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Abstract: This paper describes a large-scale gait database comprising the Treadmill Dataset. The dataset focuses on
variations in walking conditions and includes 200 subjects with 25 views, 34 subjects with 9 speed variations from
2 km/h to 10 km/h with a 1 km/h interval, and 68 subjects with at most 32 clothes variations. The range of variations
in these three factors is significantly larger than that of previous gait databases, and therefore, the Treadmill Dataset
can be used in research on invariant gait recognition. Moreover, the dataset contains more diverse gender and ages
than the existing databases and hence it enables us to evaluate gait-based gender and age group classification in more
statistically reliable way.
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1. Introduction

In modern society, there is a growing need to identify individ-
uals in many different situations, including for surveillance and
access control. For personal identification, many biometric-based
authentication methods have been proposed using a wide variety
of cues, such as fingerprints, irises, faces, and gait. Of these, gait
identification has attracted considerable attention because it pro-
vides surveillance systems with the ability to ascertain identity at
a distance. In fact, automatic gait recognition from public CCTV
images has been admitted as evidence in UK courts [36], and gait
evidence has been used as a cue for criminal investigations in
Japan.

Recently, various approaches to gait identification have been
proposed. These range from model-based approaches [4], [37],
[40], [41], [46] to appearance-based approaches [3], [6], [10],
[14], [16], [17], [25], [26], [39]. In addition, several common
gait databases have been published [7], [29], [31], [33], [44] for
fair comparison of gait recognition approaches. These databases
are usually constructed taking the following into account: (1) the
variation in walking conditions, and (2) the number and diversity
of the subjects.

The first consideration is important to ensure the robustness
of the gait recognition algorithms, since walking conditions of-
ten differ between enrollment and test stages. For example, ob-
servation views are often inconsistent due to the positions of the
CCTV cameras on the street and/or walking directions possibly
being different. In addition, walking speeds can change depend-
ing on whether the person is merely taking a walk in the park or
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is walking to the station in a hurry, and clothing almost certainly
changes depending on the season.

The second consideration is also important because the number
of subjects determines the upper bound of the statistical reliabil-
ity of the performance evaluation. In addition, if the database is
used not only for person identification, but also gender and age
estimation from gait, the diversity of subjects in terms of gender
and age plays an important role in the performance evaluations of
such applications.

In this paper, we describe a large-scale gait database composed
of the Treadmill Dataset based on the two considerations. The
Treadmill Dataset is a set of gait datasets with variations in
walking conditions, comprising 25 surrounding views, 9 walk-
ing speeds from 2 km/h to 10 km/h with a 1 km/h interval, at most
32 clothes combinations, and gait fluctuation variations among
gait periods. The proposed gait dataset thus enables us to evaluate
view-invariant, speed-invariant, and clothing-invariant gait recog-
nition algorithms in a more extensive range. Moreover, it com-
prises 200 subjects of both genders and including a wide range
of ages. The proposed gait database thus enables us to evaluate
gait-based gender classification and age group classification.

The outline of this paper is as follows. First, existing gait
databases are briefly considered in Section 2. Next, the Tread-
mill Dataset is addressed with related performance evaluations of
gait recognition algorithms in Sections 3. Section 4 contains our
conclusions, discussions, and future work in the area.

2. Related Work

The existing major gait databases are summarized in Table 1,
with brief descriptions of the frequently used ones given below.
A good summary of the other gait databases is found in Ref. [28].

The USF dataset [33] is one of the most widely used gait
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Table 1 Existing major gait databases.

Database #Subjects #Sequences Data covariates

CMU MoBo database [7] 25 600 6 views, 2 speeds, 2 slopes, baggage (ball)

Georgia Tech database [35] 24 288 4 speeds (0.7, 1.0, 1.3, and 1.6 m/s)

Soton database [23], [29] 115 - Views
25 ∼2,000 Time (0, 1, 3, 4, 5, 8, 9 months), 12 views,

2 clothes

USF dataset [33] 122 1,870 2 views, 2 shoes, 2 surfaces,
baggage (w/ and w/o), time (6 months)

CASIA dataset [44] 124 13,640 11 views, clothing (w/ and w/o coat),
baggage (w/ and w/o)

153 612 3 speeds, baggage (w/ and w/o),

TokyoTech database [1] 30 1,602 3 speeds

OU-ISIR Large-scale dataset [30] 1,035 2,070 2 views

datasets and is composed of a gallery and 12 probe sequences un-
der different walking conditions including factors such as views,
shoes, surfaces, baggage, and time. As the number of factors is
the largest of all the existing databases, and despite the number
of variations in each factor being limited to 2, the USF database
is suitable for evaluating the inter-factor, instead of intra-factor,
impact on gait recognition performance.

