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Abstract: A typical network topological design problem is to determine link connections and their capacity to achieve high 

performance, low initial and operational costs, and high reliability under the given traffic and link length data between nodes. 

Because of the difficulties of this problem, approximate solutions such as probabilistic searches have long been studied. 

However, the real-world network topologies seem to be more type oriented than the above traditional computer based solutions. 

In fact, most real network topologies consist of a hierarchical combination of basic types such as the bus, the star, and the ring to   

avoid the difficulties of the design problem. In this paper, a new parametric method for localized spanning tree (ST) generation is 

proposed with good experimental results. The method performs node clustering and physical link generation in one step. This is 

realized by a new idea of the parameterized virtual node distance incorporating both the physical node distance and the traffic 

gravity between nodes with a parametric weight. A set of localized spanning trees can be generated on traditional MST algorithm, 

by changing the weight. As the main computational costs are the MST generation and the depth-first shortest-route search, which 

is not very expensive, so this is a high-speed approximate solver of the network topology design problem. To assist selecting a 

good solution, a link capacity determination function to achieve the given mean delay time and the monthly cost estimation 

function are incorporated. Approximate mathematical discussions to prove the existence of a minimum cost solution in the 

generated candidates is given also. 

Keywords: computer network, topology design, parametric method, localized star spanning tree, clustering, type-respecting, 

optimization 

 

 

 

1. Introduction     

  The goal of the network topological design problem (NTDP) 

is to obtain the optimal link structure between nodes to fulfill 

given conditions. Even though various NTDP formulations are 

possible, a typical one is shown below for the popular packet 

store-and-forward computer communication networks. We call 

this problem A.  

 

Problem A 

 

Input 

(1) Node set N = {1, 2, …, n}. 

(2) Traffic flow matrix between nodes FM = {fij | i, j  N, i≠j}, 

fij: traffic between nodes i and j (Kbps). 

(3) Distance matrix between nodes DM = {dij | i, j  N}, dij: 

distance between nodes i and j (Km) that is the length of 

link lij. 

(4) Link cost function g(c, d) (K¥(JPY) / month), c: link 

capacity (Kbps), d: link length (Km). 

(5) Target mean delay time t (sec / Kbit). 

Output 

(6) Physical link matrix LM = {cij | i≠j, i, j  N}, cij: physical 

link capacity between i and j (Kbps), cij = 0 (if i and j are 

disconnected). 

Objective function 

(7) Get LM that minimizes the total link cost LC = Σg(c, d) 

and fulfill the target mean delay time t to transfer the traffic 

of the flow matrix FM. 

The NTDP formulation of problem A and its relatives, with 

their approximate solutions, was given by Kleinroch et al. as 

                                                                   
 †1 University of Electro-Communications 

early as the ARPA network construction period in the USA [1]. 

The proposed formula to estimate the mean delay time induced 

by the flow matrix FM on the physical link matrix LM has long 

been known as the Kleinroch formula [1]. The formula has long 

been used in real designs. Although its limitation for burst 

traffic has been debated recently, it is still widely used as a 

first-choice tool for network performance evaluation.  

The NTDP has diverged with the advancement of 

communication networks. For example, in the real-time control 

domain, the delay matrix that specifies the goal delay t ij for each 

node pair is introduced instead of a unique mean delay t over the 

whole network [2].  

As the difficulty of the NTDP has long been recognized [3], 

approximate solution methods have been a main research target. 

Especially, the number of probabilistic search methods has been 

increasing; some well-known examples are the genetic 

algorithm (GA) and the simulated annealing (SA), which 

exploits high-power computing to perform time-consuming 

generate-and-test computations [2][4][5]. Constraint sensitive 

formulations incorporating hop limit, node degree, capacity 

limit and the number of redundant paths are also investigated 

[5][6]. In [8], possible pre-computed routes between given 

nodes are used to give feasible solutions by using SA. In [6], 

small topologies satisfying constraints are prepared first, and 

their hierarchical combinations are generated by dynamic 

programming (DP).  

Other approaches have been proposed to provide the best 

possible designs, such as pareto optimal designs using the 

multi-goal optimization method to trade goals of the mean delay 

t and the total link cost LC [4][7]. The final solution is selected 

by human judgment. In [8][9], a set of solutions for human final 

selection is provided by changing one of the competing criteria.  
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As shown above, the mainstream NTDP studies for more than 

40 years since Kleinroch have primarily focused on 

computer-based optimizations of problem A or similar 

problems. 

