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DNS (Domain Name System) is a mandatory subsystem of the Internet. DNS, however,
has many vulnerabilities due to the complex structure. Major security incidents, such as a
DDoS (Distributed Denial-of-Service) attack to the Root Servers, have been continuously and
repeatedly hampering the Internet operation. While many research proposals have been made
to secure the DNS by using cryptographic methods to protect the protocol data exchange,
the attacks to the DNS transport layer remain effective, and the lack of transport reliability
of DNS still hampers the overall security of DNS. In this paper, we first discuss the DNS
overall security issues, focusing on the communication reliability such as the usage of Internet
transport layer protocols. We then propose introducing T/TCP (Transactional TCP), a TCP
enhancement, to the DNS transport layer. We evaluate the T/TCP by implementing the
protocol to existing DNS program codes, and conclude that T/TCP is an effective alternative
to enhance the overall system security by increasing the reliability of the query processing
and giving another choice of configuring firewalls.

1. Introduction

One of the most important and critical sub-
systems of the Internet Protocol Suite is DNS
(Domain Name System) 1),2). Many mission-
critical applications depend on DNS for the do-
main name resolution. For example, Electronic
mail messages use domain names to choose the
source and destination addresses. The Web
is fully dependent on the integrity of domain
names to specify the appropriate servers.

The integrity of Internet depends on how
DNS is managed. Improperly managed DNS
database often turns out to be a persistent
problem for the network administrators. For
example, the address-to-domain-name resolu-
tion of IP (Internet Protocol) fully depends on
DNS. The IPv4 (IP version 4) address resolu-
tion is performed by looking up the in-addr.
arpa domain database. If entries of the
database are incorrect, the whole integrity of
this resolution method, is lost.

Internet systems nowadays are always under
continuous and persistent attacks, as the social
and business activities become dependent on
Internet. All Internet services are the targets
of the intruders to exploit. DNS is of no excep-
tion. DNS security is critical for the stability of
Internet.

The research of DNS security, however, is not
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necessarily conducted on practical basis. For
example, the mainstream of current research
activities conducted by the dnsext (DNS ex-
tension) working group of IETF (Internet Engi-
neering Task Force) are directed towards intro-
ducing the public-key cryptographic authenti-
cation called DNSSEC 3) into the data exchange
between the DNS servers and resolvers. While
DNSSEC may help DNS programs to authen-
ticate the exchanged data, the trust delegation
mechanism is claimed not to be robust enough
for the real-world deployment 4), and the design
is still subject to major changes 5).

Moreover, DNSSEC does not solve the ma-
jor problems which DNS administrators cur-
rently face, since they are mostly based on
non-cryptographic issues, such as the transport
layer security, the database management, and
the program code integrity of the servers and
resolvers.

In this paper, we rather focus on the trans-
port security issues from an administrative
point of view, and propose an alternative
DNS transport with T/TCP (Transactional
TCP) 6),7), for improving the overall security of
the DNS. We describe how T/TCP helps ensur-
ing the transport security of DNS, by showing
the practicality of replacing the current DNS
queries of UDP with T/TCP, through the per-
formance analysis and evaluation. As T/TCP is
an extension of TCP, it preserves many advan-
tages of TCP to UDP, such as reliable error-free
data exchange, sophisticated retransmission al-
gorithm, and the more detailed traffic control-
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Fig. 1 DNS protocol structure.

lability on the firewalls.
In the later sections, we describe the DNS

protocol structure and the security issues in
Section 2, and analyze the transport layer be-
havior and requirements of DNS in Section 3.
We also describe the T/TCP fundamentals and
the advantages to traditional TCP in Section 4,
and the evaluation results of T/TCP used as a
DNS transport in Section 5. We conclude this
paper on Section 6 with a discussion of the pos-
sible application fields of T/TCP to improve
DNS security.

2. DNS Structure and Security

In this section, we describe the structure of
DNS components and the security issues.

Figure 1 shows a simplified model of DNS
component programs and protocols, described
as a stack of multiple layers. In this model,
DNS provides a mechanism for the users includ-
ing other application programs to retrieve and
update the database entries, or RR (Resource
Records), located on the servers. The following
is a list of description for each layer, from the
bottom to the top.

2.1 Physical/link Layer
This layer consists of the physical media and

the link-layer protocol of data exchange. The
upper layers should be able to reliably handle
and to equally treat the physical media and
the link layer, which may have different laten-
cies, bandwidths, and packet loss rates. These
layers should guarantee adequate reliability of
data transfer required from the upper layers.

