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Object detection is an important task for computer vision applications. Many
researchers have proposed a number of methods to detect the objects through
background modeling. To adapt to “illumination changes” in the background,
local feature-based background models are proposed. They assume that local
features are not affected by background changes. However, “motion changes”,
such as the movement of trees, affect the local features in the background sig-
nificantly. Therefore, it is difficult for local feature-based models to handle
motion changes in the background. To solve this problem, we propose a new
background model in this paper by applying a statistical framework to a local
feature-based approach. Our proposed method combines the concepts of statis-
tical and local feature-based approaches into a single framework. In particular,
we use illumination invariant local features and describe their distribution by
Gaussian Mixture Models (GMMs). The local feature has the ability to toler-
ate the effects of “illumination changes”, and the GMM can learn the variety
of “motion changes”. As a result, this method can handle both background
changes. Some experimental results show that the proposed method can detect
the foreground objects robustly against both illumination changes and motion
changes in the background.

1. Introduction

A fundamental problem in computer vision is detecting a region or object
of interest from an image sequence. Background subtraction, which removes a
background image from the input image, is still widely used for detecting moving
objects in practical applications. However, when it comes to outdoor surveillance,
the cameras are often installed at a high place to provide a large field of view,
and then their “long shot” scenes often include not only the objects but also
background changes caused by illumination conditions or disturbances in these
scenes. Background changes which occur in the outdoors can be classified into
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two types:
• Illumination changes – changes caused by lighting conditions such as the

sun rising, setting, or being blocked by clouds;
• Motion changes – changes caused by the motion of, for example, tree

branches, leaves, grass, waves on water or clouds.
To robustly detect the foreground objects, we should handle the background
changes which occur in the outdoors. Many researchers have proposed back-
ground modeling approaches for dealing with these effects 1)–13).

The intensity of illumination changes is often observed to be locally related
to that of neighboring pixels, since illumination affects multiple pixels. Local
feature-based approaches that use this characteristic have been suggested to cope
with illumination changes. Early research proposed the use of edge features as
a local feature for background modeling. Jabri et al. 2) proposed using the edges
of an image as well as pixel intensity for the background model. Manson et al. 3)

divided the first frame of a video sequence into blocks and calculating color edge
histograms for each block. An edge feature is a derivative of image intensity, and
hence is less affected by uniform illumination changes. Local Binary Patterns
(LBP) 4),5) is a well known local feature for background modeling. LBP is defined
by the signed differences between a target pixel and neighboring pixels. LBP
is also not affected by local intensity changes caused by illumination, since it
contains a binary pattern describing lower or higher intensity relations between
neighboring pixels. The distance of neighboring pixel is related to the scene
context for a local feature-based method. Radial Reach Filter (RRF) 6) extends
LBP to adaptively determine the distance. These approaches assume that local
features are not affected by the background changes. However, a surveillance
scene also often includes motion changes, and they affect the local features in
the background significantly. Therefore, it is difficult for local feature-based
background models to handle motion changes in the background.

Statistical methods 7)–11) have been used to cope with motion changes. In these
approaches, background pixels are modeled by a distribution of the previously
observed intensity values of each pixel. Background pixel values are usually
observed with higher probabilities if we assume a foreground object is moving.
When we use multiple distributions for the pixels, we can treat multi-modal
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backgrounds caused by motion changes in a scene. A Gaussian mixture model
is used for representing the multiple distributions in the literature 7),8). Non-
parametric statistical methods 9)–11) which use kernel density estimation have also
been proposed. All of the current statistical approaches model the background
pixel by pixel. Hence, there has been no research that uses statistical models for
local features.

Some hybrid methods 12),13), which use multiple different background models,
have been also proposed. To avoid falsely classifying the object regions as back-
ground, Yoshimura et al. 12) used a local feature-based background model in ad-
dition to the one focused on each pixel, and combined the results of them using
a “logical OR” operation. However, their method tends to falsely detect the
background regions as object regions. On the other hand, to cope with both
illumination and motion changes in the background, Tanaka et al. 13) used both
local feature-based and statistical background models, and the results of them
were combined using a “logical AND” operation. Then, their method divides the
foreground regions, since only positive regions from both algorithms are accepted
and all other regions are rejected. Therefore, these methods are a kind of tandem
system, and a logical combination of the detection results does not lead to an
improvement of the accuracy of the foreground detection.