The CMU MoBo Database [7] contains image sequences of
persons walking on a treadmill captured by six cameras. As the
treadmill can control the walking speed and slope, the database
includes gait images with speed and slope variations as well as
view variations. As a result, this database is often used for perfor-
mance evaluation of speed-invariant or view-invariant gait recog-
nition [16].

The Soton database [29] contains image sequences of a person
walking around an inside track, with each subject filmed wear-
ing a variety of footwear and clothing, carrying various bags,
and walking at difference speeds. Hence, it is also used for ex-
ploratory factor analysis of gait recognition [5]. The recently pub-
lished Soton Temporal database [23] contains the largest varia-
tions, up to 9 months, in elapsed time. It is, therefore, suitable for
analyzing the effect of time on the performance of gait biometrics.

The CASIA dataset [44] contains the largest azimuth view vari-
ations and hence, it is useful for the analysis and modeling of the
impact of view on gait recognition [45].

The OU-ISIR Large-scale database [30] contains the largest
number of subjects, while the within-subject variation is limited.
Therefore, it is useful for statistically reliable performance evalu-
ation.

In this section, we further discuss three variations related to
walking conditions: views, walking speeds, and clothes and also
the number and diversity of subjects.
Views: While the CASIA dataset [44] contains sufficient varia-
tions in terms of azimuth views, it does not contain any varia-
tion in the tilt view. Tilt view variations are quite important be-
cause most of the CCTV cameras capture pedestrians from some-
what tilted views. While the CMU MoBo Database [7] includes
slightly tilted frontal and rear views, the variation in views is
insufficient. Although the Soton Temporal database [23] covers
12 views including azimuth and tilt variations, the range of view
variations is still smaller than that in the proposed database.
Walking speeds: Variations in walking speeds are limited

to less than three in most of the databases. The Georgia
Tech database [35] contains four speeds with a 0.3 m/s (approx.
1.0 km/h) interval. The maximum speed is, however, less than
6.0 km/h and hence faster walking or running sequences are nec-
essary for extensive performance analysis of speed-invariant gait
recognition.
Clothes: Variations in clothes are typically limited to normal
clothes and a few types of coats and the numbers of variations are
significantly small (at most three in the Soton database [29]). To
adapt to actual variations in clothes, the database should contain
various combinations of outer wear, pants (or skirts), and head
wear.
The number and diversity of subjects: Next, we review the
number and diversity of subjects. As shown in Table 1, rela-
tively large-scale gait databases with more than a hundred sub-
jects are limited to the following four: the USF dataset [33], Soton
database [29], CASIA dataset [44], and the OU-ISIR Large-scale
dataset. Although these four databases provide a statistically re-
liable performance to some extent, the number of subjects is still
not sufficient when compared with other biometrics such as fin-
gerprints and faces except for the OU-ISIR Large-scale dataset.

In addition, populations of genders and ages are biased in the
databases other than the OU-ISIR Large-scale dataset; e.g., there
are no children in the USF dataset, while in the CASIA dataset
most of the subjects are in their twenties and thirties and the ratio
of males to females is 3 to 1. Such biases are undesirable in per-
formance evaluation of gait-based gender and age estimation and
performance comparison of gait recognition between genders and
age groups.
The proposed gait database: Contrary to existing databases,
the proposed gait database aims to contain sufficient variations
in terms of views, speeds, clothes, and subjects as summarized in
Table 2. The proposed gait database contains gait images with
the largest range of view variations (25 views: 12 azimuth views
times 2 tilt angles, plus 1 top view), speed variations (9 speeds:
1 km/h interval between 2 km/h and 10 km/h), and clothing vari-
ations (up to 32 combinations), and as such, it is can be used for
evaluating view-invariant [17], speed-invariant [20] and clothing-
invariant [9] gait recognition. Moreover, the genders and ages of
subjects are more diverse than the those of current gait database
such as the CASIA dataset [44].
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Table 2 Proposed gait database.

