

アンチウイルスソフトウエアのビヘイビアベースのマルウェア検知能力

を評価する方法

陳 悦庭† 吉岡 克成‡ 松本 勉‡

†横浜国立大学

240-8501 横浜市保土ヶ谷区常盤台 79-1

f9190yuki@gmail.com, {yoshioka, tsutomu}@ynu.ac.jp

あらまし 本稿ではアンチウイルスソフトウエアのビヘイビアベースのマルウェア検知能力を評価するための

手法を提案する．提案手法では，評価対象のアンチウイルスソフトウエアをインストールした動的解析環境と，

インストールしていない環境を用意する．次に，それぞれの環境において，実マルウェア検体を実行して、アン

チウイルスソフトウエアの存在がマルウェア検体の挙動に対し，どのような影響を与えるかを観察する．4つの

アンチウイルスソフトウエアに対して提案手法を適用した結果，ビヘイビアベースの検知能力や検知時の対応

に違いが確認された．

An Evaluation Method of Anti-virus Software on Capability of

Behavior-based Malware Detection

Yueh-Ting Chen‡ Katsunari Yoshioka‡ Tsutomu Matsumoto‡

‡Yokohama National University

79-1 Tokiwadai, Hodokaya-ku, Yokohama 240-8501 Japan

f9190yuki@gmail.com, {yoshioka, tsutomu}@ynu.ac.jp

Abstract In this paper, we propose an explicit method to evaluate an anti-virus in terms of its behavior-based

detection and protection capability. Namely, we construct two dynamic analysis environments, one with

to-be-evaluated anti-virus installed and the other without it. Then, we execute various types of real malware

samples on these environments and see what kind of behavioral changes the anti-virus would bring to the

malware samples. We test our evaluation method with four anti-virus software products and find that their

capability on behavior-based detection and their reaction upon the detection vary.

1 Introduction

In the modern society, computers play an important role in

our daily lives. To avoid computers being compromised by

malware, anti-virus software and security appliance are widely

used. Consequently, malware authors have long been using

obfuscation, polymorphism, and other techniques so that

signature-based detection can be evaded. As the “arms race”

between the attackers and security providers continues, recent

security products claims to be equipped with behavior-based

detection mechanism that does not rely on pre-defined signatures

in order to follow up dynamically changing cyber-attacks.

Although there have been several efforts in evaluating anti-virus

on their behavior-based malware detection, the details of the

procedures, such as selection method of malware samples to be

tested, and results of the evaluation experiments are not disclosed

to public. In this paper, we propose an explicit method to evaluate

an anti-virus in terms of its behavior-based detection and

protection capability. Namely, we construct two dynamic analysis

environments, one with the to-be-evaluated anti-virus installed

and the other without it. Then, we execute various types of real

malware samples on these environments and closely monitor

their internal and network behaviors to see what kind of

behavioral changes the anti-virus would bring to the malware

Computer Security Symposium 2014
22 - 24 October 2014

－688－

samples. We test our evaluation method with four anti-virus

software and find that their capability on behavior-based

detection and their reaction upon the detection vary, which

may be of interest for their users.

2 Background

2.1 Existing Anti-virus Software Evaluation

Methods

To evaluate quality of anti-virus software against malware

protection, classical and real world methods, sometimes a

combination of the two are used. In classical approach, anti-virus

software is used to scan a folder containing a collection of

currently active malicious programs or software. The percentage

of false positives and false negatives is important parameter in

classical testing.

Real world approach simulates the situations where malicious or

infected websites or email attachments are opened on a protected

system and calculates the proportion of threats that are detected

and blocked.

2.2 Malware Analysis

 There are two approaches on malware analysis: static analysis

and dynamic analysis [2]. This chapter briefly introduces these

two approaches and the tools for malware analysis.

2.2.1 Static Analysis

Static analysis also known as code analysis analyzes the file

itself without execution. Eagle et al. describe that the detection

patterns include string signature, byte-sequence n-grams,

syntactic library call, control flow chart and operational code

frequently distribution etc. [9].