2.2 Network Layer
This layer consists of the IP (Internet Pro-

tocol) and the related protocol components,
such as ICMP (Internet Control Message Pro-
tocol). IPsec, the cryptographic authentication
and data encryption capability of IP, is an im-
portant optional component. IPsec is widely

used for protecting IP packets from spoofing
and monitoring, though it does not guarantee
the upper-layer data integrity.

2.3 Transport Layer
This layer consists of two protocols: TCP

(Transmission Control Protocol) 8) and UDP
(User Datagram Protocol). T/TCP 7) is a
TCP enhancement for transactional data ex-
change. UDP provides the functionality of se-
lecting data flow between different application
services by assigning port numbers to each ser-
vice, as well as the per-packet checksum to en-
sure the data integrity of each packet. TCP
adds the retransmission functionality to provide
a reliable communication between the appli-
cation programs under data errors and packet
losses. UDP has no notion of connection, while
TCP has. UDP has less control on the packet
filters and the proxy servers used at firewall de-
vices. Reliability of this layer significantly af-
fects the overall security of DNS.

DNS programs must make the UDP service
port open to the external hosts to communi-
cate with other programs. This makes the host
which the DNS programs are running prone and
vulnerable to external UDP-based DoS attacks,
since all UDP packets must be directly handled
by the DNS programs. DoS attacks to UDP
ports are much easier than those to TCP ports
because the attackers do not have to maintain
the connection states.

2.4 Application Layer
DNS server-resolver communication protocol

is collectively defined by many Internet RFCs
(Request For Comments). The two impor-
tant RFCs are RFC1034 1), which specifies the
architecture of DNS, and RFC1035 2), which
specifies the implementation details of DNS.
RFC1123 9) also specifies the DNS usage as a
part of the Internet host requirements.

Some of the recent research proposals in-
clude the protocol extension framework called
EDNS0 10), DNSSEC, and the secure dynamic
data update extension 11). Most of the DNS
programs, however, are not capable of perform-
ing the cryptographic extension of DNS, so in
the production-level systems the overall secu-
rity of DNS should be considered without the
cryptographic extensions. We discuss the issues
on DNSSEC later in Section 2.7.

Answers to the DNS queries for the Root
Servers must be fit into 512 bytes, a limit im-
posed by RFC1035 Section 4.2.1. This limi-
tation hampers the necessary change for the
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growth of DNS, such as increasing the process-
ing performance of the Root Server network,
and introducing IPv6 addresses to the Root Do-
main. The UDP size limitation means a restric-
tion which only 13 IPv4 servers can be specified
in the SOA answer for the Root Domain, of 1
SOA, 13 NS and 13 A RRs, 493 bytes in total.
If the number of Root Servers were increased
or some of the servers also announced the IPv6
addresses by the AAAA RR, the answer could
easily exceed the 512-byte size limit 12), so the
query reply for the Root Servers would not be
able to be carried over UDP.

2.5 Server and Resolver Programs
DNS program packages belong here. The

most popular package is BIND 13), which is
bound to many operating system distributions.
Another package called djbdns 14) is popular
for production-level systems whose operational
security is critical. A DNS program package
has its own resolver library which provides pro-
gramming interfaces to lookup DNS database,
the database lookup programs for administra-
tive use, the cache programs for optimizing out-
bound DNS traffics, and the server programs for
providing the DNS database information.

Various stack-smashing and DoS attacks have
been successfully made to the components of
this layer. For example, a set of bugs on the
BIND resolver library 15) forced major OS dis-
tributions such as FreeBSD to upgrade 16). An-
other set of bugs expose vulnerabilities of BIND
DNS server which allows to execute an arbitrary
code or to crash the server program and/or the
host operating system 17). On the other hand,
vulnerabilities of djbdns has not been reported
yet, so we may suspect that BIND has a serious
problem on the software development, if not on
the quality of the code itself.

2.6 Users and Databases
An entity connected to Internet with its own

domain name must maintain the set of RRs
of the domain under the DNS servers of its
control. DNS has a distributed network of
databases, as the servers form their network of
delegation. Maintaining DNS database consis-
tency among the servers is critical for minimiz-
ing the lookup overhead and preventing illegit-
imate RRs to be distributed. While most of
the DNS databases are read-only and manually
maintained by the administrator, allowing dy-
namic updates on the database is being utilized
by the network sites which have dynamically-
configured client hosts. This update should be

allowed with extreme care, since it may allow
intruders to alter the DNS database contents.