Dataset #Subjects #Sequences Data covariates

The Treadmill Dataset 34 612 9 speeds (2, 3, 4, 5, 6, 7, 8, 9, and 10 km/h)
68 2,746 32 clothes combination at most

200 5,000 25 views (2 layers of 12 encircling cameras
and an overhead camera)

185 370 Gait fluctuation among periods

Fig. 1 Overview of multi-view synchronous gait capturing system.

3. The Treadmill Dataset

3.1 Difference between Treadmill and Overground Gait
At the beginning, the difference between treadmill and over-

ground gait is briefly discussed.
Such differences have actively discussed in the field of applied

physiology, biomechanics, medical and health science for the last
decades. Van Ingen Schenau [38] concluded that no mechanical
differences exist between the two conditions in theory as long as
the treadmill belt speed remains constant and that all differences
must therefore originate from other than mechanical causes. The
constant belt speed assumption is, however, often violated partic-
ularly at heal strike moment, and hence the differences may arise.
In addition, Lee et al. [12] hypothesized that the differences arose
from differences in optic flow subjects received on the treadmill
and overground.

Murray et al. [27] reported that no statistical differences in
temporal gait parameters but claimed that subjects demonstrated
trends for shorter step lengths and gait periods in case of treadmill
walking. Although these trends are observed in our case in fact,
they are relaxed as much as possible by providing sufficient time
for each subject to practice walking on the treadmill. Moreover,
in recent work [12], [32], while statistically significant differences
between the two conditions are found in several aspects (e.g.,
kinematic parameter maxima and muscle activation patterns), it
was reported that the overall patterns in joint moments and joint
powers were quite similar between the two conditions.

Based on the supports from these works [12], [27], [32], we
conclude the treadmill gait dataset can be effectively used for the
purpose of the vision-based gait recognition as well as the other
overground gait datasets.

3.2 Capturing System
Our image capturing system consists primarily of a treadmill,

25 synchronous cameras *1 (2 layers of 12 encircling cameras and
an overhead camera with a mirror), and six screens surrounding

the treadmill, as shown in Fig. 1. The treadmill (BIOMILL BM-
2200) has a walking belt area, 550 mm wide and 2,000 mm long,
and can control its speed up to 25.0 km/h with a 0.1 km/h inter-
val. The cameras (Point Grey Research Inc. Flea2 models) are
attached to camera poles aligned at the vertices of a regular do-
decagon. Of these 25 cameras, 12 cameras in layer 1 are placed
every 30 deg at a height of 1.3 m, 12 cameras in layer 2 are also
placed every 30 deg at a height of 2.0 m, and 1 camera is placed
near the side-view camera in layer 2 to observe the overhead view
of a person walking on the treadmill via a large mirror attached
to the ceiling. The lens focal length for each of the 24 surround-
ing cameras is 3.5 mm and that of the overhead view camera is
6.0 mm. The frame-rate and resolution of each camera are set to
60 fps and VGA, respectively, and the recorded format is uncom-
pressed raw data. The surrounding screens are used as a chroma-
key background. Sample images captured in the system are also
shown in Fig. 1.

3.3 Data Collection
Subjects were obtained through open recruitment or from vol-

unteers and signed a statement of consent regarding the use of
their images for research purposes.

After the practice sessions, subjects were asked to walk at
4 km/h or slower if necessary for children and the elderly, ex-
cept during the data collection for speed variations. Subjects
wore standard clothing (long-sleeved shirts and long pants, or
their own casual clothes), except during the data collection for
clothing variations.

3.4 Preprocessing
In this section, we briefly describe a method for size-

normalized silhouette extraction as preprocessing. The first step
involves extracting gait silhouette images, by exploiting back-
ground subtraction-based graph-cut segmentation [21].

*1 This means that images from all the 25 views are captured at the same
time.
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Fig. 2 Examples of size-normalized gait silhouettes (every 4 frames).

(a) 2 km/h (every 6 frames)

(b) 3 km/h (every 6 frames)

(c) 4 km/h (every 5 frames)

(d) 5 km/h (every 4 frames)

(e) 6 km/h (every 4 frames)

(f) 7 km/h (every 4 frames)

(g) 8 km/h (every 3 frames)

(h) 9 km/h (every 3 frames)

(i) 10 km/h (every 3 frames)

Fig. 3 Examples of size-normalized gait silhouettes for speed variations. Frame interval is adjusted so as
to accommodate approximately one gait period.

