
IPSJ SIG Technical Report

Min-Max Regret基準の一般化割当問題に対する解法

呉　偉1,a) Manuel Iori2,b) SilvanoMartello3,c) 柳浦　睦憲1,d)

Abstract: Many real life optimization problems do not have accurate estimates of the problem parameters at the op-
timization phase. For this reason, the min-max regret criteria are widely used to obtain robust solutions. In this paper
we consider thegeneralized assignment problem(GAP) with min-max regret criterion under interval costs. We show
that the decision version of this problem isΣp

2-complete. We present two heuristic methods: a fixed-scenario approach
and a dual substitution algorithm. For the fixed-scenario approach, we show that solving the classical GAP under a
median-cost scenario leads to a solution of the min-max regret GAP whose objective function value is within twice the
optimal value. We also propose exact algorithms, including a Benders’ decomposition approach and branch-and-cut
methods which incorporate various methodologies, including Lagrangian relaxation and variable fixing. The resulting
Lagrangian-based branch-and-cut algorithm performs satisfactorily on benchmark instances.

1. Introduction

Several optimization problems arising in real world applica-
tions do not have accurate estimates of the problem parameters
when the optimization decision is taken. Stochastic programming
and robust optimization are two common approaches for the so-
lution of optimization problems under uncertainty. The min-max
regret criterion is one of the typical approaches for robust op-
timization. Theregret is defined as the difference between the
actual cost and the optimal cost that would have been obtained
if a different solution had been chosen. The min-max regret ap-
proach is to minimize the worst-case regret. This criterion is not
as pessimistic as the ordinary min-max approach, which looks for
a solution with the best worst-case value across all scenarios.

In this paper we consider thegeneralized assignment problem

(GAP) with min-max regret criterion under interval costs. The
classical GAP is an NP-hard combinatorial optimization prob-
lem [9] having many applications (see [4], [7], and [8]). The
interval min-max regret generalized assignment problem(MMR-
GAP) is a generalization of the GAP to the case where the cost
coefficients are uncertain. In real life applications the costs are
often affected by many factors, and can be unknown at the op-
timization stage. We assume that every cost coefficient can take
any value in a corresponding given interval, regardless of the val-
ues taken by the other cost coefficients. The problem requires
to find a robust solution that minimizes the maximum regret. We
prove that the decision version of MMR-GAP isΣp

2-complete. We
propose a heuristic algorithm for the MMR-GAP that solves the
underlying GAP to optimality under a fixed scenario. We con-

1 Nagoya University, Japan
2 University of Modena and Reggio Emilia, Italy
3 University of Bologna, Italy
a) goi@co.cm.is.nagoya-u.ac.jp
b) manuel.iori@unimore.it
c) silvano.martello@unibo.it
d) yagiura@nagoya-u.jp

sider three scenarios (lowest cost, highest cost, and median cost),
and we show that the median cost scenario leads to a solution of
the MMR-GAP whose objective function value is within twice
the optimal value. We also propose a dual substitution heuris-
tic based on amixed integer programming(MIP) model obtained
by replacing some constraints with the dual of their continuous
relaxation.

We also propose exact algorithmic approaches that iteratively
solve the problem by only including a subset of scenarios. The
first approach is based on Benders’ decomposition: it solves a
MIP with incomplete scenarios, and iteratively supplements the
scenarios corresponding to violated constraints. We then intro-
duce a basic branch-and-cut algorithm, and enhance it through:
(i) Lagrangian relaxations, to provide tighter lower bounds than
those produced by the linear programming relaxation; (ii) an effi-
cient variable fixing technique; (iii) a two-direction dynamic pro-
gramming approach to effectively solve the Lagrangian subprob-
lems. We compare the introduced algorithms through computa-
tional experiments on different benchmarks.

2. Problem Description

2.1 Interval Min-Max Regret Generalized Assignment
Problem

Thegeneralized assignment problem(GAP) is defined as fol-
lows. Givenn jobsJ = {1, . . . ,n} andmagentsI = {1, . . . ,m}, we
undertake to determine a minimum cost assignment, subject to
assigning each job to exactly one agent and satisfying a resource
constraint for each agent. Assigning jobj to agenti incurs a cost
of ci j and consumes an amountai j of a resource, whereas the total
amount of the resource available at agenti (agent capacity) isbi .