2.7 DNSSEC and The Limitation
DNSSEC is considered as a primary means to

secure the DNS. DNSSEC, however, does not
provide the protection against DoS attacks, as
described in RFC2535 Section 2.1. For prevent-
ing DoS attacks, we need to use other means
than DNSSEC.

Three major authentication schemes pro-
posed for DNSSEC: SIG in RFC2535 Sec-
tion 4, TSIG in RFC2845 18), and SIG(0) in
RFC2931 19). SIG authenticates an entire DNS
Zone with a public-key cryptographic system.
TSIG and SIG(0) authenticates each transac-
tion. TSIG uses a shared-key cryptographic
system, while SIG(0) uses a public-key cryp-
tographic system.

We consider that the feasibility of wide-range
DNSSEC deployment is low because of the fol-
lowing reasons:
• TSIG is a shared-key system, and for the

implementation, the key-distribution secu-
rity of the secret key has to be maintained.
This will not work for multilateral inter-
organizational system such as the global
Internet. Even using a public-key system
such as SIG(0) or SIG, millions of public
keys have to be maintained for each second-
level domain name.

• SIG and SIG(0) uses a public-key sys-
tem, which is computationally resource-
intensive, and may impact the overall per-
formance of DNS. For distributing the pub-
lic keys whose digits are long enough for
giving enough protection, the length of RRs
will increase and may exceed the limit of
512 bytes for DNS UDP exchange. This
may also hamper the DNS performance as
a whole.

• The authentication model of DNSSEC as-
sumes that the communication is per-
formed directly between the resolvers and
the servers. In a practical DNS configu-
ration, however, the resolvers use caches
and indirectly exchange information be-
tween the servers. In this cached model,
TSIG and SIG(0) cannot provide the end-
to-end authentication between the resolvers
and the servers. A similar problem may oc-
cur when handling a replicated Zone data
by DNS zone transfer.
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3. DNS Transport Specification

In this section, we describe the behavior and
requirements of DNS transport layer.

3.1 DNS Transport Usage
DNS has two major forms of data exchange

between servers and resolvers, described in the
Section 4.2 of RFC1035 2), as follows:
RR Queries: this occurs between the servers

and resolvers. Most of the real-world traffic
of the queries is over UDP, though TCP is
also allowed and supported by the majority
of servers.

Zone Transfer: this occurs between two
servers for replication of a set of RRs to
obtain redundancy against a possible server
failure. This is performed solely over TCP.

We mainly discuss the RR query issues in the
later sections, since the our goal is to improve
the efficiency and security by experimenting an
alternative transport protocol.

3.2 Choosing UDP or TCP
Section 4.2.1 of RFC1035 explicitly restricts

the size of UDP queries and answers to
512 bytes. Section 6.1.3.2 of RFC1123 shows
that a DNS server must service UDP queries
and it should service TCP queries, and allows
private agreement of servers and resolvers to
solely use TCP for the queries.

Section 4.1.1 of RFC1035 specified the DNS
header format. In the format, the TC bit is
set when a server sends a truncated reply, due
to length greater than that permitted on the
transport. The djbdns behavior of the resolver
which receives a UDP answer with the TC bit
set is to reissue the request to the server using
TCP 12) all over again. This means the query
reply longer than 512 bytes is always sent back
by TCP, after waiting a UDP exchange solely
for the notification purpose.

3.3 UDP Retransmission
DNS programs has its own retransmission

and timeout algorithms for the UDP transport,
since UDP does not have them. For example,
djbdns uses the timeout algorithm 20) of wait-
ing 3, 11, and 45 seconds respectively for each
UDP recursive queries, and terminates the op-
eration if nothing received after retransmitting
three times. This retransmission strategy works
well when the packet loss rate of the network is
small. When the packet loss rate is very high,
however, it may cause delay of the completion
of query processes, either succeeded or failed,
since only four or less packets are sent for each
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query.

4. T/TCP and Traditional TCP

In this section, we describe the fundamentals
of T/TCP and how it differs from the tradi-
tional transport protocols, UDP and TCP.

T/TCP is an extension of TCP. The con-
cept model of T/TCP 6) was proposed in 1992
and later updated by the functional specifica-
tion 7) in 1994. As of March 2003, FreeBSD
and Linux operating systems have T/TCP-
compatible kernels.

4.1 T/TCP Transaction Model
T/TCP is designed for a transactional use

between a connection-based client-server com-
munication, which proceeds as the following se-
quence:
• the client sends a request to the server;
• then the server sends back the reply;
• the exchange completes and the link is dis-

connected.
Some of the suggested applications of T/TCP

include HTTP (Hypertext Transfer Protocol),
RPC (Remote Procedure Call), and DNS
queries 21).

