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An Equational Relation for Ambient Calculus

Toru Kato†

Ambient calculus is a process algebra developed for describing mobile processes. Ambients
represent the substances of movement and the fields of the ambients themselves. Having
this hierarchy, it can model various kinds of mobile computation. Equational relation for
ambient calculus “Contextual Equivalence” were proposed regarding the names of ambients
observed from the environment. This relation is, however, not strong as “testing equivalence”
so that it can identify the processes which have different properties. This paper proposes
equational relations for ambient calculus by which we can distinguish processes that the
existing equivalence identifies.

1. Introduction

This paper presents equational relations for
ambient calculus 3). Ambient calculus is a
process algebra designed for describing mo-
bile agents. Many approaches for express-
ing concurrent computation have been devel-
oped 1),5),8),9),13) and some of them treat higher
order processes 5),8).

In the higher order framework, processes, the
subjects of the computation, can be sent by
other processes and keep computing in other
locations. This framework can express the sit-
uation such that a process moves around on a
network environment and keeps collecting in-
formation (mobile Web searching agent 16)) or
a process enters a field and the field itself is also
a process (hierarchal mobile agent 12)). Ambi-
ent calculus can model various kinds of those
mobile computations by the hierarchy of ambi-
ents.

Reference 7) develops tools for proving equa-
tions for ambient calculus which is called Con-
textual Equivalence. Intuitively, two processes
P and Q are contextually equivalent if, for any
context C(), the observable sets of the names
of ambients in C(P ) and C(Q) are the same.
This equivalence would be finer than “may test-
ing” because if ambient calculus had choice “+”
as a primitive operator, it would distinguish
a[b[] + c[]] from a[b[]] + a[c[]] by using the con-
text Ce() def= open a|−. We will discus choice
operators in Section 3.2.

Contextual equivalence is not, however, fine
enough to distinguish simple processes which
have different behaviors such as:
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Pe
def
= n[0].

Qe
def
= (νm)(m[n[0]]|m[0]|open m.0).

See Section 3.1 for details. Thus, this paper
firstly defines an equivalence relation that is as
fine as testing equivalence. We call it contextu-
ally testing equivalence.

By the way, ambient calculus dose not have
the choice operator as a privative because it
can be simulated using parallel and restrict-
ing operations. Reference 3) shows the exam-
ple of choice macro that has several restric-
tions. So this paper defines another nondeter-
ministic choice macro. Using the nondetermin-
istic choice macro, we find there are contex-
tually equivalent processes which have differ-
ent properties that even the testing contextual
equivalence identifies. Thus, this paper also in-
troduces another equivalence relation to distin-
guish those processes using should testing no-
tions 2).

Reference 15) shows a different kind of choice
example called Electoral System. Electoral Sys-
tem is a network of processes one of which will
be chosen as a representative of the network.
We will discus the similarity and the differ-
ence between our choice macro and the Elec-
toral System in Section 5.

This paper is organized as follows: in Sec-
tion 2, we review the syntax and reduction se-
mantics of ambient calculus. Section 2 also
shows several definitions for contextual equiv-
alence. Section 3 explains the problem of con-
textual equivalence by introducing an external
choice operator. Then, we introduce an equa-
tional relation and shows the properties of the
relation in Section 4.
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2. Ambient Calculus

This section describes the syntax and seman-
tics of ambient calculus originally defined in
Ref. 3). An expression go(M) bellow is called
objective moves which used to be defined as a
macro expression using subjective moves (in M
and out M). Reference 4) makes a little ex-
tension in syntax by adding objective moves as
primitives which we utilize in this paper, so our
syntax is the extended version. This section
also reviews an equivalence relation of ambient
calculus defined in Ref. 7).

2.1 Syntax and Operational Semantics
We assume there are infinite sets of names

and variables, ranged over by m, n, p, q and x,
y, z, respectively. Expressions and processes are
ranged over by M, N and P, Q, R, respectively.
We use the notation Pe (e means example), P1

or P ′ for concrete processes in examples while
we use P or Q as meta symbols in definitions.

Definition 2.1
(Expressions and Processes) 3),4)

M, N ::= expressions
x variable
| n name
| in M can enter M
| out M can exit M
| open M can open M where M must be a

variable or a name
| go(M).P make a process P move along a

path M where M consists of
in n, out n and ε and P must be
an ambient

| ε null
| M.M ′ path

P, Q, R ::= processes
(νn)P restriction
| 0 inactivity
| P |Q composition
| !P replication
| M [P ] ambient
| M.P action
| (x).P input
| 〈M〉 output �

We use the following abbreviations:
• M for M.0
• M [] for M [0]
• (ν�p)P for (νp1), . . . , (νpk)P

where �p = p1, . . . , pk.
Let φ be an expression or a process, fn(φ) and
fv(φ) be the sets of free names and free variables
of φ. φ{x ← M} and φ{n ← M} are the out-

comes of capture–avoiding substitutions of M
for each free occurrence of the variable x and
the name n respectively in φ.

Definition 2.2
(Structural Congruence: P ≡ Q 3),4))

P |Q ≡ Q|P
(P |Q)|R ≡ P (Q|R)
!P ≡ P |!P
(νn)(νm)P ≡ (νm)(νn)P
n �∈ fn(P )⇒ (νn)(P |Q) ≡ P |(νn)Q
n �= m⇒ (νn)m[P ] ≡ m[(νn)P ]
P |0 ≡ P
(νn)0 ≡ 0
!0 ≡ 0
ε.P ≡ P
go(ε).P ≡ P
(M.M ′).P ≡M.M ′.P

P ≡ P
Q ≡ P ⇒ Q ≡ P
P ≡ Q, Q ≡ R⇒ P ≡ R
P ≡ Q⇒ (νn)P ≡ (νn)Q
P ≡ Q⇒ P |R ≡ Q|R
P ≡ Q⇒!P ≡!Q
P ≡ Q⇒M [P ] ≡M [Q]
P ≡ Q⇒M.P ≡M.Q
P ≡ Q⇒ (x).P ≡ (x).Q �

The behavior of processes of ambient calculus
is defined by the following reduction rules:

Definition 2.3
(Reduction: P → Q 3),4))

n[in m.P |Q]|m[R]→ m[n[P |Q]|R]
go(in m).P |m[Q]→ m[P |Q]
m[n[out m.P |Q]|R]→ n[P |Q]|m[R]
m[go(out m).P |Q]→ P |m[Q]
open n.P |n[Q]→ P |Q
〈M〉|(x).P → P{x←M}
P → Q⇒ P |R→ Q|R
P → Q⇒ (νn)P → (νn)Q
P → Q⇒ n[P ]→ n[Q]
P ′ ≡ P, P → Q, Q ≡ Q′ ⇒ P ′ → Q′ �

2.2 Contextual Equivalence
Parallel testing equivalence 14) is a useful

equivalence relation for some process calculi
(such as CCS), though Ref. 7) shows an example
that indicates it is not appropriate for ambient
calculus as follows:

Example 2.4 (Parallel Testing 7)) Let ⇓
be the predicate defined in Definition 2.6 and
let processes A and B be parallel testing equiv-
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alent iff for all processes R and names n, A|R ⇓
n ⇔ B|R ⇓ n. This means R is a tester and
the situation “n will be visible” is an element
of the success set. This equivalence identifies
following two processes:

Pe
def
= out p.0.