Table 3 Number of recorded frames for each speed.

Speed [km/h] 2 3 4 5 6 7 8 9 10

#Frames 420 360 360 420 360 240 240 240 300

The next step is scaling and registration of the extracted silhou-
ette images [17]. First, the top, bottom, and horizontal center of
the silhouette regions are obtained for each frame. The horizontal
center is chosen as the median of the horizontal positions belong-
ing to the region. Second, a moving average filter of 60 frames is
applied to these positions. Third, we scale the silhouette images
so that the height is just 128 pixels based on the averaged posi-
tions, and the aspect ratio of each region is maintained. Finally,
we produce an 88 × 128 pixel image in which the averaged hori-
zontal median corresponds to the horizontal center of the image.
Examples of size-normalized silhouettes are shown in Fig. 2.

3.5 Dataset A: Speed Variations *2

Dataset A contains images of 34 subjects walking at speeds
varying between 2 km/h and 10 km/h with a 1 km/h interval. The
subjects walked for speeds between 2 km/h and 7 km/h and ran
(or jogged) to achieve speeds of 8 km/h to 10 km/h. The number
of recorded frames for each speed is listed in Table 3. Examples
of size-normalized gait silhouettes are shown in Fig. 3.

This dataset enables us to evaluate the performance of speed-
invariant gait recognition algorithms. Thus, we conducted
gait recognition experiments based on frequency-domain fea-
tures [17] with and without a speed transformation model [20] for
different speed gait recognition scenarios. The two different sub-

*2 Partially available on the website [31]. The remainder is being prepared
for publication.

(a) 4 km/h vs. 7 km/h (b) 7 km/h vs. 3 km/h

Fig. 4 Experimental results for gait recognition incorporating speed varia-
tions [20]. The horizontal and vertical axes indicate rank and identi-
fication rate, respectively. The speed transformation model (Dataset
1 and Dataset 2) improves performance compared with the method
without transformation (No trans.).

sets used (called Dataset 1 and Dataset 2) were arranged so as
to highlight the effect of the number of subjects used to train the
transformation model. Datasets 1 and 2 use 14 and 9 training sub-
jects, respectively, while both datasets have 20 testing subjects in
common. In this experiment, speed variations between 2 km/h
and 7 km/h were used.

Two typical experimental settings, namely, matching between
4 km/h and 7 km/h, 7 km/h and 3 km/h, are evaluated by the Cu-
mulative Matching Characteristics (CMC) curve which shows
rank-k identification rate in the identification scenarios (one-to-
many matching) as shown in Fig. 4. It is apparent that the speed
transformation model (Dataset 1 and Dataset 2) improves per-
formance compared with the method without transformation (No
trans.).

Results are also evaluated through the Equal Error Rate (EER)
of the false acceptance rate and false rejection rate in the veri-
fication scenarios (one-to-one matching) as shown in Fig. 5. It
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(a) Probe 2 km/h (b) Probe 3 km/h (c) Probe 4 km/h

(d) Probe 5 km/h (e) Probe 6 km/h (f) Probe 7 km/h

Fig. 5 Experimental results for gait recognition incorporating speed variations [20]. The horizontal
and vertical axes indicate gallery speed and EER, respectively. The speed transformation model
(Dataset 1 and Dataset 2) improves performance compared with the method without transforma-
tion (No trans.).

Table 4 Comparison of speed-invariant gait recognition by the other datasets. P1 stands for rank-1
identification rate.

Datasets Literature Gallery Gallery speed Probe speed P1

size (km/h) (km/h) (%)

The Treadmill Dataset A Ref. [20] 25 2.0 6.0 64
Georgia Tech database Ref. [35] 24 2.5 5.8 40

The Treadmill Dataset A Ref. [20] 25 6.0 2.0 52
Georgia Tech database Ref. [35] 24 5.8 2.5 30

The Treadmill Dataset A Ref. [20] 25 4.0 3.0 96
CMU MoBo dataset Ref. [16] 25 4.5 3.3 84

is also confirmed that the speed transformation model improves
performance as a whole.