However, from the experience of one of the authors, who has 

worked for more than 30 years in this field, the real-world 

network topologies seem to be more type oriented than the 

above traditional computer based solutions. In fact, most real 

network topologies consist of a hierarchical combination of 

basic types such as the bus, the star, and the ring, and the 

topologies provided by traditional computer based approaches 

have rarely been adapted.  

In this paper, a new parametric method for localized spanning 

tree generation is proposed. It is a type-constrained solver of 

problem A and it automates the first and the second steps of the 

above human design process in one step. This is realized by a 

new idea of the virtual node distance incorporating both the 

physical node distance and the traffic gravity between nodes 

with a parametric weight. Under the parameterized virtual 

distance, a set of localized spanning trees, from the complete 

star with smallest hops and largest node degrees to the bus-like 

minimum distance one with large hops and small node degrees, 

can be generated on traditional MST algorithm.  

 

2. Parameterized spanning tree generation 

method 

 

2.1. Network topology characterization by mean link 

properties 

 

2.1.1 Properties of typical network topologies 

 The typical types of network topologies are the star, the bus, 

and the ring. Examples of them with five fixed nodes are shown 

in Fig. 1. The first two types belong to the class of the spanning 

tree (ST), mainly discussed in this paper. The properties of these 

types are considered from the problem A perspective.  

 

(1) Number of links  

The number of links is n-1 for ST, the star and the bus in this 

case, and n for the ring, if the number of nodes is n.  

 

(2) Communication hops h  

The number of links between 2 nodes (hops) is 1 or 2 for the 

star. It is 1 to n-1 for the bus. In the ring, it is 1 to (n-1) / 2 under 

the routing policy for the minimum hops, which is a smaller 

amount than that in the bus. If the number of hops is equated 

with the computational complexity of the algorithm theory, the 

simple star has O(1), the hierarchical star has O(log(n)), and the 

bus and the ring have O(n) communication complexities. So, we 

can group them as ｛simple star, hierarchical star,｛bus, ring｝｝. 

As the ring is closer to the bus, we concentrate on ST type 

topologies. 

 

(3) Link length d and link capacity c 

The star having less link selection freedom normally has a 

bigger d value than that of the bus and the ring, which have 

more link selection freedom. The mean link load becomes high 

for the topology with more hops because more traffic flow f ij 

passes through the same link. Fig. 2 shows a typical example 

assuming that nodes are placed at the center and on the circle of 

radius r. The constant traffic flow 2f is assumed between each 

center node and the periphery nodes (f for each of the up and 

down link). In this case, (mean link length, mean load) becomes 

(r, 2f) for the star and nearly (r(2π+1) / (n-1), nf /2) for the bus. 

If n is big enough, the star has (r, 2f) and the bus has (0, ∞) 

properties.  

As the link capacity should be set larger than the link load to 

realize average link delay time t of problem A (if equal, t=∞), 

the link capacity of the bus should be set bigger than that of the 

star.  

 

2.1.2. Approximate ST characterization by two link 

properties 

Generally, the link cost g(c, d) is an increasing function of the 

link capacity c and the link length d, and it has a contour curve 

convex towards the origin in the (c, d) plane, as shown by the 

dotted curve in Fig. 3.  

The monthly cost of a network, LC = Σg(c, d), is the sum of 

each link cost g(c, d). As the number of links is equal to n-1 for 

all n-node spanning trees, LC is equivalent to the mean link cost 

multiplied by n-1, i.e., LC = (n-1)*m(g(c, d)), where m(X) is the 

average of X. So, for ST of n-nodes, it is sufficient to know 

m(g(c, d)) to get LC. But this is generally very difficult. 

However, when g(c, d) is concave in c and d, which is generally 

the case, we have m(g(c, d)) ≦ g(m(c), m(d)). So, we get LC = 

(n-1)*m(g(c, d)) ≦  (n-1)*g(m(c), m(d)). This means that, 

instead of knowing the intractable cost m(g(c, d)), a more 

tractable upper bound value of g(m(c), m(d)) can be used as an 

approximation. So it can be said that from the viewpoint of cost 

LC, ST of identical number of nodes can be approximately 

characterized by m(c) and m(d). Henceforth, we simply note 

m(c) as c, m(d) as d, and Fig. 3 is interpreted to represent the 

mean characteristics of a link of ST. 

 

 

Figure 1 Typical network topology types 

 

 

Figure 2 Star and bus on a circle 
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2.1.3. Viewing star, bus and their combination by link 

properties 

From the discussions of 2.1.1 above, if delay t = ∞, the 

position of the star and the bus can be shown by the white circle 

and the white square, respectively, as shown in Fig. 3.  