Qe
def
= 0.

For any R and n, Pe|R ⇓ n⇔ Qe|R ⇓ n thus Pe

and Qe are parallel testing equivalent, though
when they are placed in the ambient p[m[]], that
is, p[m[Pe]] and p[m[Qe]], the former will be-
come the process p[]|m[], while the latter will
not change. �

Thus, another equivalence relation was pro-
posed in Ref. 7) that is called context equiva-
lence. This subsection reviews several defini-
tions for the relation.

Definition 2.5
(P exhibits a name n: P ↓ n 7))

P ↓ n
def
=

there are �m, P ′, P ′′ with n �∈ {�m} and
P ≡ (ν �m)(n[P ′]|P ′′) �

Intuitively, P ↓ n means the process P has
at least one ambient whose name is n in its top
level. For example, see the process P appears in
the Definition 2.5, we can observe the ambient
n[· · · ] directly.

Definition 2.6
(Convergence to a name n: P ⇓ n 7))

(Conv Exh) (Conv Red)
P ↓ n

P ⇓ n

P → Q Q ⇓ n

P ⇓ n �

Intuitively, P ⇓ n means the process P will
exhibit the name n directly or after several re-
ductions. For example, let Pe

def
= m[n[out n]]

where Pe⇓n holds, we can observe the ambient
n[· · · ] after it executes the capability out n.

Definition 2.7 (Context 7)) A context C()
is a process containing zero or more holes. C(P )
is the outcome of filling each of the holes in the
context C() with the process P . �

Definition 2.8
(Contextual Equivalence: P � Q 7))

P � Q
def=

for all n, C(). if C(P ) and C(Q) are closed,
then C(P ) ⇓ n⇔ C(Q) ⇓ n. �

Example 2.9
(Contextually different processes) 7)

Let Pe and Qe be the processes defined in Ex-
ample 2.4 and Ce be a context as follows: Ce def

=
p[m[()]]. As Ce(Pe) ⇓ m while Ce(Qe) �⇓ m,
Pe �� Qe. �

3. Problems of Contextual Equiva-
lence

Contextual equivalence is a relation that con-
centrates on the possibility whether processes
will exhibit the same names or not. This means
the relation corresponds to “may testing”. This
section focuses on the two problems of contex-
tual equivalence, one is caused by its fineness
as coarse as may testing, and the other comes
to light when we define the nondeterministic
choice operator.

3.1 Contextually Testing Equivalence
Example 3.1 The following processes Pe

and Qe are contextually equivalent:
Pe

def
= n[0].

Qe
def
= (νm)(m[n[0]]|m[0]|open m.0).

The process Qe can behave as n[0] when
the capability open m dissolves the ambient m[]
of m[n[0]] and any context neither has effects
on ambient m[] nor interferes the capability
open m since the name m is restricted. Thus,
for all context Ce, if Ce(Pe) ⇓ n then Ce(Qe) ⇓ n
and vice versa. So, according to Definition 2.8,
Pe � Qe. The process Qe can, however, act
as 0 when the capability open m dissolves the
ambient m[] of m[0] while that is impossible for
the process Pe, thus Pe and Qe must be distin-
guished. To solve the problem, we add another
definition that corresponds to must testing and
we call it “Hit”. �

Definition 3.2 (Hit a name n: P � n)
(Hit Exh) (Hit Red)

P ↓ n

P � n

for any Q st P → Q. Q � n

P � n
�

Intuitively, P � n iff ambient n[] will be vis-
ible in every possible execution path of P .

Definition 3.3 (Contextually Testing
Equivalence: P�test Q)

P�test Q
def
=

for all n, C(). if C(P ) and C(Q) are closed,
then C(P ) ⇓ n⇔ C(Q) ⇓ n
and C(P )� n⇔ C(Q)� n.

�

Example 3.4 Let Pe and Qe be the pro-
cesses defined in Example 3.1 and the context
Ce as follows: Ce() = 0|−. Obviously, Ce(Pe)
� n though Ce(Qe) �� n because Ce(Qe) can re-
duce to (νm)(m[n[0]]) which never exhibits the
name n. Consequently, Pe ��test Qe.

3.2 Choice Operator
Since ambient calculus does not have an ex-
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ternal choice as a primitive operator, it did not
seem there were the problems that have been
discussed in several papers for other languages
resulted from choice operation 2),6),11),13).

We found, however, an interesting phe-
nomenon when we defined an external choice
operator using only restriction and parallel
compositions. Using the choice operator, we
can construct two contextual equivalent pro-
cesses of ambient calculus which must be distin-
guished though even contextually testing equiv-
alence identifies.

This subsection firstly presents the examples
of two contextually equivalent processes which
are defined using the choice operator, then we
present the definition of the choice operator.

3.2.1 Problems with “+”
Let “+” be a usual choice operator defined

in other process algebras such as CCS 13) or
Pi Calculus 10) while, ambient calculus does not
have it. We discus here the case ambient calcu-
lus had the choice operator as one of primitives:
if ambient calculus had a choice operator, we
would have two contextual equivalent processes
which must be distinguished.

Example 3.5 (Contextually Equivalent
Processes Pe and Qe)
Let Pe and Qe be the processes as follows:

Pe
def
= a[P1] + a[P2].

Qe
def
= a[Q1] + a[Q2].

P1
def
= a[P2] + b[].

P2
def
= a[P1] + c[].

Q1
def
= a[Q1] + b[].

Q2
def
= a[Q2] + c[].

The behavior of Pe and Qe are illustrated in
Fig. 1.
The problem of these processes were originally
shown in Ref. 2) for CCS processes. When the
process n[!in a|in b|in c] (we call it a traveling
ambient) is running parallel to the process Pe,
the traveling ambient will be able to enter the
ambient b[] in Pe though this may be impossible
when the traveling ambient is running parallel
to Qe. Contextual equivalence, however, iden-
tifies Pe and Qe. Intuitively, Pe and Qe are the
processes as follows:

Pe
.= a[a[a[a[· · · ] + b[]] + c[]] + b[]]

+a[a[a[a[· · · ] + c[]] + b[]] + c[]].