We can compare our results with the other results by
Tanawongsuwan et al. [35] with Georgia Tech database and also
by Liu et al. [16] with the CMU MoBo datasets in terms of the
rank-1 identification rate as shown in Table 4. Note that the
gallery size of the Treadmill Dataset A is increased up to 25 sub-
jects by using the 9 training subjects in the Dataset 2 in order
to keep the consistency of the gallery size with those of the other
databases. Moreover, we choose pairs of gallery and probe speeds
similar to those in the other databases.

Despite the limited speed variation range in the above experi-
ments, it is possible in the future to evaluate how a speed-invariant
gait recognition algorithm improves the performance for a much
wider range of speed variations compared with the existing speed-
variation gait databases [7], [29], [35], [44].

3.6 Dataset B: Clothing Variations *3

Dataset B contains images of 68 subjects with up to 32 com-
binations of types of clothing. Table 5 lists the clothing types,
while Table 6 gives the combinations of clothing used in con-
structing the dataset. Figure 6 shows sample images of all the
combinations of clothing types. All the gait sequences were cap-
tured twice on the same day. Thus, the total number of sequences
in the dataset is 2,746. The large number of subjects and clothing-
variations in the new dataset provides us with an estimate of intra-
subject variations together with inter-subject variations for a bet-
ter assessment of the potential of gait identification.

We evaluated the performance of several gait recognition ap-

*3 Fully available on the website [31].

Table 5 List of clothes used in the dataset (abbreviation: name).

RP: Regular Pants HS: Half Shirt CW: Casual Wear
BP: Baggy Pants FS: Full Shirt RC: Rain Coat
SP: Short Pants LC: Long Coat Ht: Hat
Sk: Skirt Pk: Parker Cs: Casquette Cap
CP: Casual Pants DJ: Down Jacket Mf: Muffler

proaches: GEI [8]-based CSA [42], DATER [43], and CPDA [19],
and a part-based frequency-domain feature approach [9]. The
dataset was divided into three sets: a training set (20 subjects
with all types of clothes), a gallery set (the remaining 48 sub-
jects with a single type of clothes), and a probe set (the remain-
ing 48 subjects with the other types of clothes) to separate the
training and test sets in terms of subjects, and to separate the
test gallery and test probe in terms of clothing, thereby enforc-
ing strict separation conditions for the experimental evaluations.
The gait identification and verification performances were evalu-
ated with CMC and ROC curves as shown in Fig. 7, respectively.
The results show that CPDA outperforms the other methods in
the clothing-invariant gait recognition scenarios.

3.7 Dataset C: View Variations *4

Dataset C contains images of 200 subjects from 25 views. An
example of 25 synchronous images is shown in Fig. 8. Natu-
rally, this database enables us to evaluate the performance of
multi-view gait recognition [34] and view-invariant gait recog-
nition [17]. Moreover, because the 200 subjects comprise 100
males and 100 females with ages ranging from 4 to 75 years old,
(see Fig. 9 for the age distribution), it can also be used for per-
formance evaluation of gender and age group classification by

*4 To be prepared for publication.
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Table 6 Different clothing combinations (#: clothing combination type; si: i-th clothes slot).

# s1 s2 s3

2 RP HS -
3 RP HS Ht
4 RP HS Cs
9 RP FS -
X RP FS Ht
Y RP FS Cs
5 RP LC -
6 RP LC Mf

# s1 s2 s3

7 RP LC Ht
8 RP LC Cs
C RP DJ Mf
A RP Pk -
B RP DJ -
I BP HS -
K BP FS -
J BP LC -

# s1 s2

L BP Pk
M BP DJ
N SP HS
Z SP FS
P SP Pk
S Sk HS
T Sk FS
U Sk Pk

# s1 s2

V Sk DJ
D CP HS
F CP FS
E CP LC
G CP Pk
H CP DJ
0 CP CW
R RC RC

type 2 type 3 type 4 type 5 type 6 type 7 type 8 type 9 type A type B type C

type X type Y type D type E type F type G type H type 0 type I type J type K

type L type M type N type P type Z type R type S type T type U type V

Fig. 6 Sample clothing images.