A natural formulation of the GAP is defined over a two-
dimensional binary variablexi j indicating that jobj is assigned
to agenti if and only if xi j = 1:

1ⓒ 2015 Information Processing Society of Japan

Vol.2015-AL-151 No.2
2015/1/13

IPSJ SIG Technical Report

min
m∑

i=1

n∑
j=1

ci j xi j (1)

s.t.
n∑

j=1

ai j xi j ≤ bi , ∀i ∈ I (2)

m∑
i=1

xi j = 1, ∀ j ∈ J (3)

xi j ∈ {0,1}, ∀i ∈ I , ∀ j ∈ J. (4)

For convenience, we defineX0 to be the set of all feasible solu-
tions of GAP:X0 = {x | x satisfies constraints (2)–(4)}.

In many real-life situations the costci j is affected by a num-
ber of factors, and can be unknown at the optimization stage.
In this paper we assume that the costci j varies within a given
range [c−i j , c

+
i j], i.e., the job-agent assignment cost can take any

value in this range. A vector of costscs
i j satisfyingcs

i j ∈ [c−i j , c
+
i j]

is called ascenarioand is denoted bys. We definezs(x) to
be the objective function value of solutionx under scenarios:
zs(x) =

∑m
i=1
∑n

j=1 cs
i j xi j . We denote byzs

∗ the optimal solution
value under scenarios, i.e.,zs

∗ = miny∈X0 zs(y). The regret rs(x)
associated with solutionx under scenarios is then the difference
between these two values:r s(x) = zs(x) − zs

∗.
Let S denote the set of all possible scenarios, i.e.,S = {s | cs

i j ∈
[c−i j , c

+
i j]}. Themaximum regretof a solutionx is then the maxi-

mum r s(x) value over all scenarios:rmax(x) = maxs∈S r s(x). The
MMR-GAP is to find a feasible solutionx such that the maximum
regret is minimized:

min
x∈X0

rmax(x) = min
x∈X0

max
s∈S

r s(x)

= min
x∈X0

max
y∈X0
s∈S

m∑

i=1

n∑
j=1

cs
i j xi j −

m∑
i=1

n∑
j=1

cs
i jyi j

 .
This formulation can be re-written using a classical result for min-
max regret problems with interval costs [1]:
Lemma 2.1. For every solution x∈ X0, the regret is maximized

under the following scenarioσ(x):

cσ(x)
i j =

c
+
i j if xi j = 1

c−i j otherwise
∀i ∈ I , ∀ j ∈ J. (5)

In other words, the valuermax(x) is achieved by the scenario
that gives the worst costs to the job-agent pairs selected by the
assignmentx, and the best costs to the non-selected job-agent
pairs.

From Lemma 2.1, the MMR-GAP can be rewritten as

min
x∈X0

rmax(x) = min
x∈X0

m∑

i=1

n∑
j=1

c+i j xi j

−min
y∈X0

m∑
i=1

n∑
j=1

(c−i j + (c+i j − c−i j)xi j)yi j

 . (6)

We assume in the following, without loss of generality, that all
input data are integers.

2.2 Complexity of MMR-GAP
In this section, we show that the decision version of the

MMR-GAP isΣp
2-complete. The proofs are omitted due to space

limitations.
It is not hard to see that the MMR-GAP is at least as hard as

the classical GAP, because in the special case wherec+i j = c−i j for
all i ∈ I and j ∈ J, there only exists a single scenario, and the
MMR-GAP becomes the classical GAP. It is known that the GAP
is NP-hard in the strong sense [9], as it can model, without intro-
ducing large numbers, thebin packing problem, which is known
to be NP-hard in the strong sense [5]. Accordingly, we have the
following lemma.
Lemma 2.2. The MMR-GAP is NP-hard in the strong sense.

Using a reduction from the interval min-max regret knapsack
problem, which is known to beΣp

2-hard [3], we then obtain the
following.
Lemma 2.3. The MMR-GAP isΣp

2-hard.

The decision version of the MMR-GAP satisfies the condition
of Theorem 7.4 in [5] fork = 2, which implies the following.
Lemma 2.4. The decision version of the MMR-GAP lies inΣp

2.

By combining Lemma 2.3 and 2.4, we can conclude with the
following property.
Property 2.1. The decision version of the MMR-GAP isΣp

2-

complete.