 The code has to be unpacked and decrypted before static

analysis. Disassemble tools like IDA pro [10] and OllyDbg [11]

would be helpful in static malware analysis, but memory dump

tools like LordPE [12] and OllyDump [13] would also be a way

to analyze malicious code by loading in the system memory and

dumping it into a file when the packed code is unpacked and the

original code is on the memory.

Memory dump also helps with code de-obfuscation. It is said

that the limit of static analysis is to confront different type of tools

and techniques to avoid detection of anti-virus software products.

Christian et al. [8] describes detail on malware obfuscation

technologies like dead code insertion, register reassessment,

subroutine reordering, instruction substitution, code transposition

and code integration to prevent from detecting by traditional

defensive technologies like firewall, gateway, or even

signature-based detection system.

2.2.2 Dynamic Analysis

The primary advantage of dynamic analysis is that it reveals the

behavior of tested malware in black box manner. Dynamic

Analysis observes malware behavior and analyzes its properties

by executing malware samples in a testing environment such as

sandbox, virtual machine, or even a physical machine.

Manuel E. [14] introduce couples of dynamic malware analysis

techniques such as function call monitoring, function parameter

analysis, information flow tracking, instruction trace, and

auto-start extensibility points. They also introduce dynamic

malware analysis tools like Anubis [15], CWSandbox [16], etc.

Some dynamic analysis strategies [17] use multiple execution

path exploration that would reveal malicious behavior with

limited time or environment.

There are several tools available to conduct a dynamic analysis.

We introduce Process Monitor, Regshot, and CaptureBat in the

following sections.

2.3 Dynamic Analysis Tools

2.3.1 Process Monitor

Process Monitor [3] is an advanced monitoring tool for

Windows that shows real-time file system, registry, and

process/thread activity. There are many powerful monitoring and

filtering capabilities allowing researchers capture the whole

operation the system performs. However, there are many extra

operations that are not observed by Process Monitor when

analyzing the malware behavior.

One of the problems to use Process Monitor is that it is not an

open-source software and we cannot modify the program to

automate the dynamic analysis workflow.

2.3.2 Regshot

Regshot [4] is an open-source (LGPL) registry compare utility

that allows quick comparison to the origin system state and the

malware-modified one. It is an advantage that we can easily

automate the dynamic analysis procedures using Regshot, but its

functionality is not as powerful as Process Monitor. We could not

get enough information from Regshot for us to analyze malware

behavior.

2.3.3 CaptureBat

Christian et al. [1] introduce a behavioral analysis tool for the

－689－

Windows operating system family.

It is a powerful open-source tool that is able to monitor the state

of a system during the execution of applications and processing

the documents. It is installed in target system as a kernel driver

recording the modification of the system. Figure-1 shows the

CaptureBat structure [5].

Figure-1 CaptureBat Structure in the system

3 Proposed Method

3.1 Method Overview

 We propose a method to evaluate anti-virus software according

to its behavioral based detection and protection capabilities.

The basic idea is that we check whether we can monitor

malicious file writing, registry writing, process creating and

suspicious connections that indicate the infection of the sample

when malware sample is executed on an environment with

anti-virus already installed.

A kind of file writing we focus on is modification of existing

system files. We treat registry writing like file writing.

Registry modification does not immediately mean that the

system is infected. We analyze modified registry to make sure

if it is malicious or not. Process creating is also a decisive

activity to check the malware infection, but it depends on the

activities of created processes. Suspicious connections are

also checked to make sure the malware activities are ongoing.

We also investigate to which protection level antivirus software

can protect system. We consider three protection levels such as

protected, neutralized and compromised.

Protected means the malware could not perform its full

malicious behavior when the anti-virus software is installed. Also

the activities performed by malware would not cause a permanent

damage to the anti-virus-software-installed system such as system

file modification or deletion.

Neutralized, as well as protected category, means that the

malware could not perform its full malicious behavior, but it

would cause a permanent damage to the anti-virus software

installed system.

Compromised means the malware sample runs successfully

even though the anti-virus software is installed.

3.2 Evaluation Procedures

We construct two dynamic analysis environments as follow.

Then, we execute various types of real malware samples on

these environments and logs internal behaviors and network

traffic for evaluation.

