0, 0, 0〉. The local message a is sent to
the gateway process p10. The gateway process
p10 creates a global message A from the local

678 IPSJ Journal Mar. 2003

Fig. 7 Communication among subgroups G1, G2, and G3.

message a. Here, gseq of p10 is incremented
by one and V C = [1, 0, 0]. The gateway
process p10 sends the global message A with
A.V C = [1, 0, 0] to a pair of gateway processes
p20 and p30.

The local vectors vc in the gateway processes
p20 and p30 are changed to 〈1, 0, 0〉. The
gateway process p20 sends a destination local
message a2 for the global message A to a lo-
cal destination process p2t. On receipt of a2,
vc is changed to 〈1, 0, 0〉 in p2t. Then, the
process p2t sends a source local message b with
vc = 〈1, 0, 0〉 to the gateway process p20. The
global sequence number gseq of p20 is incre-
mented by one. The gateway process p20 cre-
ates a global message B and then sends B to
p10 and p30. Here, B.V C = [1, 1, 0]. The
gateway process p10 forwards a destination lo-
cal message b1 of a global message B for the
local message b with b.vc = 〈1, 1, 0〉. Here,
since a.vc < b1.vc, the local message a causally
precedes the local message b.

In the subgroup G3, a process p3v sends a
source local message c with c.vc = 〈0, 0, 0〉
before receiving a destination local message b3

with b3.vc = 〈1, 1, 0〉. The gateway process p30

sends a global message C for the local message
c after receiving the global message B. Accord-
ing to the traditional definition of the causal-
ity, the global message B causally precedes the
global message C since the gateway process p30

sends C after receiving B. However, since the

local message c is sent before b3 is received by
p3v, a pair of global messages B and C must
be causally concurrent. The global message B
carries a global vector V C = [1, 1, 0] while
the global message C carries [0, 0, 1]. A des-
tination process p1s receives a destination local
message c1 of C where c1.vc = 〈0, 0, 1〉. The
destination local message b1 of B carries the lo-
cal vector b1.vc = 〈1, 1, 0〉. Here, the local
vectors 〈1, 1, 0〉 and 〈0, 0, 1〉 are not compa-
rable. Here, the local messages b1 and c1 are
causally concurrent in the process p1s. �

4.2 Ordering of Messages
A pair of local messages m1 and m2 are

causally ordered in a local process pit of a sub-
group Gi according to a following ordering rule:
[Ordering rule] A local message m1 precedes
another local message m2 in a subgroup Gi

(m1 ⇒i m2) if m1.vc < m2.vc. �

[Theorem 2] If a local message m1 causally
precedes another local message m2 (m1 → m2),
m1 precedes m2 in a subgroup Gi (m1 ⇒i m2)
by the ordering rule.
[Proof] Suppose m1 → m2 but m1 �⇒i m2.
If m1 → m2, g(m1) →G g(m2) according to
Theorem 1. If g(m1) →G g(m2), m1 ⇒i m2.
It contradicts the assumption. �

Even if a global message M1 causally pre-
cedes another global message M2 in a main sub-
group (M1 →G M2), the causality “m1 → m2”
does not necessarily hold for local messages m1

and m2 of M1 and M2, respectively. Suppose

Vol. 44 No. 3 Group Communication Protocol for Hierarchical Group 679

a gateway process pi0 receives outgoing local
messages m1 and m2 from local processes pi1

and pi2 in a subgroup Gi, respectively. The
gateway process pi0 creates global messages M1

and M2 from m1 and m2, respectively. Each
subgroup Gi is assumed to support some mech-
anism like vector clock to causally order local
messages. The gateway process pi0 sends M1

before M2 if m1 causally precedes m2. Here,
suppose m1 and m2 are causally concurrent
(m1 ‖i m2). In the HG protocol presented here,
the global sequence number gseq of pi0 is incre-
mented by one each time the gateway process
pi0 sends a global message. If pi0 sends M1

before M2, dlj(M1).vc < dlj(M2).vc for every
common destination subgroup Gj of M1 and
M2, i.e. dlj(M1) precedes dlj(M2). Thus, for a
pair of local messages m1 and m2 sent in a same
subgroup, m1 may precede m2 even if m1 and
m2 are causally concurrent. Thus, the following
theorem holds.
[Theorem 3] A local message m1 causally pre-
cedes another message m2 (m1 → m2) if m1

precedes m2 in a subgroup Gi (m1 ⇒i m2) and
m1.SG �= m2.SG, i.e. m1 and m2 are sent in
different subgroups. �

5. Evaluation

In traditional protocols, computation and
communication overheads are O(n2) for num-
ber n of processes in a group. Because a pro-
cess causally order messages by using the vec-
tor clock and sends a message to all the pro-
cesses in the flat group. In the HG protocol,
the overhead for communication among gate-
way processes is O(k2) for number k of sub-
groups (k < n). The overhead of each subgroup
Gi is O(l2i) for number li of processes in a sub-
group Gi (li < n).