In this paper, we propose a new background model suitable for outdoor surveil-
lance�1. We combine the concepts of a local feature-based approach and a sta-
tistical approach into a single framework. This new framework for background
modeling is the main contribution of this work, and it is completely different from
previous hybrid methods 12),13). Our method uses illumination invariant local
features, and describes their distribution by Gaussian Mixture Models (GMMs).
The local feature has the ability to tolerate the effects of illumination changes,
and the GMM can learn the variety of motion changes. Therefore, our proposed
method can detect the foreground objects robustly against both illumination and
motion changes. This is also our contribution, and we expect that our method
can support a high recall ratio and high precision ratio at the same time.

�1 Our target scenes are mainly “long shot” scenes in the outdoors, and our proposed method
is not intended for “close-up shot” scenes such that a foreground object is very large.

2. Statistical Local Difference Pattern

In the proposed model, we apply a Gaussian Mixture Model (GMM) to a local
feature called the Local Difference (LD) to get a statistical local feature called the
Statistical Local Difference (SLD). Finally, we define Statistical Local Difference
Pattern (SLDP) for the background model by using several SLDs (see Fig. 1). In
Section 2.1, we explain the concept and advantages of SLDP. The construction
of LD is discussed in Section 2.2, and the representation of SLD using GMM in
Section 2.3. Finally, we explain the construction and detection rules for SLDP
in Section 2.4.

2.1 Concept of Statistical Local Difference Pattern
Previous statistical approaches 7)–11) can handle multi-modal backgrounds but

not illumination changes. Conversely, local feature-based approaches 4)–6) can
deal with illumination changes but not multi-modal backgrounds.

To solve these problems, we propose a new background model by applying
a statistical framework to a local feature-based approach as shown in Fig. 1.
Figure 2 shows the advantages of using SLDP. In most cases where illumination
changes, there are small changes in the difference between a target pixel and
its neighboring pixel, since the values of pixels in a localized region increase or

Fig. 1 Proposed background model based on Statistical Local Difference Pattern: Local Dif-
ference (LD) is a local feature, and is defined by the difference between a target pixel
and a neighboring pixel. LD is modeled using a GMM to represent its distribution,
making it a statistical local feature called the Statistical Local Difference (SLD). Our
proposed model defines the Statistical Local Difference Pattern (SLDP) using several
SLDs for the background model (this figure shows an example with six SLDs).
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(a) Illumination change (b) Motion change of the background

Fig. 2 Adaptivities of the proposed model to background fluctuation: (a) shows the case of
illumination changing suddenly (e.g., when sunlight is blocked by clouds). SLDP can
adapt to illumination changes. This is because LD has the ability to tolerate the effects
of illumination changes which affect the target pixel value in proportion with others.
(b) shows the case of texture changing periodically (e.g., the effect of movement of tree
or grass). GMMs can adapt to these kinds of motion changes, since they can learn the
variety of background hypotheses.

decrease proportionally. Due to the invariance of the difference value with respect
to illumination changes, SLDP has the ability to tolerate the changes as shown
in Fig. 2 (a), since it uses the difference value as a local feature. Furthermore,
our proposed method can also cope with motion changes, since SLDP can learn
the variety of the changes as shown in Fig. 2 (b). This is because a GMM, which
can handle a multi-modal background, is applied to LD which is an important
component of SLDP. Thus, our background model can combine the concepts of
both statistical and local feature-based approaches into a single framework.

2.2 Construction of Local Difference
A target pixel and a neighboring pixel in an observed image are described by the

vectors pc = (xc, yc)T and pj = (xj , yj)T respectively. We can then represent

a local feature Xj , called the Local Difference (LD), by using the difference
between the target and neighboring pixel:

Xj = f(pc) − f(pj), (1)
where f(p) is the image intensity at pixel p.