1. Environment without anti-virus installed

2. Environment with the to-be-evaluated anti-virus

installed

In evaluating behavioral based detection capability of

anti-virus software, we compare malware behaviors in

environment 1 with environment 2.

We compare protection capabilities of different anti-virus

software on environment 2. We find some anti-virus software

include a signature-based malware removal tool, which

examines an executable file every time it is about to be

executed, stops the execution and remove the file if it is

detected as malicious. In such case, we are interested in their

behavior-based detection capability, we disable their

signature-based removal tool in the experiment. The flow of

our evaluation method is shown in Figure-2.

Figure-2 Flow of Evaluation Method

－690－

4 Experiment on the proposed method

The experiment is conducted during Nov. 2013 to Jan. 2014.

We test our evaluation method with four anti-virus software

products and then discuss if the obtained results would give

insights on their capability of behavior-based detection. The

malware used in this experiment is collected by low-interaction

honeypot Dionaea [6] deployed at Yokohama National

University. The counts of malware samples are 4,952.

Table.2 Malware Execution Result in Non-AV Environment

4.1 Execution in Non-AV environment

We set up dynamic analysis environment with CaptureBat and

Regshot on VirtualBox virtual machine as in Figure-3. We use

Tcpdump for monitoring network traffic. Logs are collected in

MySQL database.

We then execute 4,952 malware samples on it. We can execute

3,538 malware samples successfully. Some malware samples fail

to be executed as they are not valid Win32 Application or due to

lack of specific software malware samples utilize in test

environment.

Figure-3 Analysis Environment

We also count behavior of malware samples in Table3. Most of

the samples create new files such as executive files and batch files.

There are also samples that create .com files to modify Internet

configuration of the experiment system. Almost 90% of the

malware samples write registry including creating a new one or

modifying an existing one.

Table.3 Malware Behavior #Samples

Detail explanation on registry activities is shown in Table.4, in

which we find that the most frequently modified registry is

Internet configuration related ones.

Table.4 Malware Behavior of Registry Writing

As the malware samples used for this experiment are collected

by Dionaea honeypot, most of them have network activities.

Table 5 shows the most accessed domain names of DNS

connections by malware samples. The list also contains benign

domains as malware access these for various reasons [7].

Table.5 Request domain counts of distinct malware

4.2 Execution in AV-installed environment

We set up the same environment as in Figure 3 and install

anti-virus on it. While executing malware sample, we assume that

the users execute the malware by their will.

All of the anti-virus software is set up as default configuration,

and all of them are updated to the version on June 25, 2014.

－691－

There are several samples fail to run in AV-installed

environment even though they can run successfully in non-AV

environment. This is because malware is blocked by DEP (Data

Execution Prevention) [18] that is a Windows Security

Defending System taken by anti-virus software or virtual machine

detection techniques used by those samples to hide its malicious

behavior for preventing from analyzing.

Several samples are deleted by anti-virus software automatically

because of auto-removal tool for malware.

Comparative results of malware executions on Non-AV

installed environment and AV-installed environment with each of

AV-1, AV-2, AV-3 and AV-4 are shown in tables 6, 7, 8, and 9,

respectively. In tables, Successful Execution means that the

malware process is created successfully and performs some

activities in our experiment system. Even though execution

results belong to Successful Execution category, there can be a

case when the system is not infected. Runtime Error means the

malware process is created successfully, but the samples do not

perform any malicious activities and showed the error message.

① AV-1 Result:

We find that most malware samples that can be run successfully

in non-AV environment are not treated as valid executable format

in AV-installed environment even though we do not change the

system configuration between non-AV environment and

AV-installed environment except AV-1 installed. It may be

because of the protection mechanism like DEP that AV-1

implements. However we could not find any sign of dynamic

detection to those samples that can be executed successfully in

AV-1 installed environment.

Table.6 Result of AV-1

Figure-4 Result of AV-1

② AV-2 Result:

In case of AV-2, there are mostly two ways that executed

samples are blocked: one is that these samples are treated as

non-executable format like AV-1 and the other case is that the

executed samples are removed by the auto-removal function of

AV-2. Namely, the malware samples are deleted by AV-2 when

the malware samples are copied to the file system. In fact,

whenever the file system is being accessed, AV-2 would

automatically scan the added files and delete them if they are

detected as malicious. However, it is interesting that how the

results change when the auto removal is switched off and only the

behavior-based detection is active. We show the results in the last

part of this chapter.

