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Abstract: Eigenvalues of graphs have been used for detecting non-subgraphs or non-supergraphs based on their inter-
lacing property. However the detected subgraphs are often restricted to induced subgraphs or trees due to their matrix
representations. We consider five matrix representations of a graph, which can be used to detect general non-subgraphs
or non-supergraphs, and compare them experimentally.
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1. Introduction

Graphs are commonly used as models of real data such as
XML documents, 3D objects, chemical compounds, Web data
and social networks [1]. Eigenvalues of graphs are used in in-
dexing [2], [3], [4] and clustering [5] of graphs. The interlacing
property of eigenvalues [6] is applied to detecting non-subgraphs
or non-supergraphs of a query graph from a graph database. Al-
though the adjacency matrix is commonly used as a representa-
tion of a graph, that of a subgraph of the graph does not have the
prerequisite for the property. That is, the adjacency matrix of the
subgraph is not a principal submatrix of the adjacency matrix of
the graph in general. In such cases, the detected subgraphs are
restricted to induced subgraphs or trees due to their matrix repre-
sentations. In order to detect general non-subgraphs, we define a
matrix representation of a labeled graph in Ref. [7], which have
the prerequisite of the theorem. However the size of the matrix
is much larger than the size of the adjacency matrix and it costs
more to compute the eigenvalues. In this paper, we present five
matrix representations of a graph for detecting non-subgraphs or
non-supergraphs, which include a matrix modified slightly from
that used in Ref. [7]. They are based on the adjacency matrix,
the signless Laplacian matrix and the Seidel matrix of a graph or
its line graph. For non-regular graphs, there is no simple relation
among the eigenvalues of these matrices [8]. We compare the pro-
cessing time and the number of detected non-subgraphs experi-
mentally for the matrix representations. To our knowledge, this is
the first such experimental comparison of these matrix represen-
tation in terms of detecting non-subgraphs or non-supergraphs ac-
cording to the interlacing property of the eigenvalues. In Ref. [7],
it is shown that the processing time and the number of detected
non-supergraphs are improved by decomposing graphs according
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to labels of the vertices and the edges. We also decompose graphs
as the same way before computing their eigenvalues in this work.

2. Preliminaries

2.1 Graphs and Matrices
We focus on a labeled undirected simple graph g = (Vg, Eg,

L(V)g, L(E)g, μg, νg). Vg is a set of vertices. Eg is a set of edges
where an edge e in Eg is an ordered pair (v1, v2) of vertices v1 and
v2 in Vg. L(V)g and L(E)g are sets of labels of vertices and edges,
respectively. μg and νg are labeling functions Vg → L(V)g and
Eg → L(E)g, respectively. The line graph L(g) of a simple graph
g is the graph where a vertex is associated with each edge of g and
two vertices are adjacent if and only if the corresponding edges of
g have a vertex in common. Figure 1 shows examples of a graph
and its line graph. We use the signless Laplacian matrix and the
Seidel matrix of a graph in addition to the adjacency matrix and
the incidence matrix as matrix representations of a graph. The
signless Laplacian matrix Pg of a graph g is a |Vg| × |Vg| matrix
where the i-th diagonal element is the degree of the vertex vi ∈ Vg,
the (i, j) element is 1 if (vi, v j) ∈ Eg and the other elements are 0.
The Seidel matrix S g = (si j) of a graph g is a |Vg| × |Vg| ma-
trix where the diagonal elements are 0, the (i, j) element is −1 if
(vi, v j) ∈ Eg and the other elements are 1.

2.2 Graphs and Eigenvalues
Let {αi}i=1,...,n and {β j} j=1,...,m be two ordered sequences of real

numbers where m < n, α1 ≤ α2 ≤ · · · ≤ αn and β1 ≤ β2 ≤ . . . ≤
βm, respectively. We say that {β j} j=1,...,m interlaces {αi}i=1,...,n, if
the condition, αk ≤ βk ≤ αk+(n−m), is satisfied for k = 1, . . . ,m.

g L(g)

Fig. 1 Graph g and its line graph L(g).
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g g[1] g[1][3]

Fig. 2 Graph g and decomposed graphs g[1], g[1][3].