In cases where illumination changes occur, the changes in the LD are smaller
than the pixel values, since the pixels in the localized region show a similar
change. Therefore, the value of LD is more stable than each pixel value under
the illumination changes.

2.3 Construction of Statistical Local Difference
We apply a Gaussian Mixture Model (GMM) to LD to represent probability

density functions (PDF) for LD. This gives a statistical local feature called Sta-
tistical Local Difference (SLD). We define the SLD P (Xt

j) (PDF for LD) at time
t by:
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We construct the background model by updating the GMM (that is, the SLD).
The updating method for the GMM is based on the statistical approach proposed
by Shimada et al. 8). This method allows automatic changes of K (the number
of Gaussian distributions) in response to background changes. That is, K in-
creases when the background has many hypotheses because of motion changes,
for example. On the other hand, when pixel values are constant for a while,
some Gaussian distributions are eliminated or integrated, and K consequently
decreases.

2.4 Background Model Using a Statistical Local Difference Pattern
In our proposed method, each pixel has a pattern of SLD in the background

model. We call this pattern of SLD the Statistical Local Difference Pattern
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(SLDP), and SLDP St at time t is defined as follows:

St = {P (Xt
1), . . . , P (Xt

j), . . . , P (Xt
N )}, (4)

where N represents the number of SLDs (Fig. 1 shows an example in which
N = 6). The N SLDs P (Xt

j) (j = 1, . . . , N) are defined using a target pixel
pc = (xc, yc)T and N neighboring pixels pj = (xj , yj)T . When a directional
vector aj (j = 1, . . . , N), which describes the direction from the target pixel to
each neighboring pixel, is defined as

aj =
(

cos
j − 1
N

2π, sin
j − 1
N

2π
)T

, (5)

then the neighboring pixel pj is given by:
pj = pc + raj . (6)

In Eq. (6), r is a radial distance, and all of the neighboring pixels lie on a circle
of radius r centered at a target pixel pc. We can also refer to N as the number
of neighboring pixels.

Foreground detection using SLDP uses a voting method to judge whether a
target pixel pc belongs to the background or the foreground. When the pattern
of N LDs is given as Dt = {Xt

1, . . . ,X
t
j , . . . ,X

t
N}, foreground detection based

on SLDP is decided according to:

Φ(pc) =

{
background if φ(Dt|St) ≥ th,

foreground otherwise,
(7)

where th is a threshold for determining whether a target pixel pc belongs to the
background or the foreground. In Eq. (7), φ(Dt|St) is a function which returns
a value between 0 and 1, and is defined by

φ(Dt|St) =
1
N

N∑
j=1

ψ(Xt
j), (8)

where ψ(Xt
j) is a function which returns 0 or 1, depending on whether or not the

LD Xt
j matches the SLD P (Xt

j) at time t. The LD is said to match the SLD if
it falls within 2.5 standard deviations of the mean. For further details, we refer
the reader to the literature 8).

3. Experimental Result

We conducted four types of experiments. First, we compared the overall fore-
ground detection performance of our method with competing approaches. Sec-
ond, we evaluated the validity of our method using Wallflower dataset 1). Third,
we investigated the effect of the parameters r and N on foreground detection.
Finally, the robustness of the method for all types of background changes, illu-
mination changes and motion changes, was examined.

Except for the validation using Wallflower dataset in Section 3.2, the datasets
for the five outdoor scenes illustrated in Fig. 3 were used. As we can see from
Fig. 3, they are long shot scenes, and are the targets for our proposed background
model. Scene1 and scene2 are taken from PETS (PETS2001)�1, while scene3,
scene4 and scene5 are our original datasets which are available from our website�2.
The PETS datasets involve not only pedestrian movement though the streets, but
also illumination changes (sunlight blocked by clouds) and motion changes (tree
swaying and cloud movement) in the background. Our original datasets include

(a) scene1 (PETS2001) (b) scene2 (PETS2001)

(c) scene3 (d) scene4 (e) scene5

Fig. 3 The datasets for evaluation.