4.2 T/TCP and TCP Time Lines
Using traditional (non-transactional) TCP

for the transactional model of Section 4.1 se-
quence requires two round-trip exchanges. Fig-
ure 2 shows the time line of traditional TCP.
It shows that the first of the two exchanges is
solely for setting up a TCP connection, while
the second one is actually used for the data ex-
change.

On the other hand, using T/TCP requires
only one round-trip exchange, which is the same
as in the UDP case. Figure 3 shows the time
line of T/TCP. It shows that the first packet
sent from the client to the server carries the
query data as well as the connection request.
Putting the query data on the same packet for
the connection request is performed by using
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the CC (Connection Count) options of TCP,
introduced by T/TCP, to indicate the support
and to avoid duplicate old connections, as de-
scribed in Section 4.3.

4.3 TAO Test
A TCP server needs to find out whether a re-

ceived packet with the SYN flag set really means
a new connection. Traditionally this is per-
formed by performing the three-way handshake
shown in Fig. 2, as the client and server ac-
knowledges SYN request with each other.

On T/TCP, a mechanism called TAO (TCP
Accelerated Open) is introduced to allow a
T/TCP server to know that a SYN request from
a T/TCP client is new, without the three-
way handshake. An identifier called connec-
tion count (CC), a 32-bit integer, is assigned
to each connection that a host establishes. The
CC cache is maintained per each peer host.

Three new TCP options, CC, CCnew and
CCecho, are defined for T/TCP as follows:
• The CC option carries the CC value in an

initial SYN segment of the T/TCP client, or
in the other segments if the other end sent
a CC or a CCnew option with SYN.

• The CCnew option only appears in an initial
SYN segment, when the client needs to per-
form the traditional three-way handshake
while indicating the support of T/TCP.

• The CCecho option only appears in the
SYN+ACK segment of a three-way handshake
(from a T/TCP server), and echoes the re-
ceived connection count value of a CC or
CCnew option to tell that the server under-
stands T/TCP.

Each T/TCP host performs the following
procedure, called the TAO test, to decide
whether to use TAO or not when a SYN request
is received:
• When no cached value of CC is found for

a peer host or a CCnew option is received,
a three-way handshake is performed with

the CC options and the CC values are ex-
changed, and the CC cache for the peer
host is initialized.

• If a CC value is cached for a peer host,
verification of a CC option in the received
packet is performed.
– If no CC option is found, the CC cache

is cleared and the connection falls back
to the three-way handshake sequence.

– If a CC option is found with the re-
ceived packet, verification for the value
of received connection count by com-
paring it to the cached value. If the
received value is greater, the SYN is
recognized as a new one and accepted
without the three-way handshake. If
not, the CC cache is cleared and the
connection falls back to the three-way
handshake sequence.

When the TAO test fails, the data pay-
load carried with the initial SYN request of the
T/TCP is not passed to the application soft-
ware. By performing the TAO test, T/TCP can
avoid duplicate old connections without per-
forming the three-way handshake every time.

T/TCP has the overhead for each pair of
connected hosts to initialize the per-host CC
cache of both on the client and the server.
This initialization is, however, only required to
perform for the first transaction between the
two. Once the CC cache is properly initialized,
the client and server pair will use the acceler-
ated handshake sequence for the second and the
later transactions, as long as the CC update
is properly continued without external interfer-
ence such as an intrusion attack of a spoofed
host.

T/TCP CC cache consumes some amount of
memory, though it is predictable and does not
impact the system performance unless the avail-
able memory space for the kernel is limited.
For example, on FreeBSD 4.7-RELEASE, the
T/TCP-specific memory resources are listed as
follows:
• a kernel 4-byte counter tcp_ccgen is allo-

cated for each kernel to give CC values per
each connection;

• For each host, two 4-byte variables called
tao_cc, tao_ccsent, and a 2-byte variable
called tao_mssopt, total 10 bytes, are allo-
cated, as a per-host cache;

• For each TCP connection, three 4-byte
variables called cc_send, cc_rcvd, and t_
starttime, total 12 bytes, are allocated, as
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a part of the TCP control block.
For example, when 10,000 hosts and 100 si-

multaneous T/TCP connections per each host
are connected (1,000,000 connections total), the
total number of bytes consumed is (4 + 10 ×
10,000 + 12× 100× 10,000) = 12,100,004 bytes.
The memory block of this size is practically af-
fordable for the PC servers which has usually
a few hundred megabytes of main memory in-
stalled.

