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Audio-visual musical instrument recognition
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1 Introduction

In 2008, a humanoid robot developed by Honda conducted
a symphonic orchestra in front of a live audience. It per-
fectly imitated the pre-recorded actions of the orchestra’s
human conductor. Despite its realistic movements, it
was suggested that the robot could not listen to nor
interact with the orchestra as a true conductor would.
For a robot to truly direct an orchestra, it would need to
hear, distinguish, and respond to the sounds of different
instruments. As a first step to making a musically trained
robot, we implement monophonic instrument recogni-
tion on Hearbo, developed by HRI-JP for audio-based
human-robot interaction.

Until now, musical instrument recognition has been
limited to audio recording analysis. In the field of solo
musical instrument recognition, acoustic features such
as MFCCs and LPCC’s [1] have been widely studied.
Classifiers like k-nearest neighbors [1], SVM and GMM
[2] to classify these features have also been examined.
Using a priori musical knowledge, Martin’s classification
system in [3] used a hierarchy of musical instrument
classes, such as grouping string instruments like guitar
and violin together. Both his and Klapuri and Eronen’s [4]
work showed better results classifying at the instrument
family level rather than at the specific instrument. Brown
[5] investigated the use of features such as attack and
decay to distinguish between four similar woodwind
instruments. Indeed, a common problem comes down
to distinguishing instruments of the same family. So far,
no one has yet exploited the visual differences between
instruments to overcome this problem.

2 Multi-modal instrument recognition

In our approach, we use a robot’s thermo camera images
to improve audio-only recognition of musicians playing
12 different instruments. As explained in the following
sections, we extract features for both audio and video
and train Gaussian Mixture Model classifiers over each
separately. We then fuse the two scores using a weighted
linear combination scheme.

2.1 Audio feature Extraction

We use the HARK [6] implementation of mel-scale log
spectrum (MSLS) as our acoustic feature. It is a vector
of 27 features: 13 wvalues representing the spectrum
in mel-scale, 3 delta values computed using a linear
regression on a sequence of five consecutive frames, as
well as 1 value representing delta logarithmic power. We
use a frame length of 512 on a one-channel audio signal
sampled at 16000Hz.

2.2 Video feature extraction

We choose the Histogram of Oriented Gradients (HOG)
[7] as the feature for video recognition. As the name in-
dicates, the feature vector contains a histogram of the im-
age’s edge gradients, binned over orientations. The idea is
that this feature vector would represent the shape of the hu-
man body pose while playing their instrument. Although
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Figure 1: (a) Thermo input image for flute and (b) RGB image
for reference.
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Figure 2: Upsampling of video to match audio sampling rate.
The thermo frame is repeated at the same rate as audio until a
new thermo image is received.

body pose estimation methods exist, they often assume
the person is not holding any object in their hands, which
cannot be assumed for our instrument playing participants.

In our experiments, thermo camera images (see Fig.
1(a)) of 320 x 240 pixels were used, producing a feature
vector of 128 values at a rate of 5 Hz. As a pre-processing
step to remove the effect of small changes in background
or clothing, we perform a Gaussian smoothing operation.
Since the audio signal is sampled at a higher rate than
thermo video, we perform a simple up-sampling step as
shown in Fig. 2. 3D time-of-flight camera images were
also tested, but results were poorer, likely due to high
frame-to-frame noise. For now, this approach has only
been tested where the player faces the robot at a consistent
angle, so future work should include taking posture data
from multiple viewpoints.

2.3 Training and classification

We used a Gaussian Mixture Model (GMM) classification
scheme for both audio and video. For each modality m,
we modeled each instrument class C with a K-component
gaussian mixture model, where each component k is a
triplet weight-mean-covariance:

(Wi, M, Zk) € R x RF x RE*K) (1)

with ZkK:I wy = 1. The parameters of those models are ob-
tained by training with the expectation-maximization al-
gorithm on manually labelled MSLS and HOG features.
For each feature vector x;,;, the likelihood is:

K
P Com) =Y WiV (Xim s i, i) 2
k=1

We experimentally set the number of components to
K=32; multiple mixtures could capture, for example, all

All Rights Reserved.