3. Heuristic Algorithms

3.1 Fixed-Scenario Algorithm
We introduce a heuristic approach based on the observation

that a feasible solution to an MMR-GAP instance can be obtained
by fixing a scenario, solving the resulting GAP instance to opti-
mality, and evaluating the maximum regret of the obtained solu-
tion using (6).

We consider three basic scenarios: the lowest costcs
i j = c−i j , the

highest costcs
i j = c+i j and the median costcs

i j = (c−i j + c+i j)/2.
For the median-cost scenario, the following result holds (proof

omitted).
Lemma 3.1. Let s̃ be the median-cost scenario, i.e., cs̃

i j = (c−i j +
c+i j)/2, ∀i ∈ I , ∀ j ∈ J, and letx̃ be an optimal solution to the

GAP under̃s. Then, rmax(x̃) ≤ 2rmax(x) holds for all x∈ X0.

3.2 Dual Substitution Heuristic
The dual substitution heuristic introduced in this section gener-

ally gives better solutions compared to the fixed-scenario heuris-
tic. The algorithm is based on amixed integer programming

(MIP) formulation in which some of the constraints are replaced
by their dual counterpart in the linear relaxation of the problem.

The minimization problem overy in (6),

min
y∈X0

m∑
i=1

n∑
j=1

(c−i j + (c+i j − c−i j)xi j)yi j , (7)

for every fixed x is a GAP that can be expressed as
miny∈X0

∑m
i=1
∑n

j=1 cσ(x)
i j yi j . We consider the corresponding

linear program obtained by replacing the integrality constraint
yi j ∈ {0,1} with the weaker requirementyi j ≥ 0 for all i ∈ I and
j ∈ J.

We introduce two types of dual variables,ui (i ∈ I) for con-
straints (2) andv j (j ∈ J) for constraints (3). By embedding the
dual of the linear relaxation of (7) into (6), we obtain the follow-

2ⓒ 2015 Information Processing Society of Japan

Vol.2015-AL-151 No.2
2015/1/13

IPSJ SIG Technical Report

ing dual substitution model (D-MMR-GAP):

min
m∑

i=1

n∑
j=1

c+i j xi j +

m∑
i=1

biui +

n∑
j=1

v j

s.t. −ai j ui − v j ≤ c−i j + (c+i j − c−i j)xi j , ∀i ∈ I , ∀ j ∈ J

ui ≥ 0, ∀i ∈ I

x ∈ X0.

Property 3.1. The optimal value of D-MMR-GAP is an upper

bound on the optimal value of MMR-GAP.

In addition, it can be proved that a tighter upper bound can be
obtained as follows.
Property 3.2. The bound obtained by evaluat-

ing the maximum regret of any optimal solution of

D-MMR-GAP is at least as good as the optimal value of

D-MMR-GAP.

4. Exact Algorithms

The two exact algorithms proposed in this section are both
rooted from a MIP model of the MMR-GAP. By using
Lemma 2.1, and introducing a new continuous variableφ, along
with a constraint that forcesφ to satisfyφ ≤ zs

∗, ∀s ∈ S, the
MMR-GAP can be expressed by the following MIP model (MIP-
MMR-GAP):

min
m∑

i=1

n∑
j=1

c+i j xi j − φ (8)

s.t. φ ≤
m∑

i=1

n∑
j=1

(c−i j + (c+i j − c−i j)xi j)yi j , ∀y ∈ X0 (9)

x ∈ X0. (10)

4.1 Benders-Like Decomposition
Model (8)–(10) is hard to handle due to the exponential num-

ber of constraints (9). Let us define amaster problem P(X) as the
relaxation of the MIP-MMR-GAP in which setX0 in constraints
(9) is replaced by a subsetX of X0. We label the constraints in
(9) as Benders’ constraints. For an optimal solution (x∗, φ∗) to the
current master problemP(X), we define aslave problem Q(x∗) as:
miny∈X0

∑m
i=1
∑n

j=1(c−i j + (c+i j − c−i j)x
∗
i j)yi j . Let q(y) be the objective

value of a solutiony and lety∗ be an optimal solution toQ(x∗).
If q(y∗) < φ∗ holds, then the specific constraint (9) induced byy∗

is violated by the current optimal solution (x∗, φ∗) of P(X), and it
is called a Benders’ cut. Whenever such a cut is found, the pro-
posed algorithm adds the solutiony∗ to X and solves the updated
P(X). The process is iterated until the algorithm finds a solution
(x∗, φ∗) for which no violated constraints exist.

