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Abstract: Ensuring the integrity of logs is essential to reliably detect and counteract attacks because adversaries tam-
per with logs to hide their activities on a computer. Even though some studies proposed various protections of log files,
adversaries can tamper with logs in kernel space with kernel-level malicious software (malware) because file access
and inter-process communication are provided by an OS kernel. Virtual machine introspection (VMI) can collect logs
from virtual machines (VMs) without interposition of a kernel. It is difficult for malware to hinder that log collection,
because a VM and VM monitor (VMM) are strongly separated. However, complexity and unnecessary performance
overhead arise because VMI is not specialized for log collection. This paper proposes a secure and fast log transfer
method using library replacement for VMs. In the proposed method, a process on a VM requests a log transfer to a
VMM using the modified library, which contains a trigger for a log transfer. The VMM collects logs from the VM and
isolate them to another VM. The proposed method provides VM-level log isolation and security for the mechanism
itself with low performance overhead.
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1. Introduction

Logging information about activities and events in a computer
is essential for troubleshooting and for computer security. Logs
are important not only for detecting attacks, but also for under-
standing the state of the computer when it was attacked. The
importance of logs for computer security is described in Spe-
cial Publication [1]. Adversaries tamper with logs to hide their
malicious activities and the installation of malware on the target
computer [2], [3], [4]. If logs related to those activities are tam-
pered with, detection of problems might be delayed, and the delay
could cause further damage to services. In addition, log tamper-
ing impedes the detection, prevention, and avoidance of attacks.
With the growth of cloud computing in recent years, Virtual Ma-
chine (VM) security has become more important [5], [6]. This is
particularly true for log forensics in cloud applications has [7].
However, existing logging methods are not designed for VMs or
cloud applications.

Secure logging using VMs provides logging integrity and com-
pleteness [8]. Boeck et al. proposed a hardware-based secure log
transfer method that proves log entry origin with respect to both
machine and application in a hardware-based way [9]. These
methods ensure confidentiality and integrity of log data while
stored or in transit between local and remote machines. While
this method can prevent attacks on logging daemons, adversaries
can still tamper with logs in kernel space. Logs must go through
an operating system (OS) kernel when transferred out of the com-
puter. If malware has been installed, logs could be tampered with
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in kernel space. SecVisor [10] is a method that prevents the exe-
cution of illegal codes in kernel space. However, these methods
depend on the structure of the OS kernel, making it difficult to
adapt to various OSes. In a situation in which a single machine
provides many VMs, different OSes could be running on each
VM. VM introspection (VMI) [11] can be considered a VM log-
ging method. However, it has difficulty with information granu-
larity. Because it collects low-level VM information, interpreta-
tion and reconstruction of information is required.

This research involves log protection. Even though the impor-
tance of logging for cloud application has increased [7], there is
no method specialized for logging in a VM environment. VMs
are commonly used to provide a cloud computing environment.
Providing services such as logging degrades the performance
of application programs (APs) on VMs [8]. Specifically, a web
server frequently logs information about access. Turning off the
logging operation in the Apache web server results in a 22% per-
formance improvement [12]. Thus, logging is one of the main
reasons of performance degradation. Therefore, reducing perfor-
mance overhead incurred by additional services is an important
challenge.

This paper proposes a secure and fast log transfer method us-
ing library replacement. To trigger a log transfer to a VM monitor
(VMM), we embed an instruction in a library function to trigger
VM exit. On Linux and FreeBSD, we modified the standard C
library, libc, which contains standard logging functions. When
the VMM detects a VM exit, it collects the logs generated by APs
in the source VM and transfers them to the logging VM, which
stores the logs to a file. We assumed that the modified library is
secured in memory using a method [13] that protects a specific
memory area from being modified by kernel-level malware.
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When the proposed method is used, adversaries cannot tam-
per with logs in kernel space, because the VMM collects logs
before they reach it. Because modification to a library is kept
minimal, adapting to different OSes requires less effort. Perfor-
mance degradation is minimal because the overhead is incurred
only when an AP calls a logging function. The proposed method
replaces only a library, which includes a function to send logs to
a syslog daemon. Therefore, we can make the possibility of bug
inclusion low. Additionally, bugs in a library have less effect than
those in a kernel.

This paper also describes evaluations of the proposed system.
We evaluate the system from the standpoint of log security, adapt-
ability to various OSes, and performance overhead. To evaluate
the system from the standpoint of log security, we analyze the
security of a logging path. Experiments to tamper with logs in
the logging path are also described. Adaptability of the proposed
system is provided with case studies adapting to various OSes.
Performance evaluations with APs commonly used in servers are
described. VMI causes substantial overhead [14]. For practical
use, performance degradation must be minimal. With these eval-
uations, this paper shows how the proposed system is practical
for generally-used APs and a multi-VM environment.

The basic concept of the proposed system has been presented
before [15]. This paper describes its detailed design, implemen-
tation, security analysis, and evaluation results.

The contributions made in this paper are as follows:
• We propose a secure log transfer method that replace a li-

brary in a VM. With the proposed system, a kernel-level
malware cannot delete or tamper with logs. Moreover, by
comparing collected logs and tampered-with logs, we can
identify the area that is tampered with.

• We design a tamper-resistant system using a VMM. We im-
plemented our entire system inside the VMM because of its
attack-resistance.

• The proposed system is implemented with minimal modifi-
cation to libc. Although making no modification would be
preferable, modifying the library provides two advantages:
slight overhead and ease of adaptation to various OSes. This
also reduces the possibility of bug inclusion, thereby making
the system more secure.

2. Log Transfer Method

2.1 Existing Log Transfer Methods
In Linux and FreeBSD, syslog is a protocol for system manage-

ment and security monitoring. Syslog consists of a syslog library
and a syslog daemon. A conceptual diagram of the logging path
is shown in Fig. 1. As shown in Fig. 1, (1) an AP generates a log
entry, and then (2) sends the log to a logging daemon. The log-
ging daemon (3) receives and shapes the log. Finally, the logging
daemon (4-A) stores the log to a local storage or (4-B) transfers
the log to a logging daemon on a remote machine.