Table.7 Result of AV-2

Figure-5 Result of AV-2

③ AV-3 Result:

There are 1,253 samples successfully executed even though

AV-3 is installed. Many samples are also deleted before

－692－

execution by the auto-removal.

Table.8 Result of AV-3

Figure-6 Result of AV-3

④ AV-4 Result:

AV-4 shows its excellent malware removal tool capability.

Table.9 Result of AV-4

Figure-7 Result of AV-4

Table 10 and Figure-8 show the DNS connection counts that

would be a reference for us to check the capability of blocking

malicious connection. AV-1 counts the least. It is because of its

protection approach that makes over 90% malware samples

non-executable.

Table.10 AV's DNS connection

Snapshots Kinds DNS Connection #Samples
Clean 2875
AV-1 234
Av-2 628
AV-3 1016
AV-4 1370

Figure-8 AV's DNS connection

4.3 Switching off Auto Removal Function

In the previous section, we notice that anti-virus often has

auto-removal function that automatically checks and removes

executable files before their execution. In experiment, in order

to evaluate the solo capability of behavior-based detection, we

declare the samples’ directory in the exception list of such an

auto-removal function. As AV-1 does not have the

auto-removal capability, we would not take it into the

extended experiments. In AV-3, exception list cannot be

configured, so we would not take it into the experiments, too.

 We take the log of anti-virus software as evidence that

shows its detection capability. Table.11 and Table.12 show

the result of AV-2 and AV-4.

We find lots of samples that create a new malicious

executable file. When files created by those samples are

deleted by anti-virus software, we denote such a case as

Protected. The anti-virus software would detect malicious

extended files creation and stop the malicious behavior. There

are couples of samples intended to construct a malicious

connection, but we observe that the anti-virus software would

block those connection even though the executing malware

sample is in the exception list.

Secondly, in Neutralized case, anti-virus software deletes

the extended executable file created by the malware sample.

Some samples change its behavior here. Those samples write

the auto-start registry intending to drive the malicious

－693－

malware samples when the system starts up.

We observe that files created by some samples are deleted,

but the samples continuously intend to take a malicious

connection blocked by anti-virus software continuously. This

causes the computer performance to slow down.

 In Compromised case, samples would not be detected by

anti-virus software. And it performs its full malicious

behavior.

 The following table shows the AV-2 execution result.

Table.11 Result of AV-2

There are 1,216 samples that can be run in non-AV

environment. When we switch off auto removal function 94

samples cannot be run in AV-installed environment because

of DEP-like approach. We observe that there are lots of

Neutralized cases in AV-2 result because of lots of registry

modification by the samples. It would be difficult to

differentiate that it is protected when the registry is being

modified without the anti-virus software’s re-modification.

Figure-9 shows that AV-2 can protect the system when the

signature-based detection is enabled. However, Figure-10

shows that many samples are categorized as Netralized if we

disable the signature-based detection approach.

Figure-9 AV-2 Comparitive Result with Signature-based

Detection

Figure-10 AV-2 Comparitive Result without Signature-based

Detection

Table.12 Result of AV-4

 According to table 12, we observe that number of

Neutralized case is more than AV-2. There are over 1000

samples that cannot be run in AV-installed environment. It

shows that it not only removes the malicious extended

executable files but also do a job in processing the auto-restart

registry and Internet configuration-related registry.

 The comparative results of AV-4 are shown in Figure-11

and Figure-12.

When the anti-virus software loses its first-line protection

ability of auto-removal tool, we observe that there are lots of

malware samples that can be infected successfully. It would

be the problem we want to emphasize.

Figure-11 AV-4 Comparitive Result with Signature-based

Detection

Figure-12 AV-4 Comparitive Result without Signature-based

Detection

AV-2 and AV-4 show its detection capability to block the

malicious activities even though the malware samples is in

exception list and is not deleted by signature-based

auto-removal tool. AV-2 is better than AV-4 with the ability

to block the malicious connection.