�1 Benchmark data of the International Workshop on Performance Evaluation of Tracking and
Surveillance. Available from ftp://pets.rdg.ac.uk/PETS2001/

�2 Several kinds of test image are available from http://limu.ait.kyushu-u.ac.jp/dataset/
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Table 1 Two kinds of performance evaluation results for foreground detection based on Recall, Precision and the F-measure:
one is with respect to each dataset (scene) and the other evaluates whole datasets (scenes).

PETS datasets Our original datasets
Total

scene1 scene2 scene3 scene4 scene5

Proposed method
Recall 72.0 77.6 80.9 57.1 28.1 46.9

Precision 88.9 62.4 80.5 92.9 79.3 80.6
F-measure 79.6 69.2 80.7 70.8 41.5 59.3

Hybrid method 13)
Recall 38.6 51.1 68.9 42.2 22.5 34.2

Precision 89.9 75.0 81.0 96.3 88.6 86.6
F-measure 54.0 60.8 74.5 58.7 35.9 49.1

GMM method 8)

(proposed without local feature-based approach)

Recall 72.6 68.6 88.1 54.4 27.8 45.1
Precision 38.1 32.1 67.3 88.7 76.2 59.8
F-measure 50.0 43.8 76.3 67.4 40.7 51.4

LM method
(proposed without statistical approach)

Recall 15.2 17.5 23.6 21.2 15.0 17.2
Precision 8.4 41.4 91.1 87.2 87.9 48.8
F-measure 10.8 24.6 37.4 34.2 25.6 25.4

several different sizes of moving objects such as pedestrians, cars, buses, etc.
3.1 Comparison with Previous Methods
We compared the overall performance of foreground detection with three dif-

ferent approaches, the GMM method 8), the Local Magnitude (LM) method and
the Hybrid method 13). The GMM method 8) removes the local feature-based
framework from our proposed method, and is consistent with a statistical ap-
proach using Gaussian Mixture Models. The LM method removes the statistical
framework from our proposed method, and models local magnitude relations be-
tween a target pixel and its neighboring pixels. The Hybrid method 13) combines
a statistical model and a local feature-based model. We used the GMM and LM
methods to evaluate the effectiveness of the statistical and local feature-based
approaches, respectively. The Hybrid method 13) was used to indicate that our
new framework is better than hybrid approaches which used the ad hoc solutions
by logical combination.

In these experiments, the radial distance is r = 10, the number of neighboring
pixels is N = 6 and the detection threshold is th = 5. Although the details of
GMM are not explained in Section 2.3, we also indicate the parameter settings
in GMM for reproducibility: the learning rate is α = 0.05, the initial weight is
W = 0.05 and the threshold of choosing the background model T = 0.7. For
details of GMM, we refer the reader to the literature 8). The effects of varying

the parameters r and N are investigated in Section 3.3.
Three measures, Recall, Precision ratio and the F-measure, were used for eval-

uation against manually-produced ground truth datasets�1, and are calculated
as follows:

Recall (%) =
True Positive

True Positive + False Negative
× 100, (9)

Precision (%) =
True Positive

True Positive + False Positive
× 100, (10)

F-measure (%) =
2 × Precision × Recall

Precision + Recall
× 100, (11)

where True Positive, False Positive and False Negative represent the num-
ber of pixels which are correctly classified as foreground, the number of pixels
which are incorrectly classified as foreground and the number of pixels which are
incorrectly classified as background, respectively. The recall ratio is the fraction
of the foreground pixels detected correctly, and the precision ratio is the frac-

�1 A ground truth image denotes the foreground regions which should be detected by back-
ground subtraction. The ground truth datasets for several benchmark datasets, including
those used in this paper, are published on http://limu.ait.kyushu-u.ac.jp/dataset/
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frame: #636

frame: #2226

frame: #2646

frame: #4401

(a) Input image (b) Ground truth (c) Proposed method (d) Hybrid method 13) (e) GMM method 8) (f) LM method

Fig. 4 The results of foreground detection for the proposed method, the Hybrid, GMM and LM methods.

tion of detected pixels which belong to the foreground. The F-measure is the
harmonic mean of Precision and Recall. Table 1 shows two kinds of perfor-
mance evaluation results for foreground detection based on Recall, Precision and
F-measure, one with respect to each scene (dataset) and the other evaluating
whole scenes (datasets). To demonstrate the experimental results, we show the
results of foreground detection for scene1 in Fig. 4.