4.4 DoS Immunity
T/TCP has some immunity against simple

DoS attacks which UDP does not, by perform-
ing the TAO test for each transaction. Here are
some scenarios:
• For example, in case of a simple DoS at-

tack of multiply sending the same packet,
UDP has no mechanism of rejection. On
the other hand, when using T/TCP, the
TAO test fails from the second and later re-
ceived packets, as it mandates that the CC
value must monotonically increase for each
transaction. The failure of TAO test leads
into the protocol fallback to the traditional
three-way handshake procedure. Without
the completion of the handshake, the data
payload in a transaction request packet will
not be transferred to the application soft-
ware.

• In case of a distributed DoS attack, meet-
ing the requirement of monotonic increase
of the CC value for each transaction at the
server for a successful attack is highly im-
probable unless the sequence of received
packets from the attacking hosts is thor-
oughly controlled.

• When the attackers use an spoofed source
address of IP packets to anonymize them-
selves, the first CC initialization sequence
of the TAO test will not be completed, and
the data payload will not be accepted. If
the host specified by the spoofed source ad-
dress exists, the host sends an RST packet
as the reply for a non-existent connection.

These examples show that the T/TCP does
not have a weakness of UDP which blindly ac-
cepts all incoming packets. While T/TCP does
not authenticate the data payload itself and
may exchange a larger number of packets than
UDP does in case of a successful DoS attack, the
protection of the TAO test gives an advantage
to T/TCP from UDP against a DoS attack.

4.5 TIME_WAIT State
T/TCP has another feature to shorten the

error timeout time
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Fig. 4 Time Line of T/TCP client and non-T/TCP
server on FreeBSD 4.6.2-RELEASE.

time spent in TCP TIME_WAIT state which is to
complete full-duplex closing of a connection and
to allow old duplicate TCP segments to expire.

The amount of time spent in the TIME_WAIT is
traditionally specified as twice the MSL (Max-
imum Segment Lifetime). On FreeBSD 4.6.2-
RELEASE and the 4.7-RELEASE, the default
MSL is 30 seconds, so the length of TIME_WAIT
state for the traditional TCP is 60 seconds.

On the other hand, T/TCP specifies the
length of TIME_WAIT as eight times the RTO
(Retransmission Timeout) when the connec-
tion duration is less than the MSL. RTO is a
dynamic value estimated using the measured
round-trip time on the network link with a
pre-defined minimum value. For example, the
minimum RTO estimated by FreeBSD 4.6.2-
RELEASE and the 4.7-RELEASE is 1 second.
So the length of TIME_WAIT state of T/TCP is
shortened approximately to 8 seconds, when the
actual RTT of the link is much smaller than 1
second.

A smaller length of TIME_WAIT state means a
smaller size requirement to the network control
block, and an increase of number of TCP con-
nections which a server host can simultaneously
handle.

4.6 Backward Compatibility
As T/TCP is an extension of TCP, it is

backward-compatible with the traditional TCP.
When the server is T/TCP-aware, it can iden-
tify the client is T/TCP-aware or not, since a
T/TCP-aware client will send a TCP connec-
tion request with a CC option, while a tradi-
tional TCP client does not. Figure 2 applies
in the case of a traditional TCP client and a
T/TCP-aware server.

A fallback procedure must be followed in case
of a T/TCP-aware client and a traditional non-
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T/TCP server. Figure 4 shows the procedure
and the time line of FreeBSD 4.6.2-RELEASE.
In this case, the SYN cache 22) of the server dis-
cards the data payload on the first packet, to
avoid TCP SYN-flooding, a popular DoS attack
which intends to consume the memory area al-
located for the network control blocks. The
server does not recognize the CC options either,
so the first packet the client sends is treated
only as a connection request. While this be-
havior is practically acceptable to protect the
server from the possible SYN-flood attacks, it
has an adverse effect of forcing the client to wait
for an additional error timeout period for each
transaction. Nevertheless, the backward com-
patibility of T/TCP to the traditional TCP is
still retained.

Note that in either time line figures of Fig. 2
or Fig. 3, the meaning of the ACK bit in TCP
header is left unchanged. The packet filtering
rules of allowing only established connections of
TCP are applicable to T/TCP with no need to
change.