To realize a short delay t, we should give higher link capacity c. 

In this case their positions move upward in Fig. 3, because d is 

fixed for each topology. But, as shown in 2.1.1, the upward 

movement of the bus is bigger, i.e., requires higher link capacity, 

than that of the star. So, the delay contour become as shown in 

Fig. 3.   

If the contour of the cost and the delay are as shown, the 

combined topology can have lower cost than the star or the bus. 

A hierarchical combination of the star and the bus, which is 

frequently found in networks in the real world, can be 

interpreted as its instance. 

 Summing up, this two dimensional link feature space contains 

infinitely many candidate ST solutions of problem A with 

varying link structure, mean delay time and the total cost. 

 

 

Figure 3 The link characteristics of the star and bus and their 

combination 

 

2.2 Parametric method for localized spanning tree 

generation  

 

2.2.1. Basic ideas 

Based on the discussions in 2.1.3, we hope to design a method 

to systematically extract candidate ST solutions of problem A 

out of the link feature space of Fig. 3. Our basic idea is to 

construct a method to systematically traverse the space of Fig. 3 

along the bold contours. The method is composed of following 

steps. 

(1) Parameterized ST link generation 

(2) Link capacity determination to realize the target mean 

delay 

(3) LC estimation 

For a given delay t, steps (1), (2) and (3) give cost-evaluated 

STs on a bold contour in Fig. 3 by using a weight parameter w, 

explained shortly. 

As long as the delay time contour curve is monotone, as shown 

in Fig. 3, we can cover all the space of Fig. 3 by changing the 

values of w and t. For this to be true, it is hoped that both the 

mean link length and the mean link capacity are the reversely 

monotone functions of parameter w under a given t. 

Furthermore, in this case, we are more likely to find some 

cost-effective combined topology in the midway 0.0 < w < 1.0 

than in the terminal star and bus. In the following, we give such 

method side by side with mathematical backgrounds. 

 

2.2.2. Parametric generation of spanning trees 

 

(1) Parametric ST generation  

An efficient method to get the spanning tree among n nodes is 

the minimum spanning tree (MST) algorithm. If the link weight 

is the link length, we get the minimum distance ST (MST). 

Generally, this is not the linear bus structure but a tree with the 

minimum sum of link lengths. Respecting this minimum link 

length property, we adopt the minimum distance MST instead of 

the bus as one of the extreme types in Fig. 3. Next, we hope to 

get the star, which is the other extreme type, by using the same 

MST algorithm under some appropriate link weighting scheme. 

Furthermore, we hope to get the combination of these two 

extreme types also. 

For these purposes, we define the weight uij of link lij between 

node i and j as follows. 

 

uij = (1-w)*dij – w*aij (0≦w≦1.0), (1) 

 

where 0 ≦ w ≦ 1.0 is the weighting parameter, 0 ≦ dij ≦ 

1.0 is the normalized link length between nodes i, j and 0 ≦ aij 

≦ 1.0 is the normalized gravity between nodes i, j defined 

below. The term (1-w)*dij gives high priotiry to shorter links, 

whereas the term –w*aij gives high priority to links connecting 

heavy traffic nodes. Defining aij by (2), the largest traffic node 

tends to become the cluster center.  

 

aij = max(e(fi), e(fj)) / max(aij), (2) 

 

where fi ＝ (fi*+f*i) / max(fi), fi* is the total flow out of node i, 

and f*i is the total flow incoming to node i. These are the i-th 

row sum, and the i-th column sum of the flow matrix FM of 

Problem A, respectively. Additionally, 0≦fi≦1.0 is the 

normalized sum of them and e(fi) is the contrast-enhancing 

sigmoid function. The denominator max(aij) in (2) normalizes aij 

less than 1.0. As aij = aji by (2), both links lij and lji become to 

carry the larger of the flows fi and fj of its terminal nodes. We 

represent the MST under the weight w of (1) as ST(w). 

Under the definition of uij in equation (1) and aij in equation (2), 

following facts can be proved. 

■ST(0.0) becomes the minimum distance spanning tree and 

ST(1.0) becomes the star. 

■ Each mean link length d and mean link capacity c have a 

tendency to be a monotonically increasing and decreasing 

function of parameter w. That is, for all w, d / w > 0 and c / 

w < 0, respectively. 
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■ The proposed parametric process finds a unique minimum 

point w* of sup(LC) = (n-1) * g(c, d), which is the upper 

bounding function of the monthly cost LC. 