The PETS datasets (scene1 and 2) include illumination changes and motion
changes in the background region. Table 1 shows that our proposed method and
the Hybrid method both achieve high precision ratios for the PETS datasets,
since they can adapt to both illumination and motion changes. Therefore, little

noise is detected in Fig. 4 (c) and (d), which further shows that these methods
can adapt to both types of background change. On the other hand, Table 1
shows that the GMM and LM methods have low precision rates for the PETS
datasets. In the case of GMM, it cannot adapt to illumination change and detects
a number of noises (see Fig. 4 (e)-frame #636, #2646 and #4401). On the other
hand, LM cannot adapt to motion changes, and Fig. 4 (f) shows that it detects
cloud movement (note especially the area of sky in Fig. 4 (f)-frame #2226, #2646
and #4401).

In the cases of our original datasets (scene3, 4 and 5), neither illumination
changes nor motion changes are severe. Therefore all of the methods achieve a
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high precision ratio for these datasets in Table 1. In terms of the recall ratio,
however, there are differences between the methods in Table 1. In the case
of the LM method, it is robust against illumination changes but it has difficulty
detecting entire foreground objects because the operator is too simple. Therefore,
Table 1 shows that the LM method has the lowest recall ratio for all datasets.
Table 1 also shows that the recall ratio for the Hybrid method is lower than for
our proposed method and for the GMM method. This is because the Hybrid
method combines the results of several different models using the “logical AND”
operation, and false-negative pixels in either of the two models reduce the true-
positive rate. This is confirmed in Fig. 4 (d)-frame #2226, #2646 and #4401,
in which there are a number of false-negative pixels in the object regions. In
the cases of our method and the GMM method, their models can be constructed
using a single framework, and therefore they maintain a high recall ratio. As
a result, Table 1 shows that our proposed method and the GMM method both
achieve a high recall ratio over whole scenes (datasets). For these reasons, we
conclude that our proposed method can combine the best aspects of both local
feature-based and statistical approaches.

3.2 Validation Using Wallflower Dataset
In this section, to investigate what kind of scenes our proposed method can

handle apart from our target scenes, we have used Wallflower dataset 1)�1. This
dataset contains not only long shot scenes but also close-up shot scenes which
observe a large foreground, and includes the background changes which are not
observed in the outdoor. Regarding the parameters, we employed the same ones
as used in Section 3.1. We show the visual and numerical results in Fig. 5
and Table 2 respectively, in which the results of Wallflower are cited from its
literature 1). In Table 2, the column of total errors indicates the summation of
false-negative and false-positive pixels in each scene.

With respect to total errors, the performance of our method is lower than
Wallflower. This is because our method detects many false-negative pixels in
three close-up shot scenes: “Light Switch”, “Camouflage” and “Foreground Aper-

�1 Wallflower dataset contains images and their ground truth data for various background
subtraction issues.

Moved
Object

Time of
Day

Light

Switch

Waving

Trees

Camouflage

Boot-
strapping

Foreground

Aperture

(a) Input (b) Truth (c) Wallflower 1) (d) Proposed

Fig. 5 The results of foreground detection for the proposed method and Wallflower 1).

ture”, as shown in Fig. 5 and Table 2. These close-up shot scenes are not the
targets for our method, and it is difficult to robustly detect the foreground ob-
jects. One reason for this is that the SLDP does not model the background color
but rather the difference between a target pixel and its neighboring pixels. In
most cases of close-up shot scenes, the background has a uniform texture, and
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Table 2 Performance evaluation using Wallflower dataset.