4.7 T/TCP Programming
Modifying existing network programs to be

T/TCP-compatible is a straightforward task,
since the protocol details are all implemented
in the kernel of the operating system. For ex-
ample, on BSD-derived operating systems, a
flag in the include file <sys/socket.h> con-
tains the flag MSG_EOF to show the T/TCP sup-
port. An example of the necessary changes in
FreeBSD 23) is as follows:
• On the server side, using setsockopt()

system call for adding TCP_NOPUSH op-
tion to the listening socket is required to
avoid unnecessary fragmentation of TCP
segments.

• On the client side, the connect()-write()-
and-shutdown() flow of system calls to
initiate TCP connection and sending the
query data must be replaced by a sendto()
system call with MSG_EOF flag, since the
T/TCP connection is implicitly established
by the sendto() system call. The TCP_
NOPUSH socket option is required as well.

To enable or disable the T/TCP functionality
of a FreeBSD host, the administrator sets the
kernel MIB (Management Information Base)
variable of net.inet.tcp.rfc1644 to 1 or 0,
respectively. This value can be dynamically
changed without rebooting the host.

4.8 Migration Issues
A few migration issues as follows should be

considered on using T/TCP:
• The default state of T/TCP functionality

is disabled in FreeBSD 4.6.2-RELEASE, as
the document 7) is still considered experi-
mental in the IETF and the standardiza-
tion process.

• The system administrators must be aware
that all TCP-related security attacks are
also applicable to T/TCP.

• Some systems with a high security con-
cern is configured to simply ignore the TCP
packets with the SYN+FIN flags to avoid re-
vealing the protocol stack of the operating
system. In this case, T/TCP packets do
not get through.

• The migration should begin with the
server-side first, to avoid the error-timeout
issue described in Section 4.6.

The following is our perspective to these mi-
gration issues:
• The reason that IETF status of T/TCP is

experimental is that the usage is limited
to a single-query-and-single-answer trans-
actional application. DNS database query
will largely benefit from T/TCP especially
when the query result no longer fits into
a UDP packet because of increasing IPv6
address usage. We believe some actual
deployment of T/TCP for DNS is essen-
tial, since T/TCP has already been imple-
mented and ready to be used.

• As T/TCP is an extension of TCP, T/TCP
is also prone to the security attacks to TCP.
We consider, however, that the security risk
imposed by the introduction of T/TCP is
minimized by a proper security protection
such as the TAO test.

• When a system rejects the SYN+FIN packet
at all, no T/TCP connection request and
the reply can be used to communicate with
the system. Avoiding usage of T/TCP is a
practical workaround for such a system.

• The reason we suggest to migrate first
from the servers is that the programming
needed for the migration is small, such
as by enabling the TCP socket option of
TCP_NOPUSH on FreeBSD.

4.9 What T/TCP Provides for DNS
We propose T/TCP as a replacement of the

existing DNS UDP transport. We consider that
the migration from UDP to T/TCP is feasible
by the following reasons:
• T/TCP has the immunity against DoS at-

tacks by the TAO test, as described in Sec-
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tion 4.3.
• T/TCP is backward-compatible with TCP

as described in Section 4.6. This en-
sures the connectivity during the migration
phase, when T/TCP and TCP DNS hosts
coexist.

• T/TCP has already been implemented in
the production-level server operating sys-
tems such as FreeBSD and Linux, so for
these systems the migration cost is small.
Using these systems as DNS caches is a
practical workaround for non-T/TCP sys-
tems, which are mostly running resolvers
only.

• The programming cost for migration of a
TCP program is small, as described in
Section 4.7. We needed less than 100
source code lines to modify djbdns 14) to
make it T/TCP-compatible. The protocol
stack implementations of T/TCP can be
obtained as free software such as FreeBSD
and Linux, and the detailed reference is
available as a book 21).

5. Evaluation of T/TCP

In our research, we tested T/TCP as a DNS
transport by modifying the program code of
djbdns and measuring the performance and be-
havior. In this section, we describe the details
and the results of the performed experiments.

5.1 Test Environment
The software packages chosen for the experi-

ment are listed as follows:
• FreeBSD 4.6.2-RELEASE and the 4.7-

RELEASE as the operating systems, for
the stability of the T/TCP implementa-
tions:

• djbdns as the DNS software, for the highly-
modularized structure;

• dummynet 24), for simulating random packet
loss and high-latency links.

