
Improving Fault Localization Based on Dynamic Slicing using
Additional Assertions

Genki Sugimoto1, Kazunori Sakamoto2, Hironori Washizaki1, and Yoshiaki Fukazawa1

1Waseda University
2National Institute of Informatics

Introduction
In software development, debugging is one of the most
costly work for many developers. Due to the nature of
debugging that it is likely to require longer time than
being estimated, time spent on debugging is one major
factor which prolongs software development. Further-
more, many developers say that debugging is tedious
and like a duty. Thus, there is a strong need for making
debugging easier.

There are various approaches to reduce the cost of
debugging, and one of which is called dynamic slicing.
The concept of dynamic slicing is to produce a slice,
the set of statements that actually affect the value of a
variable at a particular point for a particular execution,
of a program. Applying this, for example, on malicious
execution, one can focus on the lines which contribute
to the malicious behavior, and thus debugging cost can
be reduced.

There exist many tools and researches which succeed
to reduce debugging cost using fault localization tech-
niques. For example, as for effectiveness, [1] combined
dynamic slicing with spectrum based fault localization
technique. As for usability, [2] proposed visualization
tool, named Tarantula, which visualizes results of spec-
trum based fault localization for easier interpretation.
However, these have not yet solved the burden of de-
bugging completely, and further improvements are re-
quired.

We proposes a new approach to improve the effec-
tiveness of fault localization based on dynamic slicing
using additional assertions. It allows developers to sup-
ply additional information on test executions so that
the result of dynamic slicing can be refined more. Our
approach adds interactive aspect in debugging on top
of existing non interactive approaches.

Motivational Example
Our approach works well on top of the aforementioned
Tarantula approach. Tarantula calculates suspicious-
ness, possibility of being faulty, of a statement s by
following equation:

suspiciousness(s) =

passed(s)
totalpassed + failed(s)

totalfailed

passed(s)
totalpassed

(1)

Where passed(s) stands for the number of passed test
cases which executed statement s, failed(s) the number
of failed test cases executed s, and totalpassed and to-
talfailed the total numbers of test cases that passed
and failed, respectively.

While this result reflects the information obtained
from the test execution results, it cannot reflect de-
velopers’ knowledge about programs unless they add
other test cases, which is not likely to occur in debug-
ging process.

Our approach improves this in two ways. Firstly,
while Tarantula calculates suspiciousness in the gran-
ularity of test cases, our approach focuses on every as-
sertion statements in each test cases. Furthermore, it
utilizes dynamic slicing of a variable in an assert state-
ment rather than all statements executed by a test case
like Tarantula. This can produce more accurate result.
Secondly, it allows developers to add new assertions
on arbitrary variables interactively. The concept is to
manipulate the suspiciousness of statements by getting
input from developers. For example, when a developer
marked a variable v as correct, suspiciousness of state-
ment s which did not contribute to the value of v is
recalculated with incremented totalpassed value, and
thus the suspiciousness is increased. Detailed architec-
ture will be introduced in following chapter.

Overview of the Tool

Figure 1: Tool Overview

Copyright 2014 Information Processing Society of Japan.
All Rights Reserved.1-397

5L-6

情報処理学会第76回全国大会

We have created a prototype tool to implement our
approach. The overview of the tool is shown in Fig-
ure 1. Before it starts interaction with a developer, it
detects assertion statements in source code and its cor-
rectness. Then, it performs dynamic slicing on each as-
sertion statements using a dynamic slicing tool named
JavaSlicer [3], and calculates suspiciousness of each
statement. After the suspiciousness is shown to the de-
veloper, it prompts developer to add additional asser-
tion information. At this point, the developer can spec-
ify variables in the source code and its values. Then,
new assertions for those variables and values are gen-
erated and evaluated, and the suspiciousness for each
statement is refined. This interaction can be repeated
as many times as the developer wants.

Our approach uses following equation to deal with
cases like totalpassed = 0:

suspiciousness(s) =

passed(s)+1
totalpassed+1 + failed(s)+1

totalfailed+1

passed(s)+1
totalpassed+1

(2)

Case Study
1 public class Statistic {
2 public int sum;
3 public double mean;
4 public Statistic(List<Integer> l) {
5 sum = 0;
6 for (int value : l) {
7 sum += value;
8 }
9 mean = sum / l.size();

10 }
11 }
12
13 public class StatisticTest {
14 @Test
15 public void testAll() {
16 List<Integer> v
17 = Arrays.asList(1, 2, 3, 4);
18 Statistic st = new Statistic(v);
19 assertTrue(st.mean == 2.5);
20 }
21 }

This example program contains a fault at line 9,
which performs integer division while intending to ob-
tain double type value. On the other hand, the calcu-
lation of sum at line 7 is not faulty.

Before any assertions are added by a developer,
because totalpassed, passed(7), passed(9), totalfailed,
failed(7), failed(9) are 0, 0, 0, 1, 1, 1 respectively, the
suspiciousness calculated at lines 7 and 9 by formula
(2) are both 2 as shown in Table 1 "Before" column.

The suspiciousness is 2 for both statements. Now,
assume that a developer inputs a new assertion state-

Table 1: Suspiciousness before and after adding an as-
sertion

Suspiciousness
Line Before After

5 2 2
6 2 2
7 2 2
9 2 3

ment, assertTrue(st.sum == 10) before line 19. In
that case, because the new assertion is correct and
the dynamic slicing on the variable st.sum includes
line 7 but not line 9, values of totalpassed, passed(7),
passed(9), totalfailed, failed(7), failed(9) are now 1, 1,
0, 1, 1, 1 respectively, and the suspiciousness are re-
calculated and take values shown in Table 1 "After"
column.

This shows that line 9, the faulty line, can be marked
as more suspicious by our approach.

Conclusion and Future Work
We proposed a new approach which improves existing
debugging approaches by 1) utilizing dynamic slices on
each assertion statement rather than the sets of code
executed by each test case and by 2) allowing devel-
opers to interactively and iteratively supply additional
knowledges about the state of programs.

As a limitation, our approach is currently only ef-
fective on faults introduced in assignment statements,
and not effective for faulty control statements. This
problem will be managed in the future. Also, there are
many possible improvements such as execution time
and user interface. To reduce repeated input from de-
velopers, the feature of augmenting source code with
interactively added assertions will be introduced as
well.

References
[1] Birgit Hofer and Franz Wotawa. Spectrum En-

hanced Dynamic Slicing for better Fault Localiza-
tion. ECAI, pages 420–425, 2012.

[2] J.a. Jones, M.J. Harrold, and J. Stasko. Visualiza-
tion of test information to assist fault localization.
Proceedings of the 24th International Conference on
Software Engineering. ICSE 2002, (May):467–477,
2002.

[3] Andreas Zeller and Martin Burger. Design and
Implementation of an Efficient Dynamic Slicer for
Java submitted by. 2008.

Copyright 2014 Information Processing Society of Japan.
All Rights Reserved.1-398

情報処理学会第76回全国大会