Algorithm Error Type Moved object Time of Day Light Switch Waving Trees Camouflage Bootstrap
Foreground
aperture

Total Errors

Wallflower 1) False Negative 0 961 947 877 229 2025 320
False Positive 0 25 375 1999 2706 365 649 11478

Proposed method
False Negative 0 791 2369 600 8887 1439 2690
False Positive 0 44 280 788 387 132 553 18960

then the change in the SLDP is hardly-detectable when an object with a uni-
form texture appears. Therefore, our method mistakenly regards the foreground
object as the background in the close-up shot scenes, and that is a limitation of
our method. Another reason is that our method has no post-processing for com-
plementing the object regions with a spatiality such as color similarity. In the
case of Wallflower, as the post-processing phase, the method complements the
object regions with color similarity and can achieve a reduction of false-negative
pixels. If we adopt a post-processing such as Graph-Cut, etc., we expect that
our proposed method can also reduce the number of false-negative pixels.

On the other hand, in scenes other than those listed above, our method can
outperform Wallflower as we can see from Fig. 5 and Table 2. This is because
these scenes except for “Waving Trees” are long shot scenes, and “Waving Trees”
has a relatively complicated texture in its background. Then the SLDP can dis-
tinguish the object regions from the background without confusing the object
with the background as discussed above. These scenes also involve illumination
and motion changes in the background. The SLDP can adapt to both changes,
and therefore our method detects few false-positive pixels. From the results of
Section 3.1 and this section, we can confirm that our method can detect fore-
ground objects accurately in the long shot scenes and the scenes which have a
relatively complicated texture in their background.

3.3 Analysis of SLDP Parameters
Our proposed model is based on the SLDP, which has two important param-

eters. One is the number of neighboring pixels N and the other is the radial
distance r. We examined the accuracy of foreground detection by changing these
parameters as they are thought to affect the accuracy of our proposed method.
In this section, Recall, Precision ratio and the F-measure were used to evaluate

Fig. 6 Foreground detection accuracy in re-
lation to the number of neighboring
pixels N . The difference in symbol
and color represents the difference in
N and scene respectively.

Fig. 7 Computational cost in relation to
the number of neighboring pixels N .

the results.
3.3.1 Analysis of the Number of Neighboring pixels
N controls the amount of information maintained by each pixel, and it is con-

sidered to affect the accuracy of our proposed method. Therefore, we investi-
gated the relationship between the accuracy of foreground detection and N , for
N = 4, 6, 8, 10, 12. The results for the five outdoor scenes (in Fig. 3) are shown
in Fig. 6. Then, we also investigated appropriate th (the detection threshold
in Eq. (7)) for each N . Each scene indicates a similar tendency, and therefore
we show the result for scene1 in Fig. 8. Figure 8 shows the highest accuracy
at around th = 0.8 without reference to N , therefore we adopt th = 0.8 as the
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Fig. 8 Analysis of appropriate th (the detection threshold) for the number of neighboring
pixels N using PETS2001 dataset (Scene1 in Fig. 3).

appropriate threshold in Eq. (7). Figure 6 indicates that the accuracy is not sen-
sitive to N when N ≥ 6, then we judged the appropriate N from the relationship
between computational time�1 and N as shown in Fig. 7. Figure 7 shows that the
computational cost increases proportional to N . Therefore, we selected N = 6
and th = 0.8 as the optimal parameters in terms of the balancing accuracy and
computational cost.

3.3.2 Effect of Radial Distance
The r controls the local feature and the localized regions focused by each pixel,

and they are considered to affect the accuracy of our proposed method. Therefore,
to investigate the effect of r on the detection accuracy, we selected typical objects
of various sizes from the datasets illustrated in Fig. 3. Several examples which
illustrate the sensitivity of r relative to object size, in which the object region
is enlarged, are shown in Fig. 9. In Fig. 9, semitransparent blue regions and
pixels represent the regions of interest and the pixels detected as the background
respectively, and several good results are bounded by the red rectangles.

The red rectangles in Fig. 9 show that the suitable size of r becomes larger with

�1 We used a PC which has Core 2 Duo 2.8 GHz CPU and 4 GB memory, and the image size
was 320 × 240 (pixel).

Fig. 9 Examples of variation in foreground detection results for different radial distances r.
The semitransparent blue regions and pixels represent the regions of interest and the
pixels detected as the background respectively. Several good detection results are
bounded by the red rectangles.