Qe
.= a[a[a[a[· · · ] + b[]] + b[]] + b[]]

Qe
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Fig. 1 Contextually equivalent processes Pe and Qe.

+a[a[a[a[· · · ] + c[]] + c[]] + c[]].

If “+” were a primitive operator, any
times of opening of ambient a, that is,
open a., . . . , .open a for Pe would exhibit the
pair of ambients a[] and b[] or a[] and c[]. The
same opening operation for Qe would be able
to exhibit the same pair of ambient. �

3.2.2 External Choice
According to Ref. 3), there is no primitives

for external choice for ambient calculus in the
spirit of the asynchronous Pi calculus and it can
be simulated by using parallel composition and
restriction primitives. Choice operation can be
used for many purpose such as simulating Nu-
merals, simulating boolean conditionals, so an
example of the simulation of external choice is
presented in Ref. 3) as follows:
n⇒ P + m⇒ Q

def
= (νp q r)(

p[in n.out n.q[out p.open r.P ]]
| p[in m.out m.q[out p.open r.Q]]|open q|r[]).
This macro captures many aspects of “+” op-

eration but has several limitations such that it
has to know what name does the coming ambi-
ent have, and the process n[in a]|n⇒ a[]+n⇒
b[] dose not work as “+” because the environ-
ment (such as n[in a] or traveling ambient in
Example 3.5) can not select the alternative (a[]
or b[]) but the the macro itself selects it. In
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order for environments to select the alterna-
tive (for simulating processes Pe and Qe in Ex-
ample 3.5), We define another external choice
which we can use for both deterministic and
nondeterministic purpose as follows:

Definition 3.6 (Choice Operator “+”)
Let B and C be any processes of ambient cal-
culus. Then, we define b[B] + c[C] as follows:
b[B] + c[C]

def
=

(νtrash sync ) (
b[in trash | go(in n.out n)
.sync[out trash| trash[out b] | B]|open sync ]
| c[in trash | go(in n.out n)
.sync[out trash|trash[out c] | C]|open sync ]).

�

From now on, the symbol “+” expresses the
choice operator defined in Definition 3.6.

Example 3.7 Intuitively, when we have an
ambient whose name is n that goes in the am-
bient b[] such as n[in b] in parallel to b[B]+c[C]
as follows:

n[in b] | (b[B] + c[C]),
then, the ambient c[C] that is not chosen by
n[in b] will be captured in restricted ambient
trash[] so that it becomes invisible as if it dis-
appeared as follows:

t⇒
(νtrash sync )(
b[n[] | B]
|trash[c[go(in n.out n)
.sync[out trash|trash[out c]|C]|open sync ]).

Where t⇒ above means some visible transitions
(including in b) occur followed by or following
0 or more invisible actions as usual 13).

We explain the behavior of the choice oper-
ator “+” more precisely by the transitions in
Example A.5.4 that shows the nondeterminis-
tic property of “+”.

Our “+” operator defined in Definition 3.6
can be used like a primitive operator and when
it works as a primitive one, the explanations in
Example 3.5 hold even if we replace the primi-
tive operator in Example 3.5 with the operator
defined in Definition 3.6. While, our “+” is a
macro defined by using parallel operator, there
exists a case in which ambients a[], b[] and c[]
are exhibited at the same time for Pe. The next
example shows this situation.

Example 3.8 Let Pe and Qe be the pro-
cesses defined in Example 3.5 and Ce be a con-
text as follows:
Ce() = n[!in a] | !open a | − .

We can observe ambients a[], b[] and c[] at
the same time in the following computation for
Ce(Pe):

Ce(Pe)
open a−−−−→ open a−−−−→ go(in n)−−−−−→ go(out n)−−−−−−→
go(in n)−−−−−→ go(out n)−−−−−−→ open sync−−−−−−→ open sync−−−−−−→

!open a | n[!in a]
| (ν trash)(in trash | in trash | out trash

| out trash | trash[out a] | trash[out a]
| P1 | P2).

Thus, ambients a[], b[] and c[] in P1 and P2

are exhibited. But, the same context Ce will
exhibit a[], b[] and c[] for Qe in the same se-
quence, thus, the procedure for proving con-
textual equivalence can not distinguish Pe from
Qe. �

In Section A.5, we give a formal proof of Pe �
Qe that we have explained in Example 3.5 and
3.8.

The next example shows that contextually
testing equivalence is finer than usual parallel
testing equivalence, so that it can distinguish
Pe from Qe.

Example 3.9 (Pe ��test Qe) Let Pe and Qe

be the processes defined in Example 3.5 and Ce
be the context as follows:

Ce() def= n[!in a] | !open a | open b | − .

In usual parallel testing scenario, Pe would not
pass must testing. This is because by using even
a context (tester) that have infinite opening a
action such as Ce, from P2 position of Fig. 1, we
may not open b because of the infinite path of
opening the a ambients, this means Ce(Pe) may
fail to open b, and so do Ce(Qe).
In contextually testing scenario, however, we
will observe the name b from P2 position of
Fig. 1 even in that infinite path, this means
Ce(Pe) never fail to Hit b while Ce(Qe) do from
Q2 position. Consequently, Pe ��test Qe. �

As we have seen in Example 3.9, the testing
equivalence of other process algebras and that
of this paper have significant difference in the
way how to test processes. The former tests
processes by checking what action is possible
while the latter by checking what names are
visible. Thanks to this difference, contextually
testing equivalence makes a distinction between
Pe and Qe that are impossible in usual testing
relations. Of course this character comes from
the idea of contextual equivalence. By intro-
ducing choice operation to Ambient Calculus,
this difference becomes clear.
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Fig. 2 Contextually testing equivalent processes P ′
e

and Q′
e.

We can, however, make similar processes by
adding only two ambients to Pe and Qe that
contextually testing equivalence identifies as
follows.

Example 3.10 (P ′
e�test Q′

e) Let Ce be the
same context in Example 3.9 (Ce() def

=
n[!in a] | !open a | open b | −) and, P ′

e and Q′
e

be the processes as follows:
P ′

e
def= a[P3] + a[P4].

Q′
e

def
= a[Q3] + a[Q4].

P3
def
= a[P4] + b[b2[]].

P4
def
= a[P3] + c[c2[]].

Q3
def
= a[Q3] + b[b2[]].

Q4
def
= a[Q4] + c[c2[]].