New syslog daemons and protocols [16], [17], [18], [19] have
been developed to achieve greater security. New syslog daemons
can transfer logs to out of a computer and can encrypt syslog traf-
fic using transport layer security (TLS). These methods secure
logs in the path (4-B). However, during log transfer, adversaries

Fig. 1 Conceptual diagram of the logging path.

can delete or tamper with the log with a kernel-level attack [3]
along path (2). Other methods using inter-process communica-
tions can be attacked in the same manner. Other malware tamper
with logs by replacing syslog daemons [2]. If the logging dae-
mon is tampered, all logs generated by the logging daemon are
unreliable.

VMI [11] inspects VMs by retrieving hardware information
about the target VM and constructing a semantic view from out-
side the VM. ReVirt [20] collects instructions-level informa-
tion for VM logging and replay. CloudSec [21] performs a fine-
grained inspection of the physical memory used by VMs and de-
tects attacks that modify kernel-level objects. While these meth-
ods enable us to collect information inside VMs, they increase
the complexity of the semantic view reconstruction and perfor-
mance overhead. In addition, the reconstruction of a semantic
view strongly depends on the structure of the OS.

To overcome this problem, in-VM monitoring methods [14],
which inserts an agent into a VM, is proposed. It protects the
agent from attacks from inside the VM. Inserting an agent is a
practical and efficient way to collect information, however, it is
difficult to adapt to various OSes because the implementation of
an agent depends on the structure of the OS. The VMM-based
scheme [22] can collect logs inside VMs without modifying a
kernel or inserting agents. However, it has a large overhead and
strong dependency on the architecture of the OS.

2.2 Problems of Existing Methods
Existing methods have the following four problems:

(1) Transferring log via inter-process communications can be
preempted by kernel-level attacks.

(2) Collecting logs inside a VM by monitoring the behavior of
APs or OSes cause unnecessary performance overhead.

(3) Collecting logs from various OSes requires efforts to adapt
the method to a variety of OSes.

(4) Additional code increases the likelihood of bugs in the sys-
tem.

No suitable method is currently available to transfer logs out
of the VM. For security management, a secure logging method is
required. Under the existing logging method, even if the existing
logging functionality on a computer is compromised, it is possi-
ble to be aware of the existence of attacks by analyzing logs trans-
ferred by the computer. Because the amount of logs is changes
from a regular operation, an administrator of the compromised
computer can predict the existence of attacks. However, precise
tracing of the attacks is difficult. But, if adversaries tamper with
logs to hide their activities, predicting the existence of attacks is
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considerably difficult because the amount of logs is not changed
significantly. Monitoring from outside the VM is a new approach,
because the monitor itself is secured by VM-level separation. On
the other hand, the information obtained by the method is diffi-
cult to translate into a semantic view or is too fine-grained. While
VMI and other introspection methods securely collect informa-
tion inside a VM, constructing the semantic view of the VM is
strongly depends on the structure of the target OSes. Adapting
those methods to various OSes is nontrivial work. Inserting an
agent into a VM can cause undesirable effects and make the VM
unstable.

3. Secure and Fast Log Transfer by Library
Modification in VM

3.1 Scope and Assumptions
This paper covers log protection from tampering via attacks

to the kernel, to the logging daemon, and to files that contain
logs. Attacking specific APs requires nontrivial work and it can-
not tamper with logs completely; therefore, adversaries attack the
point where all logs go through. For these reasons, preventing log
tampering in kernel space and in a logging daemon is a reasonable
challenge.

We assume attacks for a VMM is difficult. Even if a report [23]
describes subverting the Xen hypervisor is possible, the condition
that allow a such attacks is actually limited. Furthermore, attacks
to VMMs can be detected by integrity scanning [24]. Therefore,
we assume that attacking VMMs is sufficiently challenging.

3.2 Objectives
The objectives of this paper are as follows:

Objective 1 To propose a fast and tamper-resistant log transfer
method.

Objective 2 To propose a log transfer method that is easy to
adapt to various OSes.

The objective of our research is to address problems detailed
in Section 2.2. To address those problems, providing a tamper-
resistant log transfer method is necessary. Specifically, we aim
to prevent log tampering from kernel-level malware like adore-
ng [3]. Moreover, low overhead is desired to implement the
method to APs in the real world. Further, an OS-independent
method is preferable, because it is assumed that various OSes are
running on each VM.

3.3 Approach
Integrating logging modules into a VMM is an efficient way to

secure the modules [8]. However, existing logging methods fo-
cus on logging and replay for VMs because those methods utilize
information that can be collected natively by the VMM, includ-
ing disk access, execution of sensitive or privileged instructions.
Contrary to existing approaches, we focus on logs dealt by syslog.

Some studies focus on VMI, which collect information inside
a VM. However, VMI methods cause performance degradation.
Therefore, we focus on the speed of log transfers. We use the
VMM to integrate a logging module to the outside of a VM for
security and modify the library on a VM for fast log collection.

3.4 Requirements
To achieve the objectives, the followings are required.

Requirement 1 Transfer logs as soon as possible.
Requirement 2 Isolate logs from the VM.
Requirement 3 Secure the log transfer mechanism itself.
Requirement 4 Make the log transfer method OS-independent

and small.
Requirement 5 Reduce unnecessary overhead related to log

transfer.
In a logging path, logs generated by a process are passed to a

kernel because the kernel provides the ability to send messages
to other processes. Therefore, to prevent log tampering in kernel
space, it is necessary to collect logs from outside the VM before
the logs reach kernel space. To prevent tampering of log files,
they must be isolated from the VM. To ensure the security of
the log transfer method itself, we install the method outside the
VM. With low dependency on the OS, migration to other OSes
becomes easy. Moreover, a smaller program size helps to reduce
the possibility of bugs. A VM exit, which is a CPU-mode transfer
between a VM and a VMM, can cause additional overhead. To
adapt the method to APs in the real world, unnecessary VM exits
must be removed.

3.5 Overview of Proposed Method
The overall design of the proposed system is shown in Fig. 2.

In the proposed system, the target VM works on a VMM and the
VMM collects logs from the VM. We assume that all of the VMs
are fully virtualized by Intel VT-x. An AP on the target VM can
transfer logs with the proposed system as follows:
(1) An AP requests a log transfer to a VMM.
(2) The logging module inside the VMM receives the request

and copies logs from the AP to the buffer inside the VMM.
(3) The VMM sends a notification to a logging AP inside the

logging VM. Then, the VMM sends the logs to the logging
AP.