 

2.2.3. Link capacity determination fulfilling the target mean 

delay time 

The link capacities of the generated ST(w) fulfilling the target 

mean delay time t are determined as follows. We assume 

prevalent full-duplex communication links that physically 

realize the ST(w). 

 

(1) Physical link load estimation 

The flow matrix FM of Problem A is assigned on ST(w) 

assuming the minimum hop routing. 

 

(2) Physical link capacity assumption 

We temporarily set the capacity cij of link lij ∈ ST(w) by 

using formula (4), where x > 1.0 is the temporal parameter.  

cij(x) = cji(x) = max(x*hij, x*hji) （4） 

 

(3) Mean delay time estimation 

By using the Kleinroch’s formula (5), we estimate the mean 

delay time t(x) under the temporal parameter x. 

 

t(x) = Σ ((1.0/γ)*hij / (cij(x) – hij)) （5） 

 

(4) Fulfilling the target mean delay time 

By using (5), we search the x that fulfills the target mean delay 

time t by using the binary search method.  

 

By the above processes, we obtain the link capacity matrix LM 

of the given ST(w) fulfilling the given target mean delay time t. 

This is a candidate solution of problem A under the parameters 

w and t.  

 

2.2.4. Estimation of the monthly cost 

We give c ∈ LM(w, t) and d ∈ DM of each link to g(c, d) 

and sums up them to get LC(w, t).  

 

2.2.5. Best topology selection 

By using the method under candidate mean delay list TL and w 

list WL, we can get a set of candidate solutions. We choose the 

best one out of them.  

 

3. Experiment 
 

3.1. Purpose of the experiment 

 

The feasibilities of the following core functions of the 

proposed method are examined. 

(F1) Parametric ST(w) generation from the star to the 

minimum distance MST under parameter w change. 

(F2) Monotonic increase / decrease properties of the mean link 

length / capacity under the w increase and the existence of the 

minimum solution at some w*. 

 

3.2. Experimental design  

 

Input data to problem A are as follows.  

(1) Nodes N 

N = {1, 2, …, 64}. These are randomly placed in the rectangle 

of dimensions (500 Km, 300 Km).  

(2) Traffic flow matrix FM  

After random generation of the initial flow matrix FM = ｛fij | i, 

j  N, i ≠ j｝ (fij ≦ 1000 Kbps), flows of the randomly selected 

80% nodes are reduced to 20% of each of their initial values. 

The purpose is to reflect the general observation that dominant 

flows tend to concentrate on a small portion of nodes. 

(3) Physical distance matrix DM 

DM = {dij | i, j  N, i ≠ j} is generated, where dij is the physical 

distance between nodes. 

(4) Link cost function g(c, d) 

The following fitting function for the real monthly cost data of 

a communication service company was used.  

g(c, d) = g1(c, 100 Km) * g2(d, 100 Km), 

g1(c, 100 Km) = 56.37c0.358 (K¥), 

g2(d, 100 Km) = (d/100)0.231. 

(5) Target mean delay time   

t = 0.001 (sec/Kbit).  

(6) Parameter w set WL = {0.0, 0.1, …, 1.0}. 

Generated ST(w)s are drawn to visually verify goal F1. For 

each weighting parameter w, the mean link length d, the mean 

link capacity c and the monthly cost LC are drawn to verify goal 

F2.  

3.3．Experimental results 

 

3.3.1. Generated spanning trees 

Fig. 6 shows ST(w)s for w∈{0.0, 0.2, …, 1.0}. As expected, 

the parametric generation of spanning trees from the pure star to 

the MST is realized. In the middle part, hierarchical structures, 

each of which is the combination of the upper trunk links and 

the lower local stars, are observed. 

 

Figure 6 Parametric generation of ST(w) 
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Figure 7 Link property dependency on w. Mean delay time is 

0.001 sec/Kbits. 

 

3.3.2. Mean link properties versus w 

Fig. 7 shows the w-dependency of the mean link length, mean 

link capacity, and the monthly cost. As expected, the link length 

and the link capacity are the monotonically increasing and 

decreasing function of parameter w, respectively. The monthly 

cost curve is convex and has a minimum near w = 0.6, although 

the curve is not sharp.  

 

4. Concluding Remarks 

 
In this paper, a new parametric method for localized spanning 

tree (ST) generation is proposed.  

The method performs node clustering and physical link 

generation in one step. This is realized by a new idea of the 

virtual node distance incorporating both the physical node 

distance and the traffic gravity between nodes with a parametric 

weight.  

Under the parameterized virtual distance, a set of continuous 

localized spanning trees including the complete star and the 

minimum distance ST at both ends can be generated on 

traditional MST algorithm.  
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