Copyright ©2011 Information Processing Society of Japan.



TE AL 5 T3 Rl [E R &

Audio MSLS feature Thermo HOG feature
Microphone | extraction extraction
up-sampling
Audio power- 5
— Weight
based enabler elghtedisum
Flute GMM Flute GMM
S (flute,audio) S,(flute, thermo)
Thermo
camera
Guitar GMM Guitar GMM
Sy(guitar,audio) * [ S,(guitar,thermo) Max —=——> Instrument
Class
Hearbo
Violin GMM Violin GMM

= S,(violin,audio) + = S,(violin,thermo)

Figure 3: Overview of the musical instrument recognition system.

the various poses of a violin player playing. We smoothed
the result by finding the joint likelihood over 50 frames:
5:(C,m) = Y log(p(xms—i|C,m)). Here, we did not try
varying the length of the smoothing window number, nor
the number of mixtures depending on instrument, though
this could be explored in future work.

2.3.1 Fusion

The final score per instrument is calculated with a
weighted linear combination of the two scores:

S:(C) = w1 S:(C,audio) + w1 S;(C,thermo) 3)

We experimentally set w; = 0.2 and w, = 0.4. To
classify, we found argmaxcS;(C), the class with the best
fused score for the frame at time 7.

2.4 Real-time implementation

The system, shown in Fig. 3, was implemented on the
Hearbo robot, equipped with an 8ch circular microphone
array mounted on its head and a thermo camera (5
[frames/sec]) on its chest. Only one channel audio was
used. The open source audio-processing software HARK
[6] was used to extract the audio features, and ROS
middleware [8] was used to communicate through the
network. An off-board notebook PC performed the signal
processing. To prevent extraneous detections, we set a
audio power enabler such that the system only output a re-
sult when sound level exceeded a certain manually-tuned
threshold.

3 Evaluation and results
3.1 Data set

Our data set includes 12 instruments: flute, wooden flute,
alto ocarina, soprano ocarina, alto recorder, clarinet*,
conga*, snare drum¥*, violin, viola, guitar and bass guitar
(where * denotes a synthetic instrument). The players
consisted of 1 female and 3 males ranging from beginner
to expert, recorded in an anechoic chamber. HEARBO
was equipped with a front-facing thermo camera, and the
player stood facing the robot, approximately 1.5 metres
away. Each player played a scale and/or several songs.
Fan noise from the robot’s power convertor was audible.

3.2 Procedure and Results

We trained each instrument/modality model with 3 songs
and tested with 1 song which was not used for training.
Each song was an average of 32 seconds in length, and

2-310

was labeled to only take into account when sound was
audible. This labeling also ensured that the musician
was holding the instrument in its playing position, and
not, for example, preparing to play. Our frame-by-frame
test results show an average recognition result for audio
at 80%, for video at 91%, and using our audio-visual
weighted scheme, 96%.

3.3 Discussion

The use of a weighted sum rule is a common method for
multi-modal fusion. We tried another method during our
tests: 1) concatenate the audio and thermo feature vectors,
producing a 27 + 128 = 155 dimensional feature vector
2) train our GMM'’s on the 155-D concatenated feature 3)
test using concatenated features. The results were not as
good as the weighted sum method; the concatenated result
landed in between the recognition rates for two modalities,
at 86%, compared to 96% for the weighted sum result
which outperformed both audio and video alone.

4 Future Work

In this work we have shown promising results for a new
multi-modal method for instrument recognition, tested on
a dataset of 12 instruments. Although this work dealt with
monophonic mixtures, it may easily be extended to com-
plex mixtures of polyphonic music using sound source
separation and localization. This embodied knowledge
of music sounds may be useful for music-playing robots,
particularly in ensembles where it must distinguish and
track the sounds of multiple players. In the future, we may
also wish to extend the video processing frame-by-frame
images to motion analysis over time.

This work was partially supported by the Grant-in-Aid for Sci-
entific Research on Priority Areas (No.22118502), KAKENHI
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