It takes three rounds to deliver messages in
the hierarchical group while it takes one round
in the flat group. The round trip time RTTH

in the HG protocol is compared with RTTF in
the flat group protocol. The round trip time
is obtained by summing message delay time in
the networks and processing time in processes
which a message passes over. In the evaluation,
the round trip time of each message is duration
from time when a process sends a message un-
til time when the process receives a response
message from the destination process (Fig. 8).
There are following parameters to evaluate the
protocols:

n =number of processes p1, . . . , pn in a

Fig. 8 Round trip time.

group G.
k =number of subgroups G1, . . . , Gk.
li =number of processes in a subgroup Gi.
δij =delay time between a pair of processes

pi and pj in a flat group.
δi =delay time between every pair of pro-

cesses in a subgroup Gi, assuming
δst = δi for every pair of local process
pis and pit in Gi.

δG =delay time between a pair of gateway
processes pi0 and pj0 in a main sub-
group.

π =time units to process one unit work to
handle a message, e.g. time to process
one element in a vector.

In a flat group, it takes n2π time units to
send a message after receiving another message.
Hence, the round trip time RTTF in a flat group
is given as follows:

RTTF = n2π + 2δij . (1)
Next, let us consider a hierarchical group

composed of k subgroups G1, . . . , Gk. Here, a
process pis sends a local message m to a gate-
way process pi0. Secondly, the global message
is forwarded to a destination gateway process
pj0. Then, the gateway process pj0 forwards
the local message to a destination process pjt.
The round trip time RTTH is given as follows
(Fig. 8):

RTTH = 2
(
δi +

(
l2i + k2

)
π + δG

+
(
l2j + k2

)
π + δj

)
+ l2jπ. (2)

Here, we assume that every subgroup Gi in-
cludes same number of processes, li = l and
delay time between every pair of processes in
Gi is same, δi = δ. RTTH is given as follows:

RTTH =
(
5l2 + 4k2

)
π + 4δ + 2δG. (3)

680 IPSJ Journal Mar. 2003

Fig. 9 RTT ratio (αG = α).

Since n = kl, the following formula is derived.

RTTH =
(

5n2

k2
+ 4k2

)
π + 4δ + 2δG. (4)

The minimum value of RTTH is given for k =
(5/4)−1/4

√
n.

RTTH = 4
√

5nπ + 4δ + 2δG. (5)

If a flat group is realized by a same network
topology as the hierarchical group, δij = 2δ +
δG, for every pair of processes pi and pj . Let
δ = απ and δG = αGπ for some constants α and
αG. α and αG show ratios of communication
speed to processing speed.

RTTF = n2π + 4δ + 2δG

=
(
n2 + 4α + 2αG

)
π. (6)

RTTH =
(
4
√

5n + 4α + 2αG

)
π. (7)

First, we discuss a case subgroups and main
subgroup take usage of a same type of net-
work, i.e. α = αG. Figure 9 shows a ra-
tio of RTTH to RTTF for α = 0, 100, 1000.
α = 1000, α = 100, and α = 0 show three
types of networks, slower to faster ones (Fig. 9).
If n ≥ 9, the hierarchical group implies shorter
round trip time than the flat group. For ex-
ample, in case n = 100, the round trip time is
reduced to 9 [%] for α = 0, 14 [%] for α = 100,
and 43 [%] for α = 1000.

Next, let us consider a hierarchical group
where local processes are interconnected in each
subgroup with local area networks and sub-
groups are interconnected with the Internet.
Here, αG = 10α (Fig. 10). For example, in
case n = 100, the round trip time is reduced to
9 [%] for α = 0, 27 [%] for α = 100, and 73 [%]
for α = 1000.

Fig. 10 RTT ratio (αG = 10α).

6. Concluding Remarks

We discussed the group protocol named HG
protocol for a large-scale group of processes. A
group is hierarchically structured in a family
of subgroups of processes which are intercon-
nected. In the HG protocol, each message car-
ries a vector of k elements for number k of sub-
groups which is smaller than the total number
n of processes. We evaluated the HG protocol
in terms of message header length and response
time compared with traditional flat group. We
showed that the HG protocol implies shorter
response time than the flat group.