The behavior of P ′
e and Q′

e are illustrated in
Fig. 2.
In this case, we may not observe the name b2:
Ce(P ′

e) may fail to open b because of the infinite
path of opening the name a. This means P ′

e

does not hit the name b nor does Q′
e. �

4. Extension of Contextual Equiva-
lence

Processes P ′
e and Q′

e in Example 3.10 have

different properties though they are contextu-
ally (testing) equivalent. Thus, we need a finer
equivalence relation.

This section introduces Contextually Should
Equivalence which is the extension of contex-
tual equivalence using the should testing idea
of Ref. 2).

Definition 4.1 Let P be a process and n
be a name such that P ⇓ n. We define Rn

P be
the set of processes as follows:

Rn
P

def
= {R | ∃α.(P α⇒ R) ∧R ↓ n}. �

Intuitively, by the definition of convergence,
P ⇓ n means there are some reductions from P
to a process R and R ↓ n. Rn

P means the set of
those processes Rs.

Definition 4.2
P≤should Q

def
=

∀n, C(). if C(Q) and C(P ) are closed, then
(C(P ) ⇓ n⇒ C(Q) ⇓ n)∧

(C(P ) � n⇒ C(Q) � n)
∧ ∀m, ∀Rp ∈ Rn

C(P ), ∃Rq ∈ Rn
C(Q).

(Rp ⇓ m⇒ Rq ⇓ m)∧
(Rp � m⇒ Rq � m). �

Definition 4.3
(Contextually Should Equivalence)

P�should Q
def
= P≤should Q ∧Q≤should P. �

We explain the intuitive notion of contextu-
ally should equivalence in the following exam-
ple:

Example 4.4 Let P ′
e and Q′

e be the pro-
cesses defined in Example 3.10 and Ce() be the
context as follows:

Ce() def
= n[!in a] | !open a | open b | − .

Then, Ce(P ′
e) ⇓ c ∧ ∀Rp ∈ Rc

Ce(P ′
e)

. Rp ⇓ b2
holds as follows:
Ce(P ′

e)
in a−−→ go(in n)−−−−−→ go(out n)−−−−−−→ open sync−−−−−−→ out a−−−→

go(in trash)−−−−−−−−→ go(in trash)−−−−−−−−→ go(out trash)−−−−−−−−−→ open a−−−−→
n[!in a] | !open a | open b
| (νtrash sync ) (a[P3] + c[c2[]] | trash[· · · ])
(= one of Rp). (See Appendix A.6 for details)

Obviously Rp ⇓ c. As P3 = a[P4] + b[b2[]], we
can easily find that Rp ⇓ b.
This means, when the ambient c[] is exhibited,
there is a possibility that the ambient b2[] will
be exhibited.
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On the other hand, we have a Rq ∈ Rn
Ce(Q′

e)

that exhibits the name c as follows:
Ce(Q′

e)
in a−−→ go(in n)−−−−−→ go(out n)−−−−−−→ open sync−−−−−−→ out a−−−→

go(in trash)−−−−−−−−→ go(in trash)−−−−−−−−→ go(out trash)−−−−−−−−−→ open a−−−−→
n[!in a] | !open a | open b
| (νtrash sync ) (a[Q4] + c[c2[]] | trash[· · · ])
(= one of Rq).
But the Rq never converges to the name b2

and any other Rq that exhibits the name c
never converges to the name b2 (we can prove
this by structural induction). So ∀m, ∀Rp ∈
Rn

Ce(P ′
e)

, ∃Rq ∈ Rn
Ce(Q′

e)
. (Rp ⇓ m ⇒ Rq ⇓ m)

false, and P ′
e �≤should Q′

e. Consequently, con-
textually should equivalence can distinguish P ′

e

from Q′
e. �

In Definition 4.2, we use not only ⇓ n but also
� n though � n dose not play any important
roles in Example 4.4. The following example
shows the roles of � n for contextually should
equivalence.

Example 4.5 Let Pe and Qe be processes
defined in Example 3.1 and Ce() = 0|−. The
condition Ce(Pe) � n ⇒ Ce(Qe) � n does not
hold because Qe has a transition that will never
exhibit a name n. Thus Pe �≤should Qe. �

Proposition 4.6 Contextually should equi-
valence is a congruence. �

Proof: We can apply the strategy of the proof
for contextual equivalence 7).

(Equivalence part) Reflexivity and sym-
metry are trivial. We only show the proof
for transitivity. Suppose P1≤should P2 and
P2≤should P3. Let C() be any context such that
C(P1) and C(P3) are closed, θ be a closing sub-
stitution for C(P2) and D()

def
= C()θ. Suppose n

be any name such that C(P1) ⇓ n ∧ C(P1)� n.
Since C(P1) are closed, C(P1) ≡ D(P1) holds,

thus D(P1) ⇓ n ∧ D(P1)� n. With this condi-
tion, the fact D(P2) is closed and the assump-
tion P1≤should P2, we are led to the following
condition:
D(P2) ⇓ n ∧ D(P2)� n∧
∀m, ∀Rp ∈ Rn

D(P1)
, ∃Rq ∈ Rn

D(P2)
.

(Rp ⇓ m⇒ Rq ⇓ m) ∧ (Rp� m⇒ Rq� m).

As C(P3) is closed, C(P3) ≡ D(P3) and D(P3)
is also closed. These condition and the assump-
tion P2≤should P3 lead us to the following con-
dition:

D(P3) ⇓ n ∧ D(P3)� n∧
∀m, ∀Rq ∈ Rn

D(P2)
, ∃Rr ∈ Rn

D(P3)
.

(Rq ⇓ m⇒ Rr ⇓ m) ∧ (Rq� m⇒ Rr� m).
As C(P3) ≡ D(P3), we have
C(P3) ⇓ n ∧ C(P3)� n∧
∀m, ∀Rq ∈ Rn

C(P2)
, ∃Rr ∈ Rn

C(P3)
.

(Rq ⇓ m⇒ Rr ⇓ m) ∧ (Rq� m⇒ Rr� m).

So, P1≤should P3. The symmetric procedure
proves P3≤should P1.

(Precongruence part) Let P and Q be any
contextually should equivalent processes, C() be
any context such that C(P ) and C(Q) are closed.
Suppose D() be any contexts such that D(C(P ))
and D(C(Q)) are closed.

As D(C()) is a context and P≤should Q, for
any name n, the following conditions hold by
Definition 4.2:

(D(C(P )) ⇓ n⇒ D(C(Q)) ⇓ n)
∧(D(C(P )) � n⇒ D(C(Q)) � n)
∧ ∀m, ∀Rp ∈ Rn

D(C(P )), ∃Rq ∈ Rn
D(C(Q)).

(Rp ⇓ m⇒ Rq ⇓ m) ∧ (Rp � m⇒ Rq � m).
Consequently, we have C(P )≤should C(Q).