IPSJ Transactions on Computer Vision and Applications Vol. 3 198–210 (Dec. 2011) c© 2011 Information Processing Society of Japan



207 Statistical Local Difference Pattern for Background Modeling

the increasing size of the object. Then, in Fig. 9 (b)–(d), there are many false-
negative pixels when the value of r is smaller than half the short side of the object.
The objects in these scenes have uniform textures and their background regions
are also uniform. In such cases, there is little change in the SLDP before and after
the object appears, since the SLDP does not model background color but rather
the difference between a target pixel and its neighboring pixels. This is why a part
of the object region was mistakenly regarded as background. Figure 9 also shows
that the number of false-positive pixels increases as the size of r becomes larger,
although large r can detect large objects. This is because r controls the localized
regions focused by each pixel, and then the SLDP can adapt to the illumination
changes which occur in the region. Therefore, there is a trade-off between the
detection performance of r and the adaptivity to illumination changes. Because
of this trade-off, the range of suitable size of r is limited, and its upper bound
depends on the scene. However, in most cases, its lower bound depends mainly
on the object size. In most applications (e.g., surveillance, security, etc.), we can
predict the size of the objects, since the camera is stationary and observes similar
objects in these applications. Then, we can easily estimate the lower bound of
suitable size of r, and it is reasonable to choose r that is close to the lower bound.
Hence, it does not lose a generality or effectiveness of the proposed method.

On the other hand, in certain cases where the object (such as Fig. 9 (e)) or the
background has a relatively complicated texture, we can choose a smaller size of
r than the size mentioned above, as we can see from Fig. 9 (e). Therefore, a task
for future research is to automatically select the optimal size of r by using the
background texture information, and it will lead to eliminating the trade-off of
r.

3.4 Evaluation of the Adaptivity to Background Changes
In this section, we evaluate the adaptivity of our proposed model to illumination

changes and motion changes in the background. We compared the performance of
our proposed method with three different approaches. The GMM method 8) and
LM method were used for evaluating the effectiveness of the statistical framework
and the local feature-based framework as in Section 3.1. We also used the Hybrid
method 13) to indicate that our new framework is better than hybrid methods
which used the ad hoc solutions by logical combination. The evaluation frames

(a) Change observed on the wall (b) Change observed on the ground

Fig. 10 Typical region in which illumination change occurs.

used here involve the background region only. That is, all of the pixels should
be regarded as background. Therefore, we introduced a new criterion, True-
Negative-Rate, calculated by:

True-Negative-Rate (%) =
True Negative

True Negative + False Positive
× 100, (12)

where True Negative represents the number of pixels which are correctly de-
tected as background.

3.4.1 Adaptivity to Illumination Change
We used outdoor scenes (92 frame images from scene1 and 132 frame images

from scene2) in which the illumination conditions changed rapidly, and manu-
ally cropped two typical regions showing these rapid illumination changes for
evaluation. Figure 10 shows two sample frame images and the cropped regions
whose size was 50×50 pixels. Examples of the results of foreground detection are
shown in Fig. 11, while Table 3 shows True-Negative-Rate for the illumination
changes.

Figure 11 shows that the GMM method 8) detects a number of false-positive
pixels, and Table 3 shows that the True-Negative-Rate of the GMM method is
low. These results are typical evidence of the weakness of a statistical approach
regarding illumination changes.

Meanwhile, we see that the methods which use a local feature-based frame-
work (LM, Hybrid 13) and our proposed method) are robust against illumination
changes, which is demonstrated by the few false-positive pixels in Fig. 11. Ta-
ble 3 shows numerically that these three local feature-based methods can achieve
a high True-Negative-Rate. This is because these methods can adapt to illumina-
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Input image GMM 8) LM Hybrid 13) Proposed

Fig. 11 Examples of the adaptivity to illumination change.

Table 3 True-Negative-Rate for illumination change.