We cannot disable the signature-based detection of AV-3, so

we show the result of signature-based detection enabled with

Figure-13. We can observe that almost 50% of malware

samples are removed by AV-3.

Table.13 shows the result of those samples that cannot be

－694－

detected with signature-based detection. The result is

interesting that there are not samples categorized into

Neutralized.

Figure-13 AV-3 Experiment Result with Signature-based

Detection

Table.13 Result of AV-3

5 Conclusion

We propose an explicit method to evaluate an anti-virus in

terms of its behavior-based detection and protection

capabilities. With four anti-virus software and real malware

samples, we find that our proposed method can highlight

different capability of each anti-virus software products,

which may be useful for their evaluation.

The problem of our experiment is that the environment is

constructed with Virtual Box and thus anti-virtual-machine

technology of malware may affect the results. This will be our

future work to extend this study.

Acknowledgements

A part of this study has been supported by PRACTICE

(Proactive Response Against Cyber-attacks Through

International Collaborative Exchange) project by the Ministry

of Internal Affairs and Communications, Japan.

References
 Honeypot Project, “Capture-BAT Download Page.”

http://www.honeynet.org/node/315 (Last Visit
2014/06/30)

 Ernst, Michael D, "Static and dynamic analysis: synergy
and duality." Proceedings of the
ACM-SIGPLAN-SIGSOFT Workshop on Program
Analysis for Software Tools and Engineering. 2004.

 Russinovich, Mark, Bryce Cogswell, "Process Monitor
v3.1."
http://technet.microsoft.com/en-us/sysinternals/bb89664
5.aspx (Last Visit 2014/06/30)

 regshot project, “regshot.” http://regshot.sourceforge.net/
(Last Visit 2014/06/30)

 Seifert, Christian, et al, "Capture–A behavioral analysis tool
for applications and documents." digital investigation 4
(2007): 23-30.

 dionaea, “dionaea catches
bugs.“ http://dionaea.carnivore.it/ (Last Visit
2014/06/30)

 L. Bilge, E. Kirda, C. Kruegel, and M. Balduzzi. “Exposure:
Finding malicious domains using passive dns analysis, ”
In NDSS. The Internet Society, 2011.

 Moser A, Kruegel C, Kirda E. "Limits of Static Analysis for
Malware Detection," In 23rd Annual Computer Security
Applications Conference (ACSAC); 2007.

 Egele, M., Scholte, T., Kirda, E., Kruegel, C. “A Survey on
Automated Dynamic Malware Analysis Techniques and
Tools,” In ACM Computing Surveys 44 (2), 2012.

 014 Hex-Rays SA, “IDAPro.”
https://www.hex-rays.com/products/ida/support/downlo
ad_freeware.shtml (Last Visit 2014/06/30)

 2000-2014 Oleh Yuschuk, “OllyDbg,.”
http://www.ollydbg.de/ (Last Visit 2014/06/30)

 Collaborative RCE Tool Library, “LordPE.”
http://www.woodmann.com/collaborative/tools/index.ph
p/LordPE (Last Visit 2014/06/30)

 Collaborative RCE Tool Library, “OllyDump,”
http://www.woodmann.com/collaborative/tools/index.ph
p/OllyDump (Last Visit 2014/06/30)

 Egele, Manuel, et al. "A survey on automated dynamic
malware-analysis techniques and tools." ACM Computing
Surveys (CSUR) 44.2 (2012): 6.

 International Secure Systems Lab, “Anubis. Analysis of
unknown binaries.” http://anubis.iseclab.org (Last Visit
2014/06/30)

 Willems, C., Holz, T., and Freiling, F, “Toward automated
dynamic malware analysis using CWSandbox.” IEEE
Security and Privacy 5, 2, 32–39.

 Moser, Andreas, Christopher Kruegel, Engin Kirda.
"Exploring multiple execution paths for malware analysis."
Security and Privacy, 2007. SP'07. IEEE Symposium on.
IEEE, 2007.

 TechNet Microsoft, " Data Execution Prevention. "
http://technet.microsoft.com/en-us/library/cc738483(v=
ws.10).aspx (Last Visit 2014/06/30)

－695－