The modification details of djbdns for the
T/TCP support are listed as follows:
• adding a function to set the TCP_NOPUSH

socket flag, and an interface to sendto()
system call for djbdns socket library;

• changing the DNS resolver interface func-
tions called from the djbdns programs to
use T/TCP instead of traditional TCP;

• changing dnscache, the DNS cache pro-
gram, to use T/TCP for accepting the con-
nections and external lookups;

The conditions of DNS query time measure-
ments are as follows:

Table 1 Total elapsed time of 1,000 Sequential DNS
queries to a dnscache server (in seconds).

local Ether ADSL

RTT (ms) ≈ 0.04 ≈ 0.4 60 ∼ 70

UDP 0.22 2.40 67.77
T/TCP 0.52 8.70 74.70
TCP 0.53 8.92 138.80

RTT: Round-Trip Time

• dns_resolve(), a DNS resolver function of
djbdns, is called for each query. A modi-
fied version is used to perform TCP-only
DNS queries. DNSCACHEIP, The environ-
ment variable is set to choose the appropri-
ate dnscache to test.

• Each query contains a request to the NS
RRs of the Root Domain ("."), which
dnscache can answer solely by referring to
a configuration file root/IP/@, with no ex-
ternal or internal lookup.

• Choosing the T/TCP or traditional TCP is
done as explained in Section 4.7.

5.2 The Protocol Overhead
Table 1 shows the result of measuring the

difference of query processing time between
UDP, T/TCP and TCP for different types of
links. We used a local interface, a 100BASE-
TX Ethernet, and an ADSL (Asynchronous
Digital Subscriber Link) of an Internet service
provider.

For the local interface and Ethernet links,
UDP is the fastest, since the number of packets
exchanged for each query differs; 2, 5, and 6 for
UDP, T/TCP, and TCP, respectively. On the
other hand, the testing of the ADSL link shows
that the overhead of T/TCP to UDP is only
10% of the total time, while TCP takes about
twice as much as UDP does. This is consistent
with the time line explanation on Section 4.2,
as in the ADSL case, the RTT (Round-Trip
Time) is much larger than the query process-
ing time, and becomes a major portion of the
total elapsed time.

5.3 On Allocated Connection Blocks
We performed a test on how the number of al-

located sockets (connection blocks) changes be-
tween TCP and T/TCP. We performed 10,000
queries of each transport protocol by 10 concur-
rent processes of 1,000 sequential queries (total
10,000) each, and measured how the number of
active connection blocks from the beginning of
the queries. We evaluated how the TIME_WAIT
value affects to the total processing time of the
simultaneous query connections. The host used
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Fig. 5 How the TIME_WAIT value affects the number
of allocated connection blocks.

for this test has only ≈ 8,000 connection blocks
available to the cache program, acting as a DNS
server. The server and the clients were con-
nected through the local interface.

Figure 5 shows the result. In the begin-
ning, the number of the allocated socket in-
creased at the rate of ≈ 1,900 queries/sec, but
after the connection blocks were used up by
the query-generation processes, they waited un-
til the first TIME_WAIT period expires; the sus-
pended queries were processed later as the con-
nection blocks became free after the TIME_WAIT
state completion. For an application which ac-
cepts a large amount of queries, using T/TCP
instead of TCP will reduce the total waiting
time of queries to approximately two-fifteenth
(8RTO / 2MSL � 8 / 60), which is shown in
Fig. 5 as the length of time from the begin-
ning of the test to when the number of allo-
cated connection blocks starts falling from the
largest value (≈ 8 seconds on T/TCP, 60 sec-
onds on TCP). This behavior is consistent with
the explanation on Section 4.5, which suggests
the length of the TIME_WAIT value shortened
from 60 seconds to ≈ 8 seconds by the protocol
change from the traditional TCP to T/TCP.

5.4 On Packet Loss Rates
We performed a test to evaluate how the ran-

dom packet loss rate affects the query success
rates of UDP and T/TCP. Since UDP exchange
takes 59 seconds as the maximum value by the
retransmission algorithm in Section 3, the value
of T/TCP timeout to determine the success of
query is extended from the default value of 10 to
60 seconds on both the server and resolver sides.
We used two hosts connected with a 100BASE-
TX link and dummynet for simulation. 1,000
concurrent queries were conducted for each ran-
dom packet loss rate value. Two delay cases,
none and 500 milliseconds for simulating mobile

Fig. 6 Query failure rates of UDP and T/TCP for
link with no delay.

Fig. 7 Query failure rates of UDP and T/TCP for
link with 500ms delay.

access environment were conducted to evaluate
how the delay affects the query failure rates.