Theorem 1 (Interlace Theorem) [6] Let A and B be n× n and
m ×m real symmetric matrices where n > m, respectively. If B is
a principal submatrix of A, eigenvalues of B interlace those of A.

If matrix representations of a graph and its subgraph have the
prerequisite of this theorem, we can check whether a graph is not

a subgraph of another graph by comparing their eigenvalues.

2.3 Graph Decomposition by Labels
We decompose graphs according to labels of the vertices and

the edges before computing their eigenvalues as follows, which
is the same as Ref. [7].
VE decomposing graphs according to labels of vertices and

then decomposing the result according to labels of edges
EV decomposing graphs according to labels of edges and then

decomposing the result according to labels of vertices
Example 1 Figure 2 shows an example of the decomposi-

tion. A graph g is decomposed into g[1] according to the label 1
of the vertex. g[1] is decomposed into g[1][3] according to the
label 3 of the edge.

If gs is a subgraph of g, the graphs into which gs is decom-
posed according to a label are also subgraphs of the graphs into
which g is decomposed according to the same label. In detecting
non-subgraphs or non-supergraphs, eigenvalues of decomposed
graphs which have the same labels are compared based on the the-
orem. Before computing the eigenvalues, we compare the sizes
of a matrix representations of decomposed graphs of g and gs. If
that of gs is larger than that of g with the same labels, gs is not
a subgraph of g. In such case, there is no need to compute their
eigenvalues.

3. Matrix Representations for Detecting Non-
subgraphs

We used the following matrix representation of a graph for de-
tecting non-subgraphs based on the interlace theorem in Ref. [7].
The extended incidence matrix Cg of a graph g is the matrix
⎡
⎢⎢⎢⎢⎣

Q N
tN R

⎤
⎥⎥⎥⎥⎦ where N = (ni j) is the |Vg| × |Eg| incidence matrix of

g, Q = (qi j) and R = (ri j) are |Vg| × |Vg| and |Eg| × |Eg| diago-
nal matrices whose i-th diagonal element is the label μg(vi) of the
vertex vi ∈ Vg and the label νg(ei) of the edge ei ∈ Eg, respec-
tively. tN is the transpose of a matrix N. In this paper, we assign
the label νg(e j) of the edge e j ∈ Eg to the (i, j) element ni j of N.
In order to reduce the sizes of matrices and the cost of comput-
ing their eigenvalues, we consider the following smaller matrix
representations.
Adjacency matrix of line graph Although the adjacency ma-

trix of a subgraph gs of a graph g is not the principal sub-
matrix of the adjacency matrix of g in general, the adjacency
matrix AL(gs) of the line graph L(gs) is always the principal
submatrix of the adjacency matrix AL(g) of L(g). However g

cannot be restored from L(g) in general. We assign labels of
vertices and edges of g to the corresponding edges and ver-
tices of L(g) as the graphs of Fig. 1, respectively. The i-th
diagonal element of AL(g) is the label μL(g)(vi) of the vertex
vi ∈ VL(g), the (i, j) element is the label νL(g)(vi, v j) of the
edge (vi, v j) ∈ EL(g) and the other elements are 0.

Seidel matrix of line graph As with the adjacency matrix of a
graph g, the Seidel matrix S g of g does not have the prereq-
uisite of the interlace theorem, but the Seidel matrix S L(g)

of the line graph L(g) does. Since there is no simple way
to assign labels of vertices and edges of L(g) to elements of
the Seidel matrix like the adjacency matrix, we do not as-
sign the labels to the elements and use the Seidel matrix as
the definition.