The symmetric way proves C(Q)≤should C(P ).
Because we have proved C(P )�should C(Q) for

any context C() and for any two processes P
and Q such that P�should Q, should equiva-
lence “�should” is a precongruence. �

Proposition 4.7 Let P and Q be pro-
cesses. If P�should Q then P � Q. �

Proof: Obvious by Definition 4.3 and Defini-
tion 2.8.

Proposition 4.7 and Example 4.4 show that
contextually should equivalence is the finer con-
gruence relation than contextual equivalence
enough to distinguish the process Pe from the
process Qe of Example 3.5.

5. Comparison with Electoral System

We introduced a choice macro that can be
used for deterministic and no deterministic pur-
pose using only restriction and parallel compo-
sition. Reference 15) also shows another choice
mechanism without using “+” primitive, called
Electoral System. An electoral system Net
whose size is k is a network of processes (that
is a composition of processes) as follows:

Net
def
= P0| · · · |Pk−1,

where P0, · · · , Pk−1 are processes satisfying the
following conditions: for any maximal compu-
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tation C of Net, there exists an i < k such
that Obs(C)={ωi} where ωi appears only in
Pi. The computation is defined in the ordinal
way as a sequence of reduced processes such as
Net0 →Net1 → Net2 →, · · · , maximal means
the sequence can not be extended and Obs(C)
is a set of names exhibited in the computation
that means a Net can interact only through the
names in Obs(C) (See more precise definitions
in Ref. 15)).

The condition of the Net: “there exists an
i < k such that Obs(C)={ωi}” means, only
one process Pi will be elected as a winner (or a
leader) of the Net.

Example 5.1 (Electoral system of Am-
bient Calculus 15))
Let Net be a process as follows:

Net
def
= n0[in n1.ω0[out n0.out n1]]
|n1[in n0.ω1[out n1.out n0]].

After the following transition, only one observ-
able ω0 will be exhibited:

Net in n1−−−→ out n0−−−−→ out n1−−−−→
ω0[]|n1[in n0.ω1[out n1.out n0]|n0[]].

This means one of the component processes in
Net (that is n0[in n1.ω0[out n0.out n1]]) is cho-
sen as a winner of the Net and we can see
a choice mechanism is realized without using
choice primitive. �

The mechanism of electoral system and that
of ours have several similarity: both are con-
structed using parallel composition, do not need
central controller that would recognize which
component has been chosen and makes other
component not available. These are great mer-
its for the implementation. On the other hand,
there are obvious difference between them:
electoral system chooses the representation of
the components autonomously while our choice
macro chooses the representation that is chosen
by environments and other components will dis-
appear autonomously.

6. Conclusion

The primary result of the paper is that it has
pointed out there had been contextually equiv-
alent processes of ambient calculus which must
be distinguished, and defined alternative equiv-
alence relations.

Ambient calculus does not have an exter-
nal choice as primitives, it had seemed that
problems on discriminating processes caused by

choice operation had not existed. We found,
however, the problem by defining an external
choice operator using only parallel composition
and restriction primitives. We have solved the
problem using should testing idea 2).

Our choice operator can work as ideal choice
primitives and when it works well the prob-
lem above arises. But the opening capabil-
ity can destroy the structure of choice opera-
tor. Cardelli has defined typed ambient calcu-
lus in Ref. 4), and using types, we will find our
choice operator works better. Thus, in future
we will investigate an equivalence relation on
typed ambient calculus.
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Appendix

A.1 Tools for Proving Contextual
Equivalence

When two processes are not equivalent, we
only have to indicate a context with which we
can find different sets of names of ambients ob-
served by the environment of processes and the
context. On the other hand, we need to con-
sider all contexts to show that they are con-
textually equivalent. This section shows tools
that help us prove the equivalence introduced
in Ref. 7).

A.1.1 A Hardening Relation
The hardening relation introduced in Ref. 7)

takes the form
P > (νp1 . . . pk)〈P ′〉P ′′

which means P consists of subprocesses P ′ and
P ′′, and P ′ can be the top level of subprocesses.
We call the right hand side of the relation con-
cretion. Using the hardening relation, Ref. 7)
defines the labeled transition system by which
we can understand the sequential behavior of
any processes.

Definition A.1.1 (Concretions 7)) We
define concretions ranged over by C, D as fol-
lows:
C, D ::= concretions
(ν�p)〈M.P 〉Q action,

M ∈ {in n, out n, open n,
go(N)} where N is a path
consists of in n and out n

(ν�p)〈n[P ]〉Q ambient
(ν�p)〈(x).P 〉Q input
(ν�p)〈〈M〉〉Q output �

We can understand how processes are harden
to concretions in Definition A.1.3.

Definition A.1.2
(Restricting a Concretion (νn)C 7))

Let C = (ν�p)〈P1〉P2 and n �∈ {�p}
• If n ∈ fn(P1) then:

(a) If P1 = m[P ′
1], m �= n, n �∈ fn(P2), let

(νn)C
def
= (ν�p)〈m[(νn)P ′

1]〉P2.

(b) Otherwise let (νn)C
def
= (νn �p)〈P1〉P2.

• If n �∈ fn(P1) let (νn)C
def
= (ν�p)〈P1〉(νn)P2.

�

Definition A.1.3 (Hardening: P > C 7))
(Harden Action)

M ∈ {in n, out n, open n, go(N)}
M.P > (ν)〈M.P 〉0

(Harden ε) (Harden .)

P > C
ε.P > C

M.(N.P ) > C

(M.N).P > C

(Harden Amb)

n[P ] > (ν)〈n[P ]〉0
(Harden Input)

(x).P > (ν)〈(x).P 〉0
(Harden Output)

〈M〉 > (ν)〈〈M〉〉0

(Harden Par 1)(for {�p} ∩ fn(Q) = ∅)
P > (ν�p)〈P ′〉P ′′

P |Q > (ν�p)〈P ′〉(P ′′|Q)

(Harden Par2)(for {�q} ∩ fn(P ) = ∅)
Q > (ν�q)〈Q′〉Q′′

P |Q > (ν�q)〈Q′〉(P |Q′′)
(Harden Repl)

P > (ν�p)〈P ′〉P ′′

!P > (ν�p)〈P ′〉(P ′′|!P )
(Harden Res)

P > C

(νn)P > (νn)C
�

A.2 A Labelled Transition System 7)

Using hardening relation, a labeled transition
is defined.
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Definition A.2.1 (Labels 7))
α ::= label
τ internal step
in n enter ambient n
out n exit ambient n
go(N) make a process move along a path N
open n dissolve ambient n �

Definition A.2.2
(Labelled Transitions 7))