SinceP(X) is a relaxation of the MIP-MMR-GAP, the opti-
mal solution value at each iteration is a valid lower bound on the
optimal solution value of the original MMR-GAP, and the final
solution, which does not violate any constraint (9), is an optimal
solution to the MMR-GAP.

The choice of the Benders’ cuts added toX at each iteration
can have a strong influence on the overall performance. At the
initial state, we start with the setX = {x̃}, where x̃ is the opti-
mal solution obtained by the fixed-scenario heuristic under the

median-cost scenario. When setX contains a unique Benders’
cut, the optimal solution ofP(X) has some interesting properties,
namely:
Property 4.1. If X = {y} for anyy ∈ X0, then the optimal value

of P(X) cannot be positive.

Property 4.2. For every scenario s∈ S , if X= {y} for an optimal

solutiony to the GAP instance obtained by fixing the scenario to

s, then the optimal value of P(X) cannot be negative.

4.2 A Branch-and-Cut Algorithm
Our second exact algorithm uses Benders’ cuts in the context of

a basic branch-and-cut framework. We defineP̄(X) as the linear
relaxation ofP(X), and we solve it (with respect to the free vari-
ables) at each node of the search tree. If its optimal value, a lower
bound for the corresponding partial problem, is not smaller than
the incumbent solution value, then we prune the current node.
Otherwise, we look for a violated constraint (9) by solving the
slave problemQ(x∗) for an optimal solutionx∗ of the current
P̄(X). If such a violation is found, we addx∗ to the current set
X, and solve the updated̄P(X). The process continues until no
violated constraint (9) exists. When this occurs, if the current
optimal solutionx∗ to P̄(X) is integral, we update the incumbent
solution and terminate the current node. If instead it is fractional,
a branching follows.

5. Lagrangian-Based Branch-and-Cut Algo-
rithm

To improve the performance of the basic branch-and-cut al-
gorithm of the previous section, we propose a Lagrangian-based
branch-and-cut algorithm, which features a stronger lower bound,
an efficient variable fixing method, and an effective solution of the
Lagrangian subproblems through dynamic programming.

5.1 Lagrangian-Based Lower Bound
In this section we propose an improved lower bound computa-

tion based on Lagrangian relaxation. By embedding constraints
(3) and (9) in the objective function (8) through Lagrangian mul-
tipliers λ j andβs, respectively, we get the following Lagrangian
relaxationL(X, λ, β):

min
m∑

i=1

n∑
j=1

ĉi j xi j +

n∑
j=1

λ j −
∑
ys∈X

βs
m∑

i=1

n∑
j=1

c−i jy
s
i j

 (11)

s.t. (2) and (4),

where

ĉi j = c+i j − λ j −
∑
ys∈X

(
c+i j − c−i j

)
ys

i jβ
s. (12)

Note thatL(X, λ, β) is independent fromφ, and its optimal so-
lution can be obtained by solvingm0-1 knapsack problems in the
x variables. To solve such knapsack problems, we use a dynamic
programming algorithm, introduced in Section 5.3.

It is not hard to show thatL(X, λ, β) provides a lower bound at
least as good as the LP lower bound of Section 4.2 when we use
the values ofλ andβ in an optimal solution to the dual̄D(X) of
problemP̄(X).

3ⓒ 2015 Information Processing Society of Japan

Vol.2015-AL-151 No.2
2015/1/13

IPSJ SIG Technical Report

At each active node, we first obtain a lower bound by solv-
ing P̄(X). If it is lower than the incumbent solution value, then a
round of Benders’ cut additions is performed. When no violated
constraint (9) exists, we solveL(X, λ, β) by setting theλ andβ
values to those in an optimal solution tōD(X). If the resulting
lower bound is not smaller than the incumbent solution value, the
node is fathomed.

5.2 Variable Fixing
An advantage of Lagrangian relaxation is that the obtained in-

formation can also be used for variable fixing in an efficient way.
Let U be the incumbent solution value, and∆ the difference be-
tweenU and the optimal solution value ofL(X, λ, β) at the current
node.