(4) The logging AP receives the logs and stores them to a file.
The logging VM accepts logs only from the VMM.

We modified the VMM to transfer logs from the target VM to
the logging VM. The logging module, the log storing module
and the buffer VMM are additional parts of the original VMM.
We modified libc in the target VM to send a log transfer request

Fig. 2 Overview of proposed system.
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to the VMM in each call of the syslog function. The modified
library executes an instruction that causes a VM exit, which trig-
gers a log transfer to the logging VM before sending logs to the
logging daemon in the current VM. Only a VM that contains the
modified library can send the request. In Fig. 2, the target VM
requests a log transfer in every syslog function call; on the other
hand, the non-target VM never makes the request.

The proposed method can be implemented for various types of
VMMs. The VMM can be classified into two types: native vir-
tual machine monitor (type 1) and hosted virtual machine monitor
(type 2) [25]. A type 1 hypervisor traps privileged or sensitive in-
structions while a type 2 hypervisor interprets all instructions in a
virtualized environment. With a type 1 hypervisor, we must mod-
ify a library on the VM to execute sensitive instructions to request
a log transfer. Because a type 2 hypervisor basically interprets all
instructions, a hypervisor can detect log generation and log trans-
fer to a syslog daemon inside that VM. Thus, implementing our
proposed method with type 2 hypervisor is easy. In this paper,
we demonstrate implementation on a type 1 hypervisor because
of its advantage in performance.

Collecting logs immediately after the invocation of the syslog
function fulfills requirement 1. With this feature, tampering logs
in kernel space is impossible. Using the logging VM to store
logs fulfills requirement 2. Resources allocated to a VM, such
as memory, network, disk space, and others, are separated from
resources allocated to another VM; therefore, it is difficult to tam-
per with logs outside the VM during an attack. It is also difficult
to attack a VMM from inside a VM; therefore, using a VMM
and modifying a library fulfills requirement 3. Library modifica-
tion also makes OS-adaptation easier and fulfills requirement 4.
Finally, VM exits occur only when a syslog library function is
called; therefore, requirement 5 is fulfilled.

3.6 Comparison of the Proposed Method and VMI
The proposed method and VMI are similar from the standpoint

of collecting information inside the VM. However, there are the
following differences between them:
• Security of logs.
• Dependency on data structures in the VM.
• Overhead.
The proposed system can achieve greater security of logs than

a VMI. The VMI collects information about VMs by monitoring
hardware states and some events. However, it is difficult to detect
log generation by monitoring hardware states or events. Even if
the VMI can detect log generation, when the VMI detects it af-
ter a mode transition to kernel space, logs can be tampered by
kernel-level malware. By contrast, kernel-level malware cannot
tamper with logs because the trigger of log transfer is given by a
library in the user space of each VM.

To inspect the state of a VM, the VMI collects some informa-
tion strongly related to the data structures in the VM. Thus, VMI
must have enough knowledge about the layout of the data struc-
tures in the VM. Additionally, to inspect the state of a VM, the
VMI must collect a lot of information (e.g., process list, process
descriptor). This creates a strong dependency on the version of
the OSes in the VMs.

As just described above, the VMI can inspect the state of a VM
with fine-grained information; however, it creates a strong de-
pendency on the data structure in the VM along with some over-
heads. On the other hand, the proposed system cannot collect
much information about the VM; it achieves weak dependency
on the data structures in the VM and has low overheads. VMI
has a large overhead because it monitors the state of the VM with
various fine-grained information. Research [14] shows that VMIs
causes 690% in overhead while monitoring process creation. On
the other hand, in-VM monitoring causes only 13.7% in over-
head. Thus, the approach of the proposed system is efficient be-
cause the system can be considered as one of an in-VM monitor-
ing system. Additionally, our proposed system only monitors the
invocation of the syslog function. Therefore, overhead related to
the proposed system arises only when an AP invokes the syslog
function.

4. Implementation

4.1 Log Transfer Flow
Transferring logs from a VM to a VMM takes place in two

phases: requesting the log transfer and copying the log. This sec-
tion describes the implementation of each phase in Section 4.2
and Section 4.3, respectively. The modified code for the libc
library is shown as Fig. 6 and explained in Section 6.3.

After transferring the logs to a VMM, the VMM sends the logs
to the logging VM. The implementation of this phase is described
in Section 4.4.

4.2 Log Transfer Request
We embed a cpuid instruction in a library to request the log

transfer to the VMM from an AP. The instruction does not affect
the CPU state; however, if executed in a virtualized environment,
the instruction causes a VM exit. Therefore, we embedded the
instructions into a library to request the copying of the logs to
the external VMM before sending the logs to a logging daemon.
The interface to the log transfer request is shown in Table 1. The
embedded codes set the appropriate values to the registers and
execute the cpuid instruction. Additional codes are shown in
Section 6.3.

We utilize the cpuid instruction to counteract the detection of
our approach that scans memory or a library file. One typical in-
struction is to call a VMM using vmcall. If we use the vmcall
instruction as a trigger of the log transfer, adversaries can easily
detect our approach by scanning memory because the instruction
is not usedin regular APs. We count the number of cpuid and
vmcall instructions included in eglibc-2.11.3. From the re-
sult, while cpuid appeared 13 times, vmcall was not found. To
detect the embedding of a cpuid instruction, adversaries must
identify where cpuid instructions exist or verify the library that
has changed using the signatures of each library. For these rea-

Table 1 Interface of log the transfer.

Register Explanations

rax 0xffff: the value represents a log transfer request.

rbx Address of the buffer that contains logs to transfer.

rcx Length of logs to transfer.
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Fig. 3 Flow of log transfer request.

Fig. 4 Flow of log copying from AP to VMM.

sons, to make detection of our approach harder, we utilize the
cpuid instruction.

Figure 3 depicts the flow of the log transfer request. At first,
the AP on the target VM stores 0xffff in the rax register, the
starting address of the buffer in the rbx register, and the length of
the buffer in the rcx register. Then, the AP executes the cpuid
instruction to request a log transfer.