Method True-Negative-Rate (%)

GMM method 8)

(proposed without local feature-based approach) 73.7

LM method
(proposed without statistical approach) 97.6

Proposed method 99.8

Hybrid method 13) 99.9

tion changes by using the relations between the target pixel and its neighboring
pixels. In the case of our proposed method, we assume that illumination changes
affect localized regions proportionally, and our method can tolerate the effects of
illumination changes which occur in the localized region. On the other hand, a
limitation of our proposed method is that it cannot adapt to unusual illumination
which causes peaked changes, such as specular reflection.

3.4.2 Adaptivity to Motion Change
The same two scenes were also used for the evaluation of motion changes in

background regions. We manually cropped two typical regions displaying mo-
tion changes including cloud movement (see Fig. 12 (a)) and trees swaying (see
Fig. 12 (b)). The cropped image sequences consist of 3780 frame images in scene1
and 722 frame images in scene2. The size of regions was 50×50 pixels. Examples
of the results of foreground detection are shown in Fig. 13, while Table 4 shows

(a) Change caused by cloud movement (b) Change caused by movement of a tree

Fig. 12 Region in which motion change occurs and a example of changes.

Input image GMM 8) LM Hybrid 13) Proposed

Fig. 13 Examples of the adaptivity to motion change.

Table 4 True-Negative-Rate for motion change.

Method True-Negative-Rate (%)

GMM method 8)

(proposed without local feature-based approach) 98.2

LM method
(proposed without statistical approach) 80.3

Proposed method 99.3

Hybrid method 13) 98.3

the True-Negative-Rate.
We see that the LM method detects a number of false-positive pixels from

Fig. 13, and its True-Negative-Rate is low from Table 4. These results are typical
evidence of a weakness of the local feature-based approach when there are motion
changes.

Meanwhile, as shown in Fig. 13, the methods using a statistical framework
(GMM 8), Hybrid 13) and our proposed method) output a smaller number of false-
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positive pixels. Table 4 shows numerically that these three statistical methods
achieve a high True-Negative-Rate. This is because these methods can maintain
multiple hypotheses of multi-modal backgrounds by their statistical models, how-
ever there is a limitation to the periodicity which can be coped with by them.
For these methods to adapt to motion changes, the changes need to be modeled
by the statistical models which forget the observation of the past over time. In
the case of our method, we use GMM as the statistical model, and the periodicity
is controlled by varying GMM parameters: α, W and T (the learning rate, the
initial weight and the threshold of choosing the background model, respectively).
For details of GMM, we refer the reader to the literature 8). Although we can
make minor adjustments to the periodicity, our method cannot cope with the
case where the motion changes are periodically observed after a long interval.

4. Conclusion

In this paper, we have proposed a new background model based on the Sta-
tistical Local Difference Pattern (SLDP). Our main contribution is proposing a
method that combines the concepts of a local feature-based approach and a statis-
tical approach into a single framework. The result is that our proposed method
adapts to both illumination changes and motion changes in the background.
This is because the SLDP uses illumination-invariant local features which have
the ability to tolerate the effects of illumination changes, and describes their
distribution by GMMs which can learn the variety of motion changes. As the ex-
perimental results, we have confirmed that our proposed method can detect the
foreground objects robustly against illumination changes and motion changes,
especially in long shot scenes.

However, our proposed method also has two main constraints:
Computational time
Our proposed method does not work very fast, since each pixel has N GMMs
in SLDP and needs to update them, where N is the number of the neighboring
pixels. In the case where the image size was 320 × 240 pixels and N = 6,
the computational time was about 230ms using a PC running a Core 2 Duo
2.8 GHz CPU with 4 GB memory. We think that this problem is not so critical
for our method, since the problem will be able to be solved by the development

of the computer. However, because of the demand for fast processing in an
application such as security, reduction of the computational time is one of our
future researches.
Dependence of radial distance r on the object size
Our proposed method also has a problem associated with the object size as
discussed in Section 3.3.2. In particular, when the object is too big or the radial
distance r is smaller than half the short side of the object, our method does not
work well and many false-negative pixels are observed in the object region. On
the other hand, when the background or the object has a complicated texture, we
confirmed that r does not depend strongly on the size of the object. Therefore,
future research will aim to eliminate the dependence of r on the object size by
using the background texture information.
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