Let x̆ be an optimal solution ofL(X, λ, β) andΞi j as the lower
bound increase when we forcexi j to take value 1− x̆i j .

The basic variable fixing rules can then be stated as follows:
• Rule 1: if x̆i j = 0 andΞi j ≥ ∆, thenxi j can be fixed to 0.
• Rule 2: if x̆i j = 1 andΞi j ≥ ∆, thenxi j can be fixed to 1 and

xk j to 0 for allk , i.
Other rules embedded in the algorithm are omitted due to space
limitations.

5.3 Dynamic Programming Approach
As all input data are integers, the knapsack problems needed to

compute (11) can be solved through the following dynamic pro-
gramming approach.

For each agenti, we introduce a quantityfi(j, k) for j =

0,1, . . . ,n andk = 0,1, . . . ,bi , where j is the number of jobs and
k is an amount of resource. The valuefi(j, k) gives the minimum
cost when only jobs from 1 toj are available, and the resource
limit is k instead ofbi in (2). We can computefi(j, k) recursively
by dynamic programming as

fi(j, k) =

0, if j = 0

fi(j − 1,k), if j ≥ 1 andk < ai j

min
{
fi(j − 1,k), fi(j − 1,k− ai j) + ĉi j

}
otherwise,

wherefi(j, k) = +∞ is assumed for convenience for allk < 0. The
computation can be implemented by using an (n+1)×(bi+1) array
whose (j, k)-element contains the value offi(j, k), and computing
their values by increasingj. We call this dynamic programing a
head-to-tailapproach.

In order to efficiently compute the variable fixing, we addition-
ally use atail-to-headapproach for each knapsack problem. For
each agenti, we definegi(j, k) as the minimum cost when we
are only allowed to use jobs fromj to n, and we have a resource
restriction ofbi − k. Valuesgi(j, k) are computed in a symmet-
ric way, by decreasingj. In this way eachΞi j can be obtained
from the two DP tables. (Details are omitted due to space limi-
tations.) This two-direction dynamic programming approach has
time complexityO(nbi) for eachi, i.e., O(n

∑m
i=1 bi) in total to

computeΞi j for all i and j.

5.4 Benders’ Cuts Management
In our Lagrangian-based branch-and-cut approach, it takes

only polynomial or pseudo-polynomial time to solve the LP re-
laxation P̄(X) or the Lagrangian relaxation problems, while the
slave problemQ(·) is NP-complete in the strong sense. We han-
dled such difficulty by reducing the computation time needed to
solve eachQ(·), and by limiting the number of times we solve
it. The latter objective was implemented through methods that
add cuts either only at the root, or at every node, or adaptively.
For solving the slave problemQ(·), we used two efficient heuris-
tic approaches: the ejection chain approach in [10] and the path
relinking approach with ejection chains in [11].

6. Computational Experiments

To the best of our knowledge, this is the first research on
the MMR-GAP. In order to test our approaches, we gener-
ated MMR-GAP instances from well-known GAP benchmark in-
stances called Types A, B, C, D and E (see [2] and [6]). We pro-
duced a group of GAP instances for each type, withm ∈ {5,10}
andn ∈ {40,80}. Finally, we obtained MMR-GAP instances by
randomly generating the boundaries of cost interval rangesc−i j and
c+i j from ranges [(1− δ)ci j , ci j] and [ci j , (1 + δ)ci j], respectively,
with δ ∈ {0.1,0.2}, thus obtaining 8 instances per type.

We performed computational experiments for all the algo-
rithms of Sections 3, 4, and 5. The average gaps, from the best
known lower bound values, of the solution values obtained by the
two heuristic algorithms are reported in Table 1. The dual sub-
stitution heuristic (DS in the Table) obtained better upper bounds
than the fixed-scenario heuristic for the instances of Types A, C,
D and E.