4.3 Log Copying from Target VM to VMM
Figure 4 depicts the flow of log copying by a VMM. A cpuid

instruction triggers log transfer. After detecting the instruction,
the VMM copies logs from the AP and notifies the logging VM if
the value contained in the guest’s rax register is 0xffff. If not,
the VMM does not copy logs and only emulates the instruction.
If the buffer length is larger than the length indicated by the rcx
register, the designated length of the buffer is copied to the VMM.

As shown in Fig. 5, the buffer inside the VMM is implemented
as a ringed buffer to reduce the amount of logs lost during a high-
load situation. Step (4) only sends notifications. When multiple
VMs request log transfer, all logs are copied to the buffer inside
the VMM. To identify logs which are from the VM, the VMM
appends the VMID (Virtual Machine ID) to the head of the log
entry.

In step (3), if the length of the logs is larger than the remain-

Fig. 5 Logging module and ringed buffer.

ing space of the buffer inside the VMM, the VMM suspends the
target VM and only copies part of the logs, whose length is less
than the remaining space. When copying of the accumulated logs
from the VMM to the logging VM is completed, the VMM re-
sumes the copying of logs from the target VM. The VMM loops
this procedure while the logs, which are requested by an AP to
be transferred, remain in the target VM. Thus, if an AP requests
log transfers with larger buffer lengths than the capacity of the
buffer inside the VMM, the VMM can copy all the logs com-
pletely without loss. Because the target VM is suspended for the
log transfer, the effects of the attack are limited. However, a log
transfer request with a large buffer brings considerable perfor-
mance degradation for the target VM.

4.4 Log Copying to the Logging VM
Log copying to the logging VM is asynchronous, making the

duration of log copying as short as possible. The VMM sends
a notification that logs have accumulated in the buffer inside the
VMM. The logging AP on the logging VM receives the notifi-
cation and responds to it with a notification that the logging AP
is ready to receive log messages. Here, the logging VM is sepa-
rated from the target VM. After receiving the request, the VMM
copies logs accumulated in the buffer to the logging AP. The log-
ging AP writes logs to the file on the logging VM using the syslog
function. Each log entry has a VMID to identify the log entry’s
origin. Except for this VMID, log entries stored by the logging
AP have the same format as syslog, making existing log analysis
tools usable for logs collected using the proposed method. Addi-
tionally, existing secure logging methods and log file encryption
are applicable to the proposed method whereby the logging AP
stores logs using the syslog function.

5. Security Analysis and Consideration

5.1 Limitations
If the adversaries are worried about the proposed mechanism,

they can create ready-made APs which do not generate any logs.
If the ready-made APs are compiled with a dynamic linked libc,
the proposed method can possibly transfer logs. If the ready-
made APs are static linked programs, transferring logs using the
proposed method is impossible. However, if an AP stops sending
logs, the system administrator of that computer would be aware
of the existence of the attack by comparing logs before and after
the logging functionality is suspended.
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5.2 Logging Path Log Security
As shown in Fig. 1, a logging path using syslog has five phases.

From this observation, we see that logs can be tampered with at
the following points: (1) the time at which a process generates
the log, (2) the time between the sending of the log and its receipt
by the syslog daemon, (3) the time between receiving a log and
storing it to a file, and (4) the time after the output of the log.

Kernel-level malware such as adore-ng [3] can tamper with
logs at times (2) and (3). Attacks on a syslog daemon such as
tuxkit [2] can tamper with logs at time (3). Adversaries who have
privileges to write to the log file can tamper with logs at time (4).

With the proposed method, a log in the VM is transferred to
outside the VM just before time (2) in Fig. 1. Once the log is
outside the target VM, adversaries inside that VM cannot tamper
with it. Therefore, the proposed method can avoid the effects of
log tampering attacks at times (2), (3), and (4) because logs have
already been transferred outside the target VM. Even though an
adversary tampers with the log inside the target VM at times (2),
(3), and (4), there is no effect on the evacuated logs on the logging
VM.

5.3 Log Tampering Experiment
To test whether the proposed method can prevent log tampering

or not, we tried to tamper with logs. First, we used adore-ng [3],
a kernel-level malware that tampers with logs sent to the syslog
daemon, to check if the proposed system can prevent log tam-
pering in kernel space. Adore-ng tampers with logs by patching
the runtime kernel code within memory. Adore-ng monitors inter-
process communications using a socket function and deletes mes-
sages, if it contains words that would be disadvantageous if seen
by the administrator of the computer. This experiment proves
that the proposed method can prevent log tampering by kernel-
level malware. Logs sent to the VMM with the proposed method
were not tampered with while logs stored in the target VM were
tampered with. Moreover, we can detect log tampering by com-
paring logs of the target VM with those of the logging VM. With
this comparison, we can ascertain the purpose of the adversary.

Second, we tampered with a policy file of the syslog daemon as
no logs are written to files. The policy file is loaded by the syslog
daemon at start-up. With this attack, no logs are written, even if a
syslog daemon is running. In this situation, we confirmed that the
proposed system collects logs with no modification or loss. This
result shows that the proposed system is resistant to attack on the
policy file of the syslog daemon. The result also shows that log
tampering by replacing a syslog daemon has no effect on the log
collected by the proposed system. Thus, the proposed system is
resistant to attacks such as tuxkit [2].

Third, we stopped a syslog daemon on a target VM to prevent
logging. Obviously, no logs are transferred to the syslog daemon.
We also confirmed that the proposed system can collect logs com-
pletely. However, this completeness depends on the log transfer
flow. In GNU libc, a syslog function aborts log transfer when
the establishment of a connection fails. Our prototype used for
evaluation requests log transfer before establishing a connection
to the syslog daemon; consequently, we can collect logs com-
pletely. This implies that logs might be lost if the library requests

log transfer after establishing a connection.
Finally, we tampered with a log file in the target VM. This type

of attack is used in the LastDoor backdoor [4]. It wipes specific
entries in log files. Because the logs written to the file are already
transferred to the logging VM, while logs in the target VM are
tampered with, there is no effect on the log file in the logging
VM.