(Trans Cap)
P > (ν�p)〈M.P ′〉P ′′ fn(M) ∩ {�p} = ∅

P
M→ (ν�p)(P ′|P ′′)

(Trans Amb)
P > (ν�p)〈n[Q]〉P ′ Q

τ→Q′

P
τ→(ν�p)(n[Q′]|P ′)

(Trans In) (where {�r} ∩ fn(n[Q]) = ∅ and
{�r} ∩ {�p} = ∅)

P > (ν�p)〈n[Q]〉R Q
in m−−−→ Q′

R > (ν�r)〈m[R′]〉R′′

P
τ→(ν�p �r)(m[n[Q′]|R′]|R′′)

(Trans Out) (where n �∈ {�q})
P > (ν�p)〈n[Q]〉P ′ Q > (ν�q)〈m[R]〉Q′

R
out n−−−→ R′

P
τ→(ν�p)((ν�q)(m[R′]|n[Q′])|P ′)

(Trans Go in) (where {�r} ∩ fn(Q) = ∅ and
{�r} ∩ {�p} = ∅)

P > (ν�p)〈Q〉R Q
go(in m)−−−−−−→ Q′

R > (ν�r)〈m[R′]〉R′′

P
τ→(ν�p �r)(m[Q′|R′′])

(Trans Go out)
P > (ν�p)〈n[Q]〉P ′ Q > (ν�q)〈R〉Q′

R
go(out n)−−−−−−→ R′

P
τ→(ν�p)((ν�q)(R′|n[Q′])|P ′)

(Trans Open)
P > (ν�p)〈n[Q]〉P ′ P ′ open n−−−−→ P ′′

P
τ→ (ν�p)(Q|P ′′)

(Trans I/O)(where {�q} ∩ fn(〈M〉) = ∅)
P > (ν�p)〈〈M〉〉P ′ P ′ > (ν�q)〈(x).P ′′〉P ′′′

P
τ→ (ν�p �q)(P ′′{x←M}|P ′′′)

�

A.3 A Context Lemma
This section presents the context lemma by

using a notion of harness. Instead of consider-
ing all contexts, we can prove contextual equiv-
alence with only a limited set of contexts.

Definition A.3.1 (Harness 7))
H ::= harnesses
− process variable
(νn)H restriction
P |H left composition
H|P right composition
n[H] ambient

Unlike the contexts of Section 3, harnesses are
identified up to consistent renaming of bound
names. Names restricted in H are renamed to
avoid capture of free names of P . �

Definition A.3.2 A process or a harness
is closed if and only if it has no free variables
(though it may have free names). �

Theorem A.3.3 (Context 7)) For all pro-
cesses P and Q, P � Q if and only if for all sub-
stitutions σ with dom(σ) = fv(P ) ∪ fv(Q), and
for all closed harnesses H and names n, that
H{Pσ} ⇓ n⇔ H{Qσ} ⇓ n. �

A.4 An Activity Lemma
This section introduces the formal way to

analyze judgments of the form H{P} ↓ n or
H{P} → Q to use Theorem A.3.3.

Definition A.4.1
(Extension of the structural congru-

ence, hardening, and reduction relation
for harnesses 7))
• Let H ≡ H ′ hold if and only if H{P} ≡

H ′{P} for all P .
• Let H > (ν�p)〈n[H ′]〉Q hold if and only if

H{P} > (ν�p)〈n[H ′{P}]〉Q for all P such
that {�p} ∩ fn(P ) = ∅.

• Let H > (ν�p)〈Q〉H ′ hold if and only if
H{P} > (ν�p)〈Q〉(H ′{P}) for all P such
that {�p} ∩ fn(P ) = ∅.

• Let H → H ′ hold if and only if H{P} →
H ′{P} for all P . �

Lemma A.4.2 7) If H{P} > (ν�p)〈P1〉P2

then either:
( 1 ) H > (ν�p)〈n[H ′]〉P2 and P1 = n[H ′{P}],

or
( 2 ) H > (ν�p)〈P1〉H ′ and P2 = H ′{P}, or
( 3 ) P > (ν�p)〈P1〉P ′, H ≡ −|R, P2 ≡ P ′|R

and {�p} ∩ fn(R) = ∅. �

Proposition A.4.3
(Exhibition Property 7))

If H{P} ↓ n then either (a) H{Q} ↓ n for all
Q, or (b) both P ↓ n and also for all Q, Q ↓ n
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implies that H{Q} ↓ n. �

We extend activity theorem in Ref. 7) by adding
objective moves.

Theorem A.4.4 (Activity)
H{P} → R if and only if:

(Act Proc) there is a reduction P → P ′ with
R ≡ H{P ′} or

(Act Har) there is a reduction H → H ′ with
R ≡ H ′{P}, or

(Act Inter) there are H ′ and �r with {�r} ∩
fn(P ) = ∅, and one of the following holds:
(Inter In) H ≡ (ν�r)H ′{m[−|R′]|n[R′′]},

P
in n−−−→ P ′ and

R ≡ (ν�r)H ′{m[P ′|R′]|n[R′′]}
(Inter Out)H ≡ (ν�r)H ′{n[m[−|R′]|R′′]},

P
out n−−−→ P ′ and

R ≡ (ν�r)H ′{m[P ′|R′]|n[R′′]}
(Inter Go(in)) H ≡ (ν�r)H ′{−|n[R′]},

P
go(in n)−−−−−→ P ′

and R ≡ (ν�r)H ′{n[P ′|R′]}
(Inter Go(out)) H ≡ (ν�r)H ′{n[−|R′]},

P
go(out n)−−−−−−→ P ′

and R ≡ (ν�r)H ′{P ′|n[R′]}
(Inter Open) H ≡ (ν�r)H ′{−|n[R′]},

P
open n−−−−→ P ′ and R ≡ (ν�r)H ′{P ′|R′}

(Inter Input) H ≡ (ν�r)H ′{−|〈M〉},
P > (ν�p)〈(x).P ′〉P ′′ and R ≡
(ν�r)H ′{(ν{�p})(P ′{x ← M}|P ′′)},
with {�p} ∩ fn(M) = ∅

(Inter Output) H ≡ (ν�r)H ′{−|(x).R′},
P > (ν�p)〈〈M〉〉P ′ and R ≡
(ν�r)H ′{(ν{�p})(P ′|R′{x←M})}, with
{�p} ∩ fn(R′) = ∅

(Inter Amb) P > (ν�p)〈n[Q]〉P ′ and one
of the following holds:
[1] Q

in m−−−→ Q′, H ≡ (ν�r)H ′{−|m[R′]},
{�p} ∩ fn(m[R′]) = ∅ and R ≡
(ν�r)H ′{(ν�p)(P ′|m[n[Q′]|R′])}