References

1) Birman, K.: Lightweight Causal and Atomic
Group Multicast, ACM Trans. Comput. Syst.,
pp.272–290 (1991).

2) Deering, S.: Host Groups: A Multicast Exten-
sion to the Internet Protocol, RFC 966 (1985).

3) Defense Communications Agency: DDN Pro-
tocol Handbook, Vol.1-3, NIC 50004-50005
(1985).

4) Hofmann, M., Braun, T. and Carle, G.: Multi-
cast Communication in Large Scale Networks,
Proc. IEEE HPCS-3 (1995).

5) Kaashoek, M.F. and Tanenbaum, A.S.: An
Evaluation of the Amoeba Group Communi-
cation System, Proc. IEEE ICDCS-16, pp.436–
447 (1996).

6) Lamport, L.: Time, Clocks, and the Order-
ing of Events in a Distributed System, CACM,
Vol.21, No.7, pp.558–565 (1978).

7) Mattern, F.: Virtual Time and Global States
of Distributed Systems, Parallel and Dis-
tributed Algorithms, pp.215–226 (1989).

8) Mills, D.L.: Network Time Protocol, RFC
1305 (1992).

9) Nakamura, A. and Takizawa, M.: Reliable
Broadcast Protocol for Selectively Ordering

Vol. 44 No. 3 Group Communication Protocol for Hierarchical Group 681

PDUs, Proc. IEEE ICDCS-11, pp.239–246
(1991).

10) Nakamura, A. and Takizawa, M.: Causally Or-
dering Broadcast Protocol, Proc.IEEE ICDCS-
14, pp.48–55 (1994).

11) Reiter, M.K.: The Rampart Toolkit for Build-
ing High-Integrity Services, Theory and Prac-
tice in Distributed Systems, LNCS 938, pp.99–
110, Springer-Verlag (1995).

12) Tachikawa, T., Higaki, H. and Takizawa, M.:
Group Communication Protocol for Realtime
Applications, Proc. IEEE ICDCS-18, pp.40–47
(1998).

13) Tachikawa, T., Higaki, H. and Takizawa,
M.: ∆-Causality and ε-Delivery for Wide-Area
Group Communications, Computer Communi-
cations Journal, Vol.23, No.1, pp.13–21 (2000).

14) Takizawa, M., Takamura, M. and Nakamura,
A.: Group Communication Protocol for Large
Group, Proc. 18th IEEE Conf. on Local Com-
puter Networks (LCN), pp.310–319 (1993).

(Received May 27, 2002)
(Accepted December 3, 2002)

Kojiro Taguchi was born in
1979. He received his B.E. de-
gree in Computers and Systems
Engineering from Tokyo Denki
University, Japan in 2001. He is
now a graduate student of Tokyo
Denki University. His research

interests include group communication proto-
cols and distributed systems.

Makoto Takizawa is a full
professor in the Department of
Computers and Systems Engi-
neering, Tokyo Denki Univer-
sity, Japan. He is now a dean
of the graduate school of Science
and Engineering, Tokyo Denki

University. He chaired the Information Divi-
sion at the Research Institute for Technology,
Tokyo Denki University from 1998 to 2002. He
was a visiting professor at GMD-IPSI, Ger-
many (1989–1990) and has been a regular visit-
ing professor at Keele University, England since
1990. He is a fellow of Information Process-
ing Society of Japan (IPSJ) and was a mem-
ber of the executive board of IPSJ from 1998
to 2000. He chaired SIGDPS (distributed pro-
cessing) of IPSJ from 1997 to 2000 and was
an editor of the Journals of IPSJ (1994–1998).
He received his BE and ME in applied physics,
and DE in computer science from Tohoku Uni-
versity, Japan. In 1996, he won the best pa-
per award at IEEE International Conference
on Parallel and Distributed Systems (ICPADS).
He was a general co-chair of IEEE ICDCS-2002
and a program co-chair of IEEE ICDCS-1998.
He is a founder of ICOIN and AINA confer-
ences. He was elected for 2003–2005 BoG mem-
ber of IEEE Computer Society. He is a mem-
ber of the IEEE and a member of the ACM and
IPSJ. His research interests include distributed
systems, group communication protocols, dis-
tributed objects, fault-tolerant systems, and in-
formation security.