These results show that the proposed system can collect almost
all logs and that collected logs are not affected by attacks on the
target VM. Additionally, adversaries tend to install log tampering
malware at locations that all logs must pass through. For exam-
ple, adore-ng [3] is installed to a kernel function and tuxkit [2] is
installed to a syslog daemon. All logs sent by the syslog library
function pass through the kernel function and the syslog daemon.
Consequently, we can estimate that log tampering attacks on an
AP, a source of logs, is rare.

5.4 Protecting Modified Library
5.4.1 Protection Method

There are two attacks on the proposed method that can be
considered: replacing or modifying the replaced library file and
manipulation of the memory area where the modified library is
loaded.

Verification of the library file is effective for preventing attacks
on the modified library file. We can detect modification of the
library file by verifying the library file when a process loads the
library to a memory. To verify the library file, we must preserve
the signature of the file beforehand. When the file is loaded into
the memory, the VMM detects the relevant load system call and
compares the signatures of the original file and the file currently
being loaded. From this, it can detect modification of the library
file.

Using a hypervisor-based software runtime memory protection
mechanism [13] is effective for preventing attacks on the mem-
ory area that includes the modified library. With it, any software,
including a kernel, cannot manipulate the memory area of a desig-
nated process because the hypervisor mechanism isolates the area
from other areas. The mechanism prepares another set of page
tables to partition the virtual address space represented by the
shadow page tables to protect the runtime memory against mal-
ware with root privileges. Linear address spaces of the protected
APs and other software are separated from each other. Even if
malware has root privileges, it cannot access the memory area of
the protected APs. By using the mechanism to protect the modi-
fied library, the proposed method prevents adversaries from being
able to modify that library.
5.4.2 Performance Estimation

Performance can be degraded during protection. Especially,
the verification of the modified library requires substantial pro-
cessing time because it checks file integrity. On the other hand,
the protection of the memory area creates a slight overhead. Even
if the memory area, which includes the modified library, is pro-
tected from write access, libraries are mapped to the memory
as readable and executable. The protection overhead arises only
when an illegal write to the area occurs. Therefore, the overhead
that arises in the protection of the memory area is negligible.
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Because the overhead created by the protection of the modi-
fied file dominates, estimation of that overhead is important for
the estimation of the total overhead of the protection methods. To
estimate the overhead, we created a prototype of the file integrity
checker. The prototype runs on the logging VM and verifies the
md5 hash of the modified library file. To create the md5 hash
from the modified library, we used the mhash library. To read the
modified library inside the target VM, we used the guestmount
command. We estimated the performance overhead by measuring
the time for creating the hash value with the modified library file
inside the target VM. We create the md5 hash of libc-2.13.so
and note its file size is 1,595,408 bytes. The environment used
for the experiment is the same as that in the performance evalua-
tion of the entire proposed system. The environment is shown in
Table 2.

The results of the measurement show that creation of the hash
value of the modified library file requires about 48 ms. The pro-
cessing time for hash creation is measurable, because it requires
disk access. However, its effect on the performance of resident
programs is sufficiently small, because the overhead only arises
during program start-up.

5.5 DoS Attack Using Proposed Method
Adversaries can use the proposed method as a tool for DoS

attack. The proposed system has no authentication mechanism;
therefore, a malicious process can send a massive number of log
transfer requests. If a massive number of requests are sent to the
VMM, the performance of the VMM and the logging VM de-
grades, and in turn, degrading the performance of each VM run-
ning on the VMM. If massive logs are transferred by the proposed
method, the processing time of the VMM increases because the
log transferring requires a lot of memory copies. Since all logs as-
sociated with the proposed method go through the logging VM,
occupying of the processing of the logging VM by massive log
transfer degrades the performance of the logging VM. Further, a
mutual exclusion of the buffer inside the VMM degrades perfor-
mance of the VMM. This situation leads to performance degra-
dation of each VM on the VMM.

The following methods can address this problem:
(1) Authentication of a process that intends to request a log

transfer.
(2) Ignoring log transfer requests from a process that is known

to send a massive number of or large size requests.
Method (1) can prevent a log transfer request from an unau-

thenticated process. This requires implementing an additional in-
terface for authentication. In method (2), we identify the mali-

Table 2 Software used for evaluation.

VMM Xen 4.2.0

OS (The logging VM) Debian (Linux 3.5.0 64-bit)
OS (The target VM) FreeBSD 9.0.0 64-bit

Debian (Linux 2.6.32 64-bit)

Web server thttpd 2.25b
Database management system PostgreSQL 9.2.4
Syslog daemon rsyslogd 4.6.4

Benchmark ApacheBench 2.3
pgbench 9.2.4
LMbench version 3

cious process by the frequency of its requests. If a specific pro-
cess sends a massive number of requests in a short period, we
classify the process as malicious. The issue with Method (2) is
determining the criteria: the threshold number of requests and the
time period.

After realizing that a process is malicious, the VMM treats the
process in one of the following ways:
(1) Termination of the malicious process.
(2) Rejection of any log transfer request from the process.

Termination of the malicious process is a direct way to pre-
vent attacks on the VMM. However, a legitimate process could
stop running, if it is judged wrongly as malicious. The second
method is more reasonable. If the frequency of requests from a
suspicious process is reduced, we can judge the process as legit-
imate and accept requests from that process again. Even though
the second method makes it easy to accept requests again, the
method must manage information about all processes running on
each VM. However, the cost of such management is worth con-
sidering. For these reasons, process authentication is our future
work.

5.6 Applying the Proposed Method to Various Events
The proposed method focuses only on syslog events, but the

method can be applied to other events, because it is based on re-
quests from APs on a VM. For example, the Apache web server
stores its logs using its own interface. By modifying the server to
execute the cpuid instruction in its logging interface, the VMM
can detect that request and collect logs. Because logging in a
web server is one of the main reasons for performance degrada-
tion, the proposed system must be efficient. However, applying
the proposed method to various events raises maintenance costs.
Thus, it depends on the trade-off between adaptability and main-
tenance cost.

6. Evaluation

6.1 Purpose and Environment
We evaluated the proposed system from the following stand-

points:
• Completeness of log collection

We tested the system in a high-load environment by sending
a massive number of log transfer requests from an AP in the
target VM.