Signless Laplacian matrix The signless Laplacian matrix Pg

of a graph g does not have the prerequisite of the interlace
theorem. However we can use it as follows. Pg is equal to
the multiplication N × tN of the |Vg| × |Eg| incidence matrix
N and its transpose tN. Although Pg = N × tN does not have
the prerequisite, the matrix tN × N does. In addition, the
non-zero eigenvalues of N × tN are equal to those of tN ×N.
Therefore we can use eigenvalues of tN × N or Pg = N × tN

to detecting non-subgraphs based on the theorem by adding
a necessary number of zeros to them. In order to reduce the
cost of computing eigenvalues, we choose the matrix whose
size is smaller. We do not assign labels of the vertices and
the edges to elements of tN×N or Pg = N× tN and use these
matrices as the definition.

Signless Laplacian matrix of line graph If a graph gs is a sub-
graph of a graph g, the line graph L(gs) is also a subgraph
of L(g). Therefore we can use the signless Laplacian matrix
PL(g) of the line graph in the same way as Pg.

Example 2 Figure 3 shows the extended incidence matrix
Cg, the adjacency matrix AL(g), the Seidel matrix S L(g), the two
signless Laplacian matrices Pg = N × tN, PL(g), and the matrix
tN × N for the graph g and its line graph L(g) of Fig. 1. N is the
incidence matrix of g. Since the size of tN × N is smaller than
Pg = N × tN in this case, we compute the eigenvalues of tN × N

instead of those of Pg = N× tN. The eigenvalues of tN×N and Pg

are {2− √2, 2, 2+
√

2} and {0, 0, 2− √2, 2, 2+
√

2}, respectively.

Cg =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0
0 1 0 0 0 3 0 0
0 0 1 0 0 3 3 0
0 0 0 1 0 0 3 3
0 0 0 0 1 0 0 3
0 3 3 0 0 3 0 0
0 0 3 3 0 0 3 0
0 0 0 3 3 0 0 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, AL(g) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

3 1 0
1 3 1
0 1 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

S L(g) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 −1 1
−1 0 −1
1 −1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, Pg = N × tN =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 0
1 2 1 0 0
0 1 2 1 0
0 0 1 1 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

tN × N =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2 1 0
1 2 1
0 1 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, PL(g) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0
1 2 1
0 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Fig. 3 Matrix representations of graph g and its line graph L(g) of Fig. 1.
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4. Experimental Evaluation

For the five matrix representations of a graph g and a smaller
graph gs, which are described in Section 3, we compare the pro-
cessing time and the number of detected non-subgraphs in the
cases of varying the number of vertices of gs, the densities of g
and gs, and the number of labels of vertices of g and gs. The pro-
cessing time is the time required to compute eigenvalues of the
decomposed graphs of g and gs and compare them. We check
whether gs is not a subgraph of g using the following procedure.
( 1 ) decompose g and gs according to labels of the vertices and

the edges in each of the ways VE and EV, which are de-
scribed in Section 2.3

( 2 ) compare the sizes of matrix representations of each of the
decomposed graphs of g and gs

( 3 ) check whether eigenvalues of each of the decomposed
graphs of gs interlace eigenvalues of the decomposed graph
of g with the same label

The processing time and the required memory size depend on
the sizes of matrix representations of g and gs, and the number
of labels of their vertices and edges since they are decomposed
according to labels. In each experiment, we prepare 500 pairs of
graphs gs and g and repeat the experiment twice. These graphs are
generated randomly with the graph generator which we develop.
The results of the experiments are the average performance for
two sets of 500 pairs of graphs. All algorithms are implemented
using Matlab R2012b. The experiments done on a PC running
Microsoft Windows 7 Professional with the Intel Core i3 3.3 GHz
processor and 16 GB RAM. The ways VE and EV for decompos-
ing graphs have little affect on the results in the case of using the
same matrix representation.