Table 1 Average optimality gap of heuristic algorithms

Fixed-Scenario
Type c+ (c+ + c−)/2 c− DS

A 14.20% 0.68% 5.21% 0.00%
B 22.45% 10.02% 8.61% 9.31%
C 15.71% 6.10% 11.19% 5.62%
D 55.79% 41.78% 46.50% 40.09%
E 26.70% 19.39% 22.72% 18.81%

Table 2 Resultsof exact algorithms

Type Benders’ basic B&C Lagrangian B&C
A 0(7) 0(3) 7(7)
B 5(6) 0(0) 1(6)
C 6(7) 0(0) 1(7)
D 0(0) 0(0) 0(0)
E 0(3) 0(0) 4(4)

Table 2 provides the results for the introduced exact algo-
rithms. For each algorithm and type, the entry in the table pro-
vides the number of instances for which the algorithm determined
the optimal solution with the least computation time among the
three methods. The value in parentheses gives the number of in-
stances solved to optimality within one hour. The Lagrangian-
based branch-and-cut algorithm had the best results for instances
of Types A and E. In total, it solved to optimality 24 out of 32
instances of Types A, B, C, and E. No additional instance was
solved to proven optimality by the Benders’ decomposition, nor
by the basic branch-and-cut.

4ⓒ 2015 Information Processing Society of Japan

Vol.2015-AL-151 No.2
2015/1/13

IPSJ SIG Technical Report

7. Conclusions

We studied a robust version of the GAP called the min-
max regret GAP (MMR-GAP). We proved that this problem is
Σ

p
2-complete, and we presented and compared heuristic and exact

methods.
We proposed a fixed-scenario heuristic, for which three sce-

narios were considered. We proved that the median-cost scenario
provides a solution whose objective value is within twice optimal.
We also presented a dual substitution heuristic that uses a mixed
integer programming formulation obtained by replacing a sub-
problem with its dual. We observed that this heuristic method in
most cases provides better upper bounds than the fixed-scenario
heuristic, obtaining, e.g., exact optimal solutions to all type A
instances.

We proposed three exact methods: a Benders’ decomposition
approach, a basic branch-and-cut algorithm, and a Lagrangian-
based branch-and-cut algorithm that incorporates several ideas.
We used a Lagrangian lower bound that is stronger than the LP
lower bound and is obtained by solvingm0-1 knapsack problems
through dynamic programming. This computation was further
exploited for variable fixing, for which we showed that, using a
two-direction dynamic programming table, the time complexity
can be reduced toO(nb) for b =

∑m
i=1 bi . Compared with Ben-

ders’ decomposition, the Lagrangian-based branch-and-cut had
better performance for instances of types A and E, and it exactly
solved 24 out of 32 instances of Types A, B, C and E withm up
to 10 andn up to 80.

References

[1] H. Aissi, C. Bazgan, D. Vanderpooten, “Minmax and minmax regret
versions of combinatorial optimization problems: A survey,” European
Journal of Operational Research, 197 (2009) 427–438.

[2] P.C. Chu, J.E. Beasley, “A genetic algorithm for the generalized assign-
ment problem,” Computers & Operations Research, 24 (1997) 17–23.

[3] V.G. Deineko, G.J. Woeginger, “Pinpointing the complexity of the inter-
val min-max regret knapsack problem,” Discrete Optimization, 7 (2010)
191–196.

[4] M.L. Fisher, R. Jaikumar, “A generalized assignment heuristic for ve-
hicle routing,” Networks, 11 (1981) 109–124.

[5] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to
the Theory of NP-completeness, W.H. Freeman, San Francisco, 1979.

[6] M. Laguna, J.P. Kelly, J.L. Gonzalez-Velarde, F. Glover, “Tabu search
for the multilevel generalized assignment problem,” European Journal
of Operational Research, 82 (1995) 176–189.

[7] S. Martello, P. Toth, Knapsack Problems: Algorithms and Computer
Implementations, John Wiley & Sons, Chichester, New York, 1990.

[8] K.S. Ruland, “A model for aeromedical routing and scheduling,” Inter-
national Transactions in Operational Research, 6 (1999) 57–73.

[9] S. Sahni, T. Gonzalez, “P-complete approximation problems,” Journal
of the Association for Computing Machinery, 23 (1976) 555–565.

[10] M. Yagiura, T. Ibaraki, F. Glover, “An ejection chain approach for the
generalized assignment problem,” INFORMS Journal on Computing,
16 (2004) 133–151.

[11] M. Yagiura, T. Ibaraki, F. Glover, “A path relinking approach with
ejection chains for the generalized assignment problem,” European
Journal of Operational Research, 169 (2006) 548–569.

5ⓒ 2015 Information Processing Society of Japan

Vol.2015-AL-151 No.2
2015/1/13