(a) CMC curve (b) ROC curve

Fig. 7 CMC and ROC curves for clothing-invariant gait recognition
scenarios.

gait [2], [11], [13]. Taking into account both properties of this
dataset, we applied it to a multi-view gait feature analysis of gen-
der and age. We defined four typical gender and age classes,
namely children (younger than 15 years old), adult males and
adult females (males and females between 15 and 65 years old,
respectively), and the elderly (aged 65 years and older). Then,
we analyzed the uniqueness of gait for each class. Figure 10 il-
lustrates the average gait features for each class for typical views
(side, front, right-back, and overhead) from layer 1 cameras. Fig-
ure 11 shows a comparison of these features for combinations of
classes, namely children and adults (C-A), adult males and adult
females (AM-AF), and adults and the elderly (A-E).

The results reveal the uniqueness of gait features for the four
typical classes from a computer-vision point of view. For exam-
ple, the arm swings of children tend to be smaller than those of
adults since walking in children is less mature. This can be ob-
served in the side and overhead views. Moreover, males have
wider shoulders, while females have more rounded bodies; both

of these trends are particularly noticeable in the frontal and side
views. The elderly have wider bodies than adults due to middle-
age spread, and this is clearly observed in the frontal view. See
Ref. [22] for more detailed analyses and insights.

In addition to these analyses, the dataset C can be exploited
for performance evaluations of view-invariant and multi-view gait
recognition, although it remains as a future work.

3.8 Dataset D: Gait Fluctuations *5

Dataset D contains 370 gait sequences of 185 subjects ob-
served from the side view. The dataset focuses on gait fluctua-
tions over a number of periods; that is, how gait silhouettes of the
same phase differ across periods in a sequence. As a measure of
gait fluctuation, we adopt Normalized AutoCorrelation (NAC) of
size-normalized silhouettes for the temporal axis, which is often
used for period detection as

Ngait = arg max
N∈[Nmin ,Nmax]

C(N) (1)

C(N) =

∑
x,y

T (N)∑
n=0
gx,y,ngx,y,n+N√∑

x,y

T (N)∑
n=0
g2

x,y,n

√∑
x,y

T (N)∑
n=0
g2

x,y,n+N

(2)

T (N) = Ntotal − N − 1, (3)

where C(N) is the NAC for an N-frame shift, g(x, y, n) is the sil-
houette value at position (x, y) in the n-th frame, and Ntotal is the
total number of frames in the sequence.

Successful gait period detection requires an appropriate search

*5 To be prepared for publication.
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Fig. 8 Example of 25 synchronous images.

Fig. 9 Distribution of subjects’ gender and age.

range setting for the gait period candidate N in Eq. (1). Except
for the dataset A (speed variations), it is assumed that each subject
walks in a natural way (neither ox walk nor brisk walk), and hence
we set the lower and upper bounds of the gait period for such nat-
ural walk as 0.83 sec and 1.3 sec, respectively. These bounds are
then converted from second unit into frame unit by taking the
frame-rate into consideration. For example, in case of 60 fps, the
lower bound Nmin and the upper bound Nmax in frame unit, which
are used in Eq. (1), are calculated as Nmin = 0.83 [sec]×60 [fps] �
50 [frame], Nmax = 1.3 [sec]×60 [fps] � 78 [frame], respectively.

The NAC increases if gait silhouettes of the same phase across
periods are similar to each other (stable gait), and vice versa (un-
stable gait or fluctuated gait). Hence, we define the two subsets:
DBhigh comprising 100 subjects with the highest NAC, and DBlow

comprising 100 subjects with the lowest NAC. Examples of size-
normalized silhouettes for DBhigh and DBlow are shown in Fig. 12.
We can see that silhouettes at the same phases for DBhigh are sim-
ilar across periods, while those for DBlow fluctuate across periods.

Naturally, the subsets are expected to be used to evaluate how
robust the gait recognition algorithms are against gait fluctua-
tions. We evaluated the performance of several gait recognition
approaches: Period-Period matching, Sequence-Period match-
ing [24], and Sequence-Sequence matching in eigenspace [26],
Average silhouette (or GEI) [8], [15], Frequency-domain fea-
ture [17], and Width vector [6]. The experiments were carried
out on each subset and for each frame-rate. First, the CMC
curves at 4 fps are shown in Fig. 13. In addition, EERs for all the
frame-rates are shown in Fig. 14. The results show that, although
Period-Period and Sequence-Period achieve relatively good per-

formance for both subsets, the performance of DBlow is signif-
icantly degraded compared with DBhigh as a whole, confirming
that gait fluctuations have a large impact on gait recognition per-
formance.