Table 1 shows the result when we vary the number of vertices
of gs from 50 to 90. The number of vertices of g is 100. The den-

Table 1 Varying number of vertices of smaller graph.
(a) Processing Time (sec)

Vertices 50 60 70 80 90
Extended Incidence
Matrix

VE 6.34 6.79 7.61 8.78 10.05
EV 6.44 6.88 7.68 8.79 9.97

Adjacency Matrix of
Line Graph

VE 2.78 2.91 3.19 3.68 4.31
EV 2.76 2.92 3.18 3.65 4.23

Seidel Matrix of Line
Graph

VE 2.73 2.85 3.13 3.63 4.25
EV 2.70 2.84 3.11 3.61 4.15

Signless Laplacian
Matrix

VE 0.56 0.61 0.65 0.66 0.59
EV 0.57 0.62 0.66 0.67 0.59

Signless Lapalcian
Matrix of Line Graph

VE 3.18 3.33 3.56 3.76 3.59
EV 3.14 3.32 3.52 3.73 3.56

(b) Number of Detected Non-subgraphs

Vertices 50 60 70 80 90
Extended Incidence
Matrix

VE 74 203 391 484 500
EV 74 203 391 484 500

Adjacency Matrix of
Line Graph

VE 79 204 391 484 500
EV 79 204 391 484 500

Seidel Matrix of Line
Graph

VE 56 159 348 472 500
EV 56 159 348 472 500

Signless Laplacian
Matrix

VE 75 203 391 484 500
EV 75 203 391 484 500

Signless Laplacian
Matrix of Line Graph

VE 72 195 383 478 500
EV 72 195 383 478 500

Table 2 Varying densities of pair of graphs.
(a) Processing Time (sec)

Density 30 35 40 45 50
Extended Incidence
Matrix

VE 5.07 6.27 6.97 8.08 9.42
EV 5.25 6.34 6.80 7.99 9.36

Adjacency Matrix of
Line Graph

VE 1.73 2.39 2.92 3.68 4.60
EV 1.72 2.35 2.81 3.59 4.53

Seidel Matrix of Line
Graph

VE 1.69 2.34 2.85 3.61 4.52
EV 1.69 2.30 2.76 3.52 4.42

Signless Laplacian
Matrix

VE 0.62 0.67 0.66 0.68 0.71
EV 0.64 0.69 0.65 0.68 0.71

Signless Laplacian
Matrix of Line Graph

VE 1.91 2.74 3.42 4.37 5.56
EV 1.90 2.70 3.32 4.30 5.54

(b) Number of Detected Non-subgraphs

Density 30 35 40 45 50
Extended Incidence
Matrix

VE 427 385 376 355 340
EV 427 385 376 355 340

Adjacency Matrix of
Line Graph

VE 428 387 376 358 344
EV 428 387 376 358 344

Seidel Matrix of Line
Graph

VE 381 341 340 324 307
EV 381 341 340 324 307

Signless Laplacian
Matrix

VE 428 386 376 355 340
EV 428 386 376 355 340

Signless Laplacian
Matrix of Line Graph

VE 415 379 369 346 338
EV 415 379 369 346 338

sity of each g and gs is 0.4. We assign 3 labels to each of vertices
and edges in g and gs. As the number of vertices of gs increases,
the number of detected non-subgraphs increases in all matrix rep-
resentations. This is because it becomes more difficult that eigen-
values of gs interlace those of g as the difference between the sizes
of their matrix representations decreases. The largest number of
non-subgraphs is detected in the case of using adjacency matrices
of their line graphs. However it differs only slightly from that in
the case of using extended incidence matrices or signless Lapla-
cian matrices. The least number of non-subgraphs is detected in
the case of using Seidel matrices of their line graphs. We detect
non-subgraphs the fastest in the case of using signless Laplacian
matrices. This is due to the size of a signless Laplacian matrix
of a graph, which depends on only the number of the vertices,
is smaller than other matrices. The processing time for signless
Laplacian matrices at 90 vertices becomes faster than that for 80
vertices since many non-subgraphs can be detected without com-
puting their eigenvalues by comparing the sizes of each decom-
posed graphs in the second step of the procedure.

Table 2 shows the result when we vary the densities of g and
gs from 30 to 50. The numbers of vertices of g and gs are 100 and
70, respectively. We assign 3 labels to each of vertices and edges
of g and gs. As the density of gs decreases, the number of de-
tected non-subgraphs increases in all the matrix representations.
This is because difference between the sizes of matrix represen-
tations of g and gs decreases as the density of gs decreases. The
number of detected non-subgraphs and the processing time for
the five matrix representations shows the same tendency as the
results shown in Table 1. The largest number of non-subgraphs
is detected in the case of using adjacency matrices of their line
graphs. As the densities of graphs increase, we can detect them
much faster in the case of using signless Laplacian matrices than
the case of using the other matrix representations.
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Table 3 Varying number of vertex labels of pair of graphs.
(a) Processing Time (sec)

Labels 2 3 4 5 6
Extended Incidence
Matrix

VE 21.82 7.65 3.72 2.07 1.45
EV 21.51 7.59 3.84 2.13 1.60

Adjacency Matrix of
Line Graph

VE 11.86 3.20 1.32 0.73 0.53
EV 11.75 3.13 1.32 0.71 0.53

Seidel Matrix of Line
Graph

VE 11.67 3.14 1.29 0.71 0.51
EV 11.57 3.08 1.28 0.69 0.51

Signless Laplacian
Matrix

VE 1.22 0.70 0.51 0.40 0.34
EV 1.22 0.70 0.53 0.40 0.36

Signeless Laplacian
Matrix of Line Graph

VE 14.00 3.73 1.42 0.69 0.45
EV 13.99 3.64 1.41 0.68 0.44

(b) Number of Detected Non-subgraphs

Labels 2 3 4 5 6
Extended Incidence
Matrix

VE 132 384 478 498 500
EV 132 384 478 498 500

Adjacency Matrix of
Line Graph

VE 133 384 478 498 500
EV 133 384 478 498 500

Seidel Matrix of Line
Graph

VE 119 336 458 495 500
EV 119 336 458 495 500

Signless Laplacian
Matrix

VE 132 384 478 498 500
EV 132 384 478 498 500

Signless Laplacian
Matrix of Line Graph

VE 145 380 470 496 500
EV 145 380 470 496 500

Table 3 shows the result when we vary the number of labels of
vertices of g and gs from 2 to 6. We assign 3 labels to edges of g
and gs. The numbers of vertices of g and gs are 100 and 70, re-
spectively. The densities of g and gs are 0.4. As the number of la-
bels of vertices increases, the number of detected non-subgraphs
increases in all the matrix representations. This is because we
check interlacing of eigenvalues of the more decomposed graphs
of g and gs as the the number of labels of vertices increases. In the
case of using extended incidence matrices, adjacency matrices of
their line graphs and signless Laplacian matrices, the largest num-
ber of non-subgraphs is detected for almost any number of labels
of vertices. As the number of the labels decreases, we can de-
tect them faster in the case of using signless Laplacian matrices
than the case of using the other matrix representations. This is
because the sizes of signless Laplacian matrices of decomposed
graphs become smaller than the sizes of other matrix representa-
tions of them as the number of the labels decreases.

5. Conclusion

We present the five symmetric matrix representations of a
graph g, which have the prerequisite of the interlace theorem.
That is, the matrix representation of a subgraph gs of g is a prin-
cipal submatrix of the matrix representation of g, in general. We
compare them experimentally in terms of the processing time and
the number of non-subgraphs which are detected by comparing
eigenvalues of g and gs based on the theorem. The graphs are de-
composed according to labels of the vertices and the edges before
computing their eigenvalues. In the results of our experiment,
the largest or almost the largest number of non-subgraphs are de-
tected in the shortest time when we use the signless Laplacian
matrix as the matrix representation.
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