• Effort to adapt to various OSes
Ease of adaptation to various OSes was also evaluated.

• Performance evaluation
Performance overhead in syslog and database management
system (DBMS) are evaluated.

• Performance in multi-VM environment
We measured the performance of a web server with many
VMs to clarify the performance overhead incurred by the
proposed system in a multi-VM environment.

• Memory footprint
We evaluated the increase in the memory footprint with the
proposed system.

Software used for evaluation is described in Table 2. We im-
plemented a prototype of the proposed system with the Xen [26]
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hypervisor.

6.2 Completeness of Log Collection
To ensure that the proposed system can collect all logs in the

target VM with no loss, we tested the proposed system in a high-
load environment. In an experiment, we sent a log transfer request
10,000 times within approximately 0.26 seconds. The length of
the log in each request was approximately 30 bytes. All logs were
successfully transferred to the logging VM. No logs were incom-
plete or lost. This result shows that our proposed method is suf-
ficient in terms of completeness of log collection in a high-load
environment.

6.3 Effort to Adapt to Various OSes
In the prototype, we implemented the proposed method with

FreeBSD and Linux as the target VMs and Xen as a VMM. To
adapt to various OSes, modification to the target VM must be
minimal. We added 20 additional lines of codes to libc on
FreeBSD and Linux. Figure 6 shows the result from the diff
command. As shown in Fig. 6, we can adapt the proposed system
to the libc library by inserting the cpuid_logxfer() function
before the invocation of a send system call. The rest of the ad-
ditional code is just the definition of the regs structure and the
cpuid_logxfer() function. Figure 7 shows the definition of
the function. The function consists of (1) setting the registers
with the appropriate values and (2) executing the cpuid instruc-
tion. Based on the size of the additional code, adapting the pro-
posed system to various OSes would be a small effort.

6.4 Dependency on OS Structure
As described in Section 6.3, the proposed method depends on

the libc library. Though the proposed method does not depend

Fig. 6 The result of diff command between source codes of unmodified li-
brary and modified library.

Fig. 7 Definition of cpuid logxfer() fucntion.

on a structure within the OS, each OS has its own library. This
section provides a quantitative comparison between the proposed
method and conventional methods stated in Section 2.1.

First, we analyzed the total amount of codes of the proposed
method that depends on libc. Despite the additional lines in the
libc on Debian being 20, almost all codes are the definition of
cpuid_logxfer() function and the regs structure. Essential
dependent codes are the setting of the registers with the appro-
priate value and execution of the cpuid instruction. Insertion of
them into the syslog function is only required for the proposed
method. Thus, the dependency on the implementation of the OS
or library is slight.

Next, we researched the dependency on the OS structure of the
existing methods as stated in Section 2.1. VMI [11] and Cloud-
Sec [21] are strongly dependant on the structure of the OS be-
cause it requires memory analysis according to definitions of data
structure used in the kernel. If the version of the kernel is up-
dated, corrections to the definitions may be required. Thus, these
methods strongly depend on OS structure. In-VM monitoring
method [14] has less dependency than the methods above because
it inserts agents into the kernel on a VM. The agent is created
along the procedure, which is introduced by the vendor of the
kernel. The VMM-based log collection scheme [22] requires the
address of the entry point to the kernel on a VM to hook system
calls onto that VM. Further, the area of a kernel log buffer must
be known to the VMM. The VMM must distinguish and adapt to
each OS. While no modification to OSes and APs is required, it
depends on the data structure of the OS.

The dependency on the structure of the kernel of a OS obvi-
ously makes the application of those methods difficult. In general,
modification of kernels or device drivers is more difficult than that
of APs. Thus, application of the existing methods is difficult. On
the other hand, the proposed methods only requires library mod-
ification. Further, if modified libraries are already compiled and
prepared for delivery, the administrator of the computer can apply
the proposed method by just replacing the library file. The cost of
applying the proposed method is clearly less than that of existing
methods.

6.5 Performance Evaluation
6.5.1 Measured Items and Environment

We measured the performance of the syslog function, some
system calls, and an AP. We also measured the performance
overhead of an AP in a multi-VM environment. The performance
measurements of both the syslog function and the APs show the
additional overhead incurred by the proposed system. The per-
formance measurement of some system calls shows that the pro-
posed system causes additional overhead only when the syslog
function is called.

We measured the performance using a computer, with a Core
i7-2600 (3.40 GHz, 4-cores) and 16 GB memory. For each mea-
surement, one virtual CPU (VCPU) is provided and 1 GB mem-
ory is allocated to each VM. Hyper-threading is disabled. Each
VCPU is pinned to a physical CPU core to avoid measurement
instability. If many VMs worked on one physical CPU, the per-
formance of APs on those VMs would be unstable.
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6.5.2 Syslog Function and System Call
In the proposed system, the modified library requests a log

transfer when an AP calls the syslog function. To clarify the over-
head incurred by the proposed system, we measured and com-
pared the performance of the syslog function with an unmodified
Xen and the proposed system. Table 3 compares the performance
of the syslog function between Xen and the proposed system. In
the proposed system, the additional overhead of the syslog func-
tion is 1.91 µs (6.08%), which is small, because the function is
not called frequently.

Table 4 shows the function call counts in thttpd when accessed
100 times by ApacheBench. We measured the library function
call counts using ltrace. Table 4 shows that the percentage
of syslog function calls in thttpd to be about 1%. Additionally,
we measured the performance impact of the library functions in
thttpd with the same workload. Table 5 shows the measurement
result. These results were obtained using Ubuntu 13.04. The
function __syslog_chk is the same as syslog. As shown in
Table 5, the performance impact of the syslog function is only
0.18%. As such, the 6.08% overhead incurred by the syslog func-
tion has limited impact on the performance of APs.

Additionally, we measured the performance of some system

Table 3 Performance comparison of the syslog function.

Time (µs) Overhead (µs (%))

Xen 31.47 −
Proposed system 33.38 1.91 (6.08%)

Table 4 Frequency of library function calls when serving web page request
with thttpd web server.