[2] Q
out m−−−−→ Q′, H≡(ν�r)H ′{m[−|R′]},

m �∈ {�p}, and
R ≡ (ν�r)H ′{(ν�p)(n[Q′]|m[P ′|R′])}
[3] H ≡ (ν�r)H ′{m[R′|in n.R′′|−},
{�p} ∩ fn(n[R′|in n.R′′]) = ∅, and R ≡
(ν�r)H ′{(ν{�p})(n[Q|m[R′|R′′]]|P ′)}
[4] H ≡ (ν�r)H ′{−|open n.R′}, n �∈
{�p}, and
R ≡ (ν�r)H ′{(ν{�p})(Q|P ′)|R′}

[5] H ≡ (ν�r)H ′{R′|go(in n).R′′|−},
{�p} ∩ fn(R′′]) = ∅, and
R ≡ (ν�r)H ′{R′|(ν{�p})(n[Q|R′′]|P ′)}

�

We can prove this extended activity theorem
by the same way to the original one proved in
Ref. 7).

A.5 Proof of Pe � Qe

This section gives a formal proof of Pe � Qe

of Example 3.5.

Lemma A.5.1 Let Pe and Qe be the pro-
cesses in Example 3.5. For any H and m, if
H{Pe} ⇓ m then H{Qe} ⇓ m. �

Proof: By induction on the structure of
H{Pe} ⇓ m, in the same style of the proofs ap-
pearing in Ref. 7). As the base of induction,
we first consider the case in which m is directly
exhibited (Conv Exh), then we proceed to the
case in which m will be exhibited after some
reductions (Conv Red).
(Conv Exh) Assume H{Pe} ↓ m. By Propo-

sition A.4.3, there exist two cases, one is
that (a) H exhibit m for any processes, and
the other is that (b) Pe exhibits m and for
any Qe such that Qe ↓ n, H{Qe} ↓ n.
(a) Obviously, H{Qe} ↓ m holds.
(b) By the definition of Pe and Qe in Ex-
ample 3.5 and the Definition 3.6, the only
ambient that Pe directly exhibits is a[], and
Qe also exhibits a[].

(Conv Red) As H{Pe} ⇓ m, by the Defi-
nition 2.6, we have ∃R.H{Pe} → R and
R ⇓ m. We assume, as the hypothesis of
the structural induction, for any RPe

that
can be derived from H{Pe} at least one
step of transition, if for any m, RPe

⇓ m
then there exists RQe

that can be derived
from H{Qe} at least one step of transition
such that RQe

⇓ m.
By Theorem A.4.4, one of three cases per-
tains:
(Act Proc) By the definition of Pe,

there is no transition such that Pe →
P ′, so this case is impossible.

(Act Har) We have H → H ′ with R ≡
H ′{Pe}. By Definition A.4.1, for all S,
H{S} → H ′{S} holds, thus we have
H{Qe} → H ′{Qe} particular.
As H{Qe} → H ′{Qe} holds, and by in-
duction hypothesis H ′{Qe} ⇓ m holds,
we have H{Qe} ⇓ m.
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(Act Inter) We have H{Pe} → R
with R ≡ H ′{P ′}. By (Act In-
ter) of Theorem A.4.4, there are H ′
and �r such that {�r} ∩ fn(Pe) =
∅ and one of several conditions of
(Act Inter) in the theorem must hold.
Since the only hardenings of Pe are
Pe > (ν trash)(〈a[· · · |P1)]〉a[. . . P2]),
and Pe > (ν trash)(〈a[· · · |P2)]〉a[. . . P1]),
only the rule (Inter Amb) applies. Ac-
cording to Theorem A.4.4, there are 5
possibilities in (Inter Amb), but by the
definition of Pe, only [3], [4] and [5] are
available.

[3]: The only effective capability is
“in a” in case [3], (any other capabil-
ity would not cause any transition) so
H ≡ (ν �r)H1{n[R1|in a.R2]|−} where
trash �∈ fn(n[R′|in a.R′′).
We have H{Pe} in a−−→ R(≡ H ′{P ′})
where H ′ ≡ (ν �r)H1{−} and

R ≡ (ν �r)H1{(ν trash) (
a[n[R1 | R2] | in trash |go(in n.out n)

.sync [out trash | trash[out a] | P1]
| open sync ]
| a[in trash|go(in n.out n)

.sync [out trash | trash[out a] | P2]
| open sync ]),

or
R ≡ (ν �r)H1{(ν trash) (

a[in trash|go(in n.out n)
.sync [out trash | trash[out a] | P1]
| open sync ]
| a[n[R1|R2]|in trashgo(in n.out n)

.sync [out trash | trash[out a]|P2]
| open sync ]).

By induction hypothesis, H ′{Q′
e} ⇓ m,

that is,

(ν �r)H1{(ν trash) (
a[n[R1|R2]|in trash|go(in n.out n)

.sync [out trash|trash[out a]|Q1]|
open sync ]
| a[in trash|go(in n.out n)

.sync [out trash|trash[out a]|Q2]
|open sync ]) ⇓ m,

(1)

or
(ν �r)H1{(ν trash) (

a[in trash |go(in n.out n)
.sync [out trash|trash[out a] | Q1]
| open sync ]
| a[n[R1 | R2] | in trash|go(in n.out n)

.sync [out trash | trash[out a]|Q2]
| open sync ]) ⇓ m.

(2)
By the way,

H{Qe} ≡
(ν �r)H1{n[R1 | in a.R2]|(ν trash)(
a[in trash|go(in n.out n)
.sync [out trash|trash[out a]|Q1]
|open sync ]

|a[in trash|go(in n.out n)
.sync [out trash|trash[out a] | Q2]
| open sync ]),

and
H{Qe} in a−−→
(ν �r)H1{(ν trash) (

a[n[R1 | R2] | in trash|go(in n.out n)
.sync [out trash|trash[out a]|Q1]
|open sync ]
|a[in trash |go(in n.out n)

.sync [out trash|trash[out a]|Q2]
|open sync ]),

(3)
or

H{Qe} in a−−→
(ν �r)H1{(ν trash) (

a[in trash|go(in n.out n)
.sync [out trash|trash[out a]|Q1]
| open sync ]
|a[n[R1 | R2] | in trash|go(in n.out n)

.sync [out trash|trash[out a]|Q2]
| open sync ]). (4)

As we can reach (3) or (4) from H{Qe}
with the transition ‘ in a−−→’ which is the
sole transition of H{Pe}, and as we in-
dicated by (1) and (2) that (3) and (4)
converge to m, we proved H{Qe} ⇓ m
by Definition 2.6.
Proofs for the case for [4] and [5] can
be shown with the similar way to the
case [3]. �

Lemma A.5.2 Let Pe and Qe be the pro-
cesses in Example 3.5. For any H and m, if
H{Qe} ⇓ m then H{Pe} ⇓ m. �

Proof: Quite the same method to Lemma
A.5.1 is applicable. �

Lemma A.5.1 and Lemma A.5.2 prove the fol-
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lowing theorem:

Theorem A.5.3 Let Pe and Qe be the pro-
cesses in Example 3.5. Then

Pe � Qe. �

Example A.5.4 This example precisely
shows the behaviors of the external choice oper-
ator defined in Definition 3.6. When the ambi-
ent n[in a. in b] (we call it a traveling ambient)
is running parallel to a[b[]] + a[c[]], that is,

n[in a.in b] | (a[b[]] + a[c[]]),
the traveling ambient can enter either the am-
bient a[· · · ] of a[b[]] or a[· · · ] of a[c[]]. Suppose
it happened to choose the former:

in a−−→
(ν trash sync ) (
a[n[in b] | in trash | go(in n.out n)
.sync [out trash | trash[out a]|b[]]|open sync ]
| a[in trash|go(in n.out n)
.sync [out trash|trash[out a]|c[]]|open sync ]),

then, the capability go(in n.out n) in a[· · · b[]]
is activated and consumed:

go(in n, out n)−−−−−−−−−→
(ν trash sync ) (
a[n[in b] | in trash
|sync [out trash|trash[out a]|b[]]|open sync ]
| a[in trash | go(in n.out n)
.sync [out trash|trash[out a]|c[]]|open sync ]),

then, the capability open sync in a[· · · b[]] dis-
solves the ambient sync in the same a ambient.

open sync−−−−−−−−→
(ν trash sync ) (
a[n[in b]
| in trash | out trash | trash[out a] | b[]]

| a[in trash|go(in n.out n)
.sync [out trash|trash[out a]|c[]]|open sync ]),

then, the ambients trash[] goes out of the am-
bient a[· · · b[]]:

out a−−−−→
(ν trash sync ) (
trash[] | a[n[in b] | in trash | out trash | b[]]
| a[in trash | go(in n.out n)
.sync [out trash|trash[out a]|c[]]|open sync ]).

Since the ambient trash[] appeared as a sibling
of the ambient a[· · · b[]] and a[· · · c[]], they can
go into the ambient trash[]:

in trash−−−−−−→ in trash−−−−−−→
(ν trash sync ) (
trash[a[n[in b] | out trash | b[]]
| a[go(in n.out n)
.sync [out trash|trash[out a]|c[]]|open sync ]]),

then, the only ambient which has been chosen
by traveling ambient (that is, a[· · · b[]] in this
case) can escape from the ambient trash[]:

out trash−−−−−−−→
(ν trash sync ) (
a[n[in b] | b[]]
| trash[a[go(in n.out n)
.sync [out trash|trash[out a]|c[]]|open sync ]]).

Finally, the traveling ambient can reach the des-
tination:

in b−−−→
(ν trash sync ) (
a[b[n[]]]
| trash[a[go(in n.out n)
.sync [out trash|trash[out a]|c[]]|open sync ]]).

The contents of the ambient trash[· · · ] are in-
visible from the environment, we find that our
“+” can behave as an ideal choice operator.

�

A.6 Detailed Structures of Processes
in Example 4.4

Here, we have the unfolded structure of P ′
e

and Q′
e. Using them, We explain the following

transitions:
Ce(P ′

e)
in a−−→ go(in n)−−−−−→ go(out n)−−−−−−→ open sync−−−−−−→ out a−−−→

go(in trash)−−−−−−−−→ go(in trash)−−−−−−−−→ go(out trash)−−−−−−−−−→ open a−−−−→
n[!in a] | !open a | open b
| (ν trash sync ) (a[P3] + c[c2[]] | trash[· · · ])

(= one of Rp).
P ′

e = (ν trash sync )(
a[in trash
|go(in n.out n)

.sync [out trash | trash[out a] | P3]
|open sync ]

|a[in trash
|go(in n.out n)

.sync [out trash | trash[out a] | P4]
|open sync ] ),

Q′
e = (ν trash sync )(

a[in trash
|go(in n.out n)

.sync [out trash | trash[out a] | Q3]
|open sync ]

|a[in trash
|go(in n.out n)

.sync [out trash | trash[out a] | Q4]
|open sync ] ).

We show the transition of Ce(P ′
e). That of

Ce(Q′
e) is similar. After n[!in a] goes into the
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lower a ambient, go(in n, out n) is available and
consumed as follows:

Ce(P ′
e)

in a−−→ go(in n)−−−−−→ go(out n)−−−−−−→
!open a | !open b
| (ν trash sync )(

a[in trash
|go(in n.out n)

.sync [out trash | trash[out a] | P3]
|open sync ]

|a[n[!in a] | in trash
|sync [out trash | trash[out a] | P4]
|open sync ] ).

Then, the sync ambient in the lower a ambient
is dissolved as follows:

open sync−−−−−−→
!open a | !open b
| (ν trash sync )(

a[in trash
|go(in n.out n)

.sync [out trash|trash[out a]|P3]
|open sync ]

|a[n[!in n] | in trash | out trash
| trash[out a] | P4] ).

Then, the trash ambient in the lower a ambient
gets out of the a ambient as follows:

out a−−−→
!open a | !open b
| (ν trash sync )(
trash[ ]
|a[in trash |go(in n.out n)

.sync [out trash|trash[out a]|P3]
|open sync ]

|a[n[!in a] | in trash | out trash | P4] ).

Then, both the upper and lower a ambient
enter the trash ambient and only the lower a
ambient that was chosen by n[] ambient gets
out of the trash ambient. So, only the upper
a ambient that was not chosen by n[] ambient
remains in the trash ambient as follows:

go(in trash)−−−−−−−→ go(in trash)−−−−−−−→ go(out trash)−−−−−−−−→
!open a | !open b
| (ν trash sync )(

trash[a[go(in n.out n)
.sync [out trash|trash[out a]|P3]
|open sync ]]

|a[n[!in a] | P4] ).
Here, we open the lower a ambient as follows:

open a−−−−→
!open a | !open b
| (ν trash sync )(

trash[a[go(in n.out n)
.sync [out trash|trash[out a]|P3]
|open sync ]]

|n[!in a] | P4 )
≡ n[!in a] | !open a | !open b
| (ν trash sync )((a[P3] + c[c2[]])

|trash[a[go(in n.out n)
.sync [out trash|trash[out a]|P3]
|open sync ]] ).
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