4. Conclusion and Discussion

Conclusion: This paper described a large-scale gait database
composed of the Treadmill Dataset for performance evaluation
of existing or future gait recognition algorithms. The dataset fo-
cuses on variations in walking conditions and includes 34 subjects
with 9 speed variations from 2 km/h to 10 km/h with a 1 km/h in-
terval (Dataset A), 68 subjects with up to 32 clothes variations
(Dataset B), 200 subjects with 25 views (Dataset C), and 185
subjects with gait fluctuation variations (Dataset D). The varia-
tion in the former three factors is significantly larger than that in
previous gait databases and therefore the Treadmill Dataset can
be used for research on invariant gait recognition. Moreover, the
Dataset C contains more diverse genders and ages than the exist-
ing databases and hence it enables us to evaluate the gait-based
gender and age group classification performance in more statis-
tically reliable way. Finally, several gait recognition approaches
were tested using the proposed dataset. It was shown that the pro-
posed database makes it possible to evaluate a wide range of gait
recognition problems.
Discussion: While each own gallery set is defined for each
dataset in this experimental setup, experimental setup with one
common gallery set is beneficial to analysis of the inter-factor
impact on gait recognition performance as Sarkar et al. [33] did
with the USF dataset. Such experimental setup, however, signifi-
cantly limits the variety of performance evaluations, particularly
in aspects of difficulty ranking caused by variations in gallery sets
and the optimal gallery selection.

In fact, Sarkar et al. [33] also investigated difficulty ranking
caused by variations in gallery sets with eight different gallery
sets from the USF dataset. Hossain et al. [9] investigated the dif-
ficulty ranking in clothing-invariant gait recognition caused by
variations in gallery clothes types with 15 different clothes types
from the Treadmill Dataset B and they demonstrated that galleries
with a long coat or a down jacket are much more difficult to be
recognized than those with a full shirt or a parka.
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C

AM

AF

E
(a) Left (b) Front (c) Right-back (d) Overhead

Fig. 10 Average gait features for four classes (C: Children, AM: Adult Males, AF: Adult Females, E:
the Elderly). The features are shown with their 1- and 2-times frequency multiplied 3 times for
highlighting purposes.

C-A

AM-AF

A-E
(a) Left (b) Front (c) Right-back (d) Overhead

Fig. 11 Differences in average features. Color is used to denote which class’ feature appears more
strongly. Red indicates that the feature of the leftmost class (e.g., C of C-A) appears more
strongly, while green depicts the opposite. The features are shown with their 1- and 2-times
frequency multiplied 3 times for highlighting purposes.

(a) DBhigh (NAC: 0.96) (b) DBlow (NAC: 0.85)

Fig. 12 Examples of size-normalized silhouettes for DBhigh and DBlow. Each row indicates a single pe-
riod. Silhouettes at the same phases for DBhigh are similar across periods, while those for DBlow

fluctuate across periods.

(a) DBhigh (b) DBlow

Fig. 13 CMC curves for Dataset D at 4 fps.

Moreover, in the context of the view-invariant gait recognition
by using view transformation model [17], the optimal view se-
lection of a single-view gallery and the optimal combination of
two-view galleries were investigated in Ref. [18]. As a result,
it was reported that an oblique-view gallery is better than side-
view or front-view gallery in single-view gallery case, and that a
orthogonal-view combination is better in two-view gallery case,
which is useful information for designing a camera alignment at
an enrollment site.

(a) DBhigh (b) DBlow

Fig. 14 EERs for Dataset D.

These kinds of useful insights can be never acquired if gallery
sets are limited to the common one (e.g., a gallery set where each
subject walks at 4 km/h, wears type 9 clothes, and is observed
from a side-view camera). In addition, unlike the USF dataset,
the strength of the Treadmill Dataset lies in the wide intra-subject
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variation for each factor rather than the number of factors, and
hence we would rather keep a variety of gallery sets than choos-
ing the one common gallery set in this work.
Future work: Although the proposed database has the largest
diversity of all databases up to now, it is still lacking in some as-
pects, namely, shoes, bag, surface conditions, elapsed time, and
scene types (e.g., outdoor scenes). Moreover, the number of sub-
jects is still insufficient for statistically reliable performance eval-
uation of gait recognition. Therefore, we need to collect the re-
quired gait datasets by taking advantage of various demonstration
events, such as outreach activities or open recruitment days in the
future.
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