Function name Count Rate (%) Function name Count Rate (%)

strncasecmp 1,600 17.77 strftime 200 2.22
strlen 1,400 15.55 accept 200 2.22
strcpy 800 8.89 gmtime 200 2.22

vsnprintf 600 6.67 errno location 200 2.22
memmove 400 4.44 time 100 1.11

strchr 400 4.44 close 100 1.11
select 301 3.34 read 100 1.11

gettimeofday 301 3.34 getnameinfo 100 1.11
strstr 300 3.33 strcat 100 1.11
fcntl 300 3.33 readlink 100 1.11

strpbrk 300 3.33 strrchr 100 1.11
strcasecmp 200 2.22 syslog 100 1.11

xstat 200 2.22 writev 100 1.11
strspn 200 2.22

Table 5 Performance impact of the library functions on thttpd.

Function name Rate (%) Function name Rate (%)

writev 76.90 memmove 0.13
poll 17.71 gmtime 0.10

strncasecmp 0.82 strcasecmp 0.10
strlen 0.81 strftime 0.10
strcpy 0.51 strspn 0.09
close 0.30 strcat 0.09

vsnprintf chk 0.30 read 0.08
xstat 0.23 getnameinfo 0.05

strchr 0.22 memcpy 0.05
fcntl 0.22 time 0.05

syslog chk 0.18 strrchr 0.05
accept 0.17 strcpy chk 0.04

readlink 0.15 malloc 0.02
strpbrk 0.14 mmap 0.00

strstr 0.14 open 0.00
errno location 0.14 realloc 0.00
gettimeofday 0.14

calls using LMbench, which measures the performance of file
creation and deletion, process creation, system call overhead, and
other processes. According to this measurement, the additional
overhead is not significant.
6.5.3 Comparison with Log Transfer using rsyslogd

To clarify the latency of log transfer using rsyslogd, we mea-
sured the latency in the proposed system. Because rsyslogd can
transfer logs in UDP and TCP, we measured the latency of the log
transfer with rsyslogd in UDP, rsyslogd in TCP, and the proposed
system. To measure the performance overhead during log trans-
fer, we also measured the latency of log storing with local rsys-
logd. We modified a rsyslogd policy so that a fine-grained time
stamp is appended to each log entry. We sent a log message 1,000
times. The length of each log entry is nearly 300 bytes, approxi-
mately the same as a regular access log in the Apache web server.
All measurements are performed on a VM. In a log transfer with
rsyslogd, a log generated on a VM is transferred to another VM.

Table 6 shows the measurement results. From these results,
we see that log transfer with the proposed system is faster than
with rsyslogd. Nevertheless, log transfer with rsyslogd in UDP is
faster than TCP, and slower than with the proposed system. As-
suming a high-load environment, a fast log transfer mechanism
is preferable. With the proposed system, aggregating logs from
VMs is achieved with low overhead.
6.5.4 Database Management System

We measured the performance overhead using the proposed
system in a DBMS using PostgreSQL as the DBMS. We config-
ured PostgreSQL to call the syslog function for each transaction.
We used pgbench to measure PostgreSQL’s performance. The
workload with pgbench includes five commands per transaction.
The benchmark measures the transactions per second (TPS) of a
DBMS. The concurrency of transactions is set to one.

Table 7 shows a comparison in performance of the PostgreSQL
DBMS. Higher TPS is better. Performance degradation with the
proposed method is less than 1%. The proposed method degrades
performance of a CPU-intensive process. Because PostgreSQL
accesses the disk heavily, the overhead incurred with the pro-
posed method becomes small. To verify that the proposed sys-
tem is CPU intensive, we measured the performance with tmpfs,
which provides a memory-based file system. Since transactions
do not require access to a disk, performance overhead with the
proposed method would be expected to be higher. Table 7 shows

Table 6 Latency of log transfer in rsyslogd with UDP, rsyslogd with TCP,
and the proposed system.

Time after 1,000 times of
log transfer (ms) Difference (ms)

Local rsyslogd 29.98 —
rsyslogd in UDP 57.13 27.16
rsyslogd in TCP 71.12 41.14
Proposed System 37.76 7.78

Table 7 Performance comparison of PostgreSQL.

tmpfs VMM TPS Relative performance

disabled
Xen 400.37 –
Proposed system 395.76 0.99

enabled
Xen 1,448.80 –
Proposed system 1,372.60 0.95
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Table 8 Throughputs of web server (requests/s) in multi-VM environment.

File size VMM
Number of VM

0 2 4 6 8 10 12

1 KB
Xen 1396.9 1329.27 1295.61 1225.22 1171.51 1231.72 1172.15

Proposed system 1231.06 1150.54 1057.95 1017.53 987.24 1015.69 946.61
Relative performance 0.88 0.87 0.81 0.83 0.84 0.82 0.8

10 KB
Xen 680.61 658.15 639.76 627.9 628.56 609.45 615.64

Proposed system 664.48 626.12 612.93 559.02 582.24 578.89 589.58
Relative performance 0.98 0.95 0.89 0.92 0.93 1.00 0.96

1,000 KB
Xen 11.41 11.41 11.4 11.39 11.38 11.39 11.39

Proposed system 11.41 11.41 11.4 11.39 11.37 11.39 11.06
Relative performance 1.00 1.00 1.00 1.00 1.00 1.00 0.98

Fig. 8 Performance comparison of web server in a multi-VM environment.
Horizontal axis shows the number of other VMs. Vertical axis shows
throughput of a web server in requests/s; higher measurements are
better.

that the relative performance of an unmodified Xen with tmpfs
is about 5%. The performance degradation is greater than in the
case without tmpfs. If processing is I/O intensive, performance
degradation with the proposed method decreases. Thus, the pro-
posed method is suitable for I/O-intensive APs. In this measure-
ment, we configured PostgreSQL to call syslog for each trans-
action, but logging frequency in general DBMS use decreases.
Thus, performance degradation can be assumed to be almost neg-
ligible under normal use.
6.5.5 Web Server in a Multi-VM Environment

To examine the ability of our proposal to scale to its target of
many domains, we measured the performance of a web server in a
VM with many other VMs. These VMs have a process that sends
logs using the syslog function every second. This evaluation is
performed on a machine that has four CPU cores; the logging
VM is placed on core 0, a VM that has a web server is placed on
core 1, and other VMs are placed on cores 2 and 3 to measure the
pure performance changes of the web server. We placed 2, 4, 6, 8,
10, and 12 VMs on cores 2 and 3. The number of VMs on cores
2 and 3 is the same. The same scheduling priority is configured
for each VM. The performance is measured using ApacheBench
on a remote machine with a 1 Gbps network.