Figures 6 and 7 show the results. In either
delay-time case, UDP and T/TCP showed lit-
tle difference for how the rate of failed queries
increased as the packet loss rate did. This sug-
gests that the 500-millisecond delay time has
little effect for the measured failure rate val-
ues. We observed that on some packet loss
rate values, the query failure rate values did
not monotonically increased, such as those of
T/TCP on the packet loss rate of 25%. We con-
sider this behavior as a result of probabilistic
bias and divergence, since in the result of a pre-
liminary test using 100 concurrent queries, we
observed much higher values of non-monotonic
value changes.

UDP and T/TCP showed no failed queries
when the packet loss rates ≤ 5%. As the packet
loss rate increased, the difference between UDP
and T/TCP results also increased, and the
query failure-rate values of UDP were always
larger than those of T/TCP. At the packet loss
rate ≥ 30%, the values of query-failure rates for
UDP is about twice as much as those of T/TCP.

The results indicate T/TCP is effective for
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Fig. 8 Completion time of successful UDP queries on
500ms delay link for different packet loss rates.

Fig. 9 Completion time of successful T/TCP queries
on 500ms delay link for different packet loss
rates.

decreasing the worst-case failure rate for DNS
queries in the networks of high packet loss rates.

We also evaluated how the difference of query
completion time between the successful queries
of T/TCP and UDP changes as the packet loss
rate increases. 100 concurrent queries were con-
ducted for each random packet loss rate value.

Figure 8 shows the numbers of successful
packets for UDP categorized by the retries. It
indicates that more than 90% of the success-
ful UDP queries completes within single retry
attempts. Note that the completion time for
many of failed queries are shorter than the suc-
cessful queries, due to the retransmission algo-
rithm described in Section 3.3.

Figure 9 shows the distributions of the com-
pletion time in T/TCP queries. It indicates
that the minimum completion time increases
as the packet loss rate does, but T/TCP still
retains the TCP characteristics of exponential
distribution of the packet retransmission. Note
that on T/TCP the completion time of failed
query is always longer than that of the success-
ful queries, since TCP will retry until a given
timeout is reached.

6. Conclusion and Further Works

In this paper, we proposed to use T/TCP as
a DNS transport, evaluated the protocol by an
implementation, and showed that T/TCP is an
effective alternative to enhance the overall sys-
tem security by increasing the reliability of the
query processing especially for mobile equip-
ments, and giving another choice of configuring
firewalls.

We list some possible application fields of
T/TCP to improve DNS Security. The key is-
sues are to avoid UDP queries whenever pos-
sible, for minimizing the risk of UDP-related
attacks and to increase the rate of successful
queries, while minimizing the overhead and the
risk of attacks newly imposed by the T/TCP.
Mobile Equipments: DNS lookups from

mobile equipments, such as from a note-
book computer in a car using a cellular
phone link, often fails because of the high
packet loss rate. As shown in Section 5.4,
T/TCP work better than UDP in such a
case. Even in a lower packet loss rate,
T/TCP has only 10% of query time over-
head than UDP in a wide-area network en-
vironment which has the RTT of ≥ 60 mil-
liseconds, as shown in Section 5.2 and de-
scribed in Section 4.2. Changing the cur-
rent UDP queries to T/TCP is a practi-
cal solution for mobile equipments, since it
eliminates a requirement for UDP protocol
stack and gives more control on the fire-
wall between Internet and the networks of
the equipments.

Inter-firewall DNS Exchange: DNS has
become the only mandatorily-required
UDP protocol which a firewall connected
to the public Internet must support for
non-private exchange. While simply pro-
hibiting the UDP queries may work, it
will increase the consumption of the server
host resources, as TCP exchange requires
the connection blocks inside the operating
system kernel. As shown in Section 5.3,
T/TCP shortens the timeout state length,
which largely affects the Maximon process-
ing capability of a server host, to 2/15
of the traditional TCP. This will reduce
the average resource consumption of the
server host. And as shown in Section 5.2,
T/TCP is a practical solution to replace
UDP DNS lookups on an ADSL or other
kinds of network, which have larger laten-



2070 IPSJ Journal Aug. 2003

cies, and which many of the end-user Inter-
net sites use. The zone transfer exchange
of DNS will benefit from T/TCP for the
fast startup and earlier closing of connec-
tions as well. If the workload increase due
to the T/TCP resource consumption is of
concern, the practices for Web servers are
applicable to reduce the impact.

We consider two major issues should be dis-
cussed for the further works: the detailed secu-
rity analysis on T/TCP, and how T/TCP af-
fects other applications, especially those based
on UDP.
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