Table 8 shows the performance in each environment. Fig-
ure 8 shows changes in performance for each environment. If the
number of VMs increases, the performance of the web server de-
grades. Performance degradation with the proposed system is less
than approximately 10% when the file size is larger than 10 KB.
Especially, when the file size is 1,000 KB, performance degrada-
tion is negligible. From these results, we can estimate that the
change in relative performance related to the number of VMs is
sufficiently small. Despite the change in number of VMs, the
change in relative performance is approximately the same. Con-

Table 9 Comparison of memory footprint of VMM (MB).

Xen Proposed System

Total memory 16,288 16,288
Free memory 15,082 15,082
Memory for Domain-0 1,024 1,024

Memory footprint of VMM 182 182

sequently, the proposed system is efficient in a multi-VM envi-
ronment.
6.5.6 Memory Footprint

To evaluate the memory efficiency of the proposed system, we
calculate the memory footprint of the unmodified Xen and the
proposed system. It is difficult to calculate a memory footprint
directly; the total memory recognized by Xen, the free memory
recognized by Xen, and the memory allocated to Domain-0 are
used for the estimation. The total memory and the free mem-
ory recognized by Xen can be determined using the xl info
command. The total memory allocated to Domain-0 is deter-
mined using xl list, which shows the name, ID, total amounts
of memory, allocated VCPUs, state, and consumed time of each
VM. From this information, we estimated the memory footprint
of Xen and the proposed system.

Table 9 shows calculated results. The memory footprint of
VMM is calculated using Total memory) - (Free memory) -
(Memory for Domain-0). An increase in the memory footprint
of VMM cannot be observed in the results. Considering the gran-
ularity of the calculation, the increase in the memory footprint is
less than 1 MB. Thus, the proposed system is efficient in terms of
memory usage.

Furthermore, we compared the size of the executable file of the
VMM. The size of unmodified Xen is 805,133 bytes, while that of
modified Xen, the proposed system, is 806,517 bytes. According
to this comparison, the modified Xen is 1,384 bytes larger than
the unmodified Xen.

7. Related Works

7.1 Secure Logging
Accorsi classified and analyzed secure logging protocols [27].

In that work, extensions of syslog, including syslog-ng [17],
syslog-sign [18], and reliable syslog [19] are distinguished as pro-
tocols that provides security in the transmission of log messages,
not in the storage phase. We focus on the transmission phase,
because our proposal is highly related to that phase. Accorsi as-
serted that only reliable syslog fulfills security requirements that
guarantee the authenticity of audit trails. Even if those protocols
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can detect and verify a log message as having not been tampered
with, they cannot prevent deletion of or tampering with logs. At
this point, those protocols differ from our proposal. Therefore,
this paper proposes protection of log messages from the view-
point of system security. By combining our proposal and the ex-
isting secure logging protocols, we can increase the security of
logged data.

7.2 VM Logging
ReVirt [20] logs non-deterministic events on a VM for replay.

Because the method logs events for the analysis of attacks, it in-
volves types of data different from those of our proposal. While
ReVirt logs instruction-level information, our proposal collects
log messages for syslog. With our proposal, we can easily mon-
itor the target VM without deep analysis of logged information
because those logs are already formatted.

A VM has also been used to separate logged information [28].
While that study separates information about file system logs,
our proposal separates logs for syslog. Since that study used a
split device driver model of Xen provided for para-virtualization,
the proposal can be applied only in a para-virtualized environ-
ment. Our prototype is implemented in a fully virtualized envi-
ronment; however, implementing our proposed method in a para-
virtualized environment is easy.

VMI [11] and other introspection methods [14] can be consid-
ered as logging methods with a VM. In that regard, these methods
are similar to ours. However, information gathered using those
methods is formatted differently from syslog; therefore, existing
tools are not applicable to the analysis of these data. In con-
trast, with our proposal, existing tools work well without mod-
ification, because the format of the information gathered by our
proposal is the same as that of messages produced by syslog. One
VMM-based log-tampering and loss detection scheme [22] can
gather information from a VM without modification to a library in
that VM. Their system [22] collects logs using the log collection
method desribed previously [29]. Even though modification to a
library is unnecessary with that log collection method, it requires
modification of a VMM to adapt to various OSes. Modification
of a VMM requires restarting all VMs on that VMM. In addition,
it creates measurable overheads. In contrast, although our pro-
posal requires modification of a library on a VM, it requires no
modification of the VMM to adapt to various OSes and has less
overhead. Moreover, less effort is required to adapt the proposed
method to various OSes.

8. Conclusions

Our secure log transfer method that replaces a library in a VM
provides processes on a VM with the ability to transfer logs with-
out involving the VM kernel. Thus, even though kernel-level mal-
ware tampers with logs on that VM, logs gathered by our pro-
posed method have no effect. In addition, we implemented the
proposed system using a VMM, so attacking the proposed sys-
tem from a target VM is difficult because of the properties of the
VMM. Moreover, adapting the method to various OSes is easy,
because of its implementation with library modifications. Fur-
thermore, by modifying a library in a VM, the proposed method

reduces log transfer performance overhead. Modifying the library
on a VM to request a log transfer to a VMM, instead of moni-
toring the behavior of each VM, reduces unnecessary overhead
related to monitoring and achieves fast log transfers.

Evaluation of its resistance to log tampering shows that tamper-
ing with logs from the target VM is difficult. The experiment of
adapting to different OSes showed that only 20 lines of code need
to be added to the libc library. Performance evaluation shows
that performance degradation of the syslog function is only about
6%. Performance degradation is negligible, if the processing of
the AP is I/O intensive. Performance evaluation in a multi-VM
environment shows that the proposed system has sufficient per-
formance with multiple VMs.

We believe that the prototype is sufficient for claiming its ef-
fectiveness of our proposed method, even though protection of
the modified library is not yet implemented. For practical use,
implementation and evaluation of the protection mechanism are
required. We consider them